

How New Methods for Evaluating Color Rendering will Affect You

Lightfair

May 5–7, 2015

Michael Royer, PNNL

Color Fidelity: A Partial Picture

Reference Image

The CIE Color Rendering Index (CRI)

What CRI conveys:

- Average color fidelity/color shift (but with limitations)
 - Outdated color science
 - Few samples
 - Only pastel Munsell samples
 - Can be selectively optimized

What CRI doesn't convey:

- Direction/type of color shifts
- Increases or decreases in chroma
- Information about specific hue regions
- Human preference
- Color discrimination potential
- Difference in color for any specific object
- How one source will make things look compared to another

One Index is Not Enough. But how many are needed? And what should they be?

A Path Forward: IES Color Metrics Task Group

- Technical Memorandum (i.e., calculation procedure), TM-30
- Currently in final stage of balloting
- It draws from a variety of other color perception research
- Based objective/mathematical approach
- Two-metric system (fidelity $[R_f]$ and gamut $[R_g]$) for quantifying average color rendition
- 99 color evaluation samples (CES) with color space and wavelength uniformity
 - Excellent correlation to much larger sets of color samples
- Improved color science
- Many additional tools (e.g., color distortion icon) for better understanding rendition of specific hues.

TM-30 IS NOT YET A FINAL DOCUMENT!

The CIE Color Rendering Index (CRI)

What CRI conveys:

- Average color fidelity/color shift (but with limitations)
 - Outdate color science
 - Few samples
 - Only Pastel Munsell Samples
 - Can be selectively optimized

What CRI doesn't convey:

- Direction/type of color shifts
- Increases or decreases in chroma
- Information about specific hue regions
- Human preference
- Color discrimination potential
- Difference in color for any specific object
- How one source will make things look compared to another

Summary of Notable Features

Calculation Engine

- 99 color evaluation samples
 - Real objects
 - Color space uniformity
 - Wavelength uniformity
- Calculations in CAM02-UCS
 - CIECAM02 chromatic adaptation
 - Most uniform color space
 - Stability over CCT
- Mixed reference (4500 K to 5500 K) eliminates discontinuity

Outputs

- Average Color Fidelity: *R*_f
- Average Color Gamut: *R*_g
- $R_{\rm f}$ Versus $R_{\rm g}$ Plot
- Color Distortion Icon / Color Saturation Icon
- Color Fidelity by Hue Angle (16 Groups)
- Chroma Change by Hue Angle (16 Groups)
- Skin Tone Color Fidelity
- Color Fidelity by Sample

A Two-Metric System for Average Characterization

$0 < R_{\rm f} \leq 100$

When $R_{\rm f} > 60$: $60 < R_{\rm q} \le 140$

R_f Versus **R**_g Plot

For Specifiers?

For Manufacturers?

For Researchers?

For Energy Efficiency Programs/Utilities?

Specifiers

- 1. Learn about the new metrics
 - Presentations, Journal Articles, TM-30 (Pending), DG-01 (Pending)
 - What they do and don't characterize; *limitations*
- 2. Examine values for existing sources, understand your preferences in applications where you commonly specify
- 3. Use additional information for better specifications
- Case study: Museums

Comparing $R_{\rm f}$ and $R_{\rm g}$

Color Distortion Icon

- 1. Learn about the new metrics
 - Presentations, Journal Articles, TM-30 (Pending), DG-01 (Pending)
 - What they do and don't characterize; *limitations*
- 2. How do your products measure up against others?
- 3. Does your product have distinguishing features that are marketable?
- 4. Use tools for future optimizations
 - Balance between efficiency and color rendition
- Case study: Neodymium Lamps

Communicating Performance

(Live Calculation Tool Demo)

Beyond Averages

Beyond Averages

Hue Bin

16

EE Programs/Regulators

- 1. Learn about the new metrics
 - Presentations, Journal Articles, TM-30 (Pending), DG-01 (Pending)
 - What they do and don't characterize; *limitations*
- 2. How do existing thresholds for color rendering relate?
- 3. Should all sources that previously qualified still do so? Should the numerical value stay the same?
- Case study: Triphosphor Fluorescent

Comparing R_f and R_a

- 1. Learn about the new metrics
 - Presentations, Journal Articles, TM-30 (Pending), DG-01 (Pending)
 - What they do and don't characterize; *limitations*
- 2. New information can improve characterization (but averages shouldn't always be used to establish correlations)
- 3. What new investigations are warranted?
- Case study: Preference by Application

WHY ADOPT?

- With two average numbers and other visualization tools, TM-30 provides a **more complete characterization** of color rendition than a fidelity metric alone (e.g., CRI).
- With a greater number of samples, the values are **harder to selectively optimize** and should provide a better representation of average color rendering.
- The method can help manufacturers **optimize spectral designs**, as well as **accurately weigh tradeoffs** between color rendition and other characteristics.
- The color rendition characteristics of products can more easily be **differentiated** (and marketed).
- The method can help specifiers and purchasers to select products that are more appropriate for their needs.
- Thresholds, design guidance, and preconceptions will need to be reevaluated.

TM-30 IS NOT YET A FINAL DOCUMENT!

