Heat Pump Water Heater Using Solid-State Energy Converters

2015 Building Technologies Office Peer Review

Project Summary

Timeline:

Start date: 11/15/2012

Planned end date: 5/14/2016

Key Milestones:

- 1. Development of Bottom Mount 4-Engine Thermoelectric Heat Pump; 5/14/2014
- Development of High Cooling Power Thermoelectric Modules for Heat Pumps; 5/14/2015
- Performance (COP > 1.1) and Reliability of 4and 8-Engine Thermoelectric Heat Pumps;
 6/14/2016

Budget:

Total DOE \$ to date: \$1149900.00

Total future DOE \$: \$499975.00

Target Market/Audience:

Home Water Heaters with Affordable, Reliable Solid-State Heat Pumps

Key Partners:

Whirlpool Appliance (Consultation for Specs)

Project Goal:

Demonstrate a home water heater product with affordable and reliable solid-state heat pumps with COP > 1.1 The project includes development of high cooling power thermoelectric modules as well as development of bottom-mount 4-engine and 8-engine heat pumps.

Purpose and Objectives

Residential Water Heaters

- 15% of energy consumption
- 45% are electric heaters: ~ 1.34
 Quads of primary energy
- \$300-\$700 per year energy cost
- Vapor compression based heat pump water heater are very expensive

Sheetak's Solution

Low-Cost Thermoelectric (TE) Heat Pump Water Heater

Impact of the Project

- Demonstration of first TE-based 50 gallon heat pump water heater
- COP > 1.1 (goal of the SBIR)
- Development of novel thermoelectric modules and substrates
- Development of novel system-level hardware
- Cost-effective heat pump water heater
- Achievements
 - Near term: COP > 1 with 4 TE cooling engines
 - Intermediate term: COP > 1.2 with 8 TE cooling engines,
 teaming with a water heater manufacturer
 - Long term: Launch of TE based water heater in the market

Thermoelectric Heat Pump Water Heater

Thermoelectric Hot Side

Thermoelectric Cold Side (Heat-Pipe Heat Sink)

Preliminary Results: 4 TE Engine Water Heater

- 3GPM water withdrawal in 3 minutes 40 sec (as per testing standards)
- Only TE used for heating after the withdrawal
- Issues: Slow heating observed by TE

Preliminary Results: 4 TE Engine Water Heater

$$P = mC_{p} \frac{dT}{dt} + K(T - T_{a})$$

$$COP = \frac{P}{IV}$$

- P = heating rate, estimated using the above equation
- Due to discrete measurements and fluctuations in ambient temperature, there are some uncertainties
- COP is high in the beginning due to low temperature difference
- COP decreases with time due to increase in temperature difference
- After a certain temperature rise, resistive heater will be switched on (work on controls, in progress)

High Performance TE Modules – Thin Film Devices

- ❖ Very high heat flux > 100 W/cm²
- Δ T ~ 50°C for AlN substrates, COP ~0.6 for Δ T (external) = 30°C
- Requires metal-core substrates and high performance solders
- Packaging cost may be high

Thin Film $Bi_{0.5}Sb_{1.5}Te_{3.0}$ and $Bi_2Te_{2.8}Se_{0.2}$ Devices

High Performance TE Modules – Substrates

High Performance TE Modules – Thick Film Devices

- ❖ ΔT ~ 80°C for Al-core substrates
- Significant performance improvements with proprietary nanostructured materials
- ❖ Packaging cost is small for ~1kW heat pumps

Progress and Accomplishments

Accomplishments

- Bottom-mount TE heat pump water heater fabricated and preliminary testing data obtained
- Thin film and new thick film TE fabrication process
- Novel metal-core TE substrate developed (superior to stateof-the-art are ceramic substrate)

Challenges

- Slow heating observed by TE heat pump. Risk mitigation involves use of TE heater in conjunction with the resistive heater and better heat sink design
- Significant parasitic temperature losses due to high heat flux in thin film TE. Novel thick film process developed to reduce the parasitic losses

Renewable Energy

Commercialization Strategy

- Established contacts with Whirlpool and AO Smith in the US and Godrej and Boyce in India
 - AO Smith: World leader in water heaters
 - Whirlpool: Makes store branded heaters
 - Godrej and Boyce: Appliance maker with focus on developing world markets (e.g. India)
 - A.O. Smith is quite cost conscious but Whirlpool and Godrej have stronger interest
- Commercialization focus for the first year:
 - Establish contacts and have introductory discussions
- Commercialization focus for second year:
 - Demonstrate performance of the final prototype with Sheetak TECs (available in the middle of 2nd year)
 - Get into commercial discussions for licensing our system technology and supplying Sheetak TECs

Next Steps and Future Plans

- 8-Engine TE heat pump integration to the water tank
- Development of control algorithm to control TE heat pump and resistive heater operation
- Fabrication of large TE modules on metal-core substrates using Sheetak's thick film process
- Integrated heat pump modules with Sheetak TE and heat sinks
- Demonstration products for engaging potential electric water heater manufacturers (AO Smith, Godrej and Whirlpool)

REFERENCE SLIDES

Project Budget

Project Budget: \$1,149,900.00

Variances: None

Cost to Date: \$1,149,900.00

Additional Funding: N/A

Budget History										
11/15/2012— FY2014 (past)		FY20 (curr		FY2016 – <mark>5/14/2016</mark> (planned)						
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share					
\$149,950.00	0	\$499,974.57	0	\$499,975.00	0					

Project Plan and Schedule

Project S chedule												
Project®tart: <mark>May 2014</mark>		Completed Nork										
Projected Ind: May 2016		ActiveTaskainaprogressawork)										
	•	Milestone/Deliverable Originally Planned Ouse or Originally Planned										
	•	Milestone/Deliverable Actual use when met on time										
		FY	2014		FY2015				FY2016			
Task	Q1ब्रMay-July)	Q2Aug-Oct)	Q3ANov-Jan)	Q4ा(Feb-Apr)	Q1ब्(May-Jul)	Q2ब्Aug-Oct)	Q3त्(Nov-Jan)	Q4ī[Feb-Apr)	Q1ब्(May-Jul)	Q1ब्(May-Jul)	Q2¶Aug-Oct)	Q3त्(Nov-Jan)
Past@Vork												
Q1ProductDesign												
Q2BottommountTEheatpumpdesign												
Q2Packagingf5heetak'sPowerTEHeatPumps												
Q4Multi-moduletheatpumpthardware												
Current/Future®Work												
Q5@reliminary@eliability@ssesment												
Q63Water3heater3product3prototype3assembly												
Q72Test12tto 3water 3heater 3standard												

