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Project Summary
 

Timeline: 
Start date: 3/1/2013 
Planned end date: 2/29/2016 
Key Milestones 
1.	 Design optimization, 3/30/14 
2.	 Fabrication/testing, 1kW prototype, 

1/30/2015 
3.	 Fabrication/testing, 10kW prototype, 

9/30/2015 

Budget: 

Total Budget: $1500K 

Total UMD: $1050K 

Total DOE $ to date for UMD: $881K 

Total future DOE $ for UMD: $169K 

Target Market/Audience: 

Residential and commercial heat pump 
systems with various capacity scales. 

Condenser as first choice of application 

Key Partners: 

Oak Ridge National 
Laboratory 
Burr Oak Tool 
Heat Transfer Technologies 
International Copper 
Association 
Luvata 
Wieland 

Project Goal: 
Purpose: Develop next generation heat 
exchangers for heat pumps and air-conditioners 
Target Performance: Miniaturized air-to­
refrigerant heat exchangers with at least 

• 20% lower volume 
• 20% less material 
• 20% higher performance 

Target Market: To be in production within five 
years 
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Purpose and Objectives
 

Problem Statement: Develop miniaturized air-to-refrigerant heat exchangers that 
are 20% better, in size, weight and performance, than current designs AND 
In production within 5 Years 

Target Market and Audience: 
 Residential and commercial heat pumps and air-conditioners 
 US Shipment of residential air-source equipment in 2011: 5.5 Million units 
 US EIA 2009 Energy Consumption: 41.5% for space heating, 6.2% for AC 
 Proposed heat exchanger technology will readily compete with current 

condenser designs for AC systems (3.7 M). 

Impact of Project: 
 Project deliverables include analyses tools and heat transfer correlations 
 Heat exchangers (1 kW and 10 kW) that are at-least 20% better (size, weight 

and performance) than current designs, based on measured performance; a 
minimum of 3 prototypes to be fabricated and tested 

 Manufacturing guidelines to facilitate production within 5 years 
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Future of Heat Exchangers
 



 

 

 

 

 

 

 

  

 

 

 

Approach
 

 Developed a comprehensive multi-scale modeling and optimization 
approach for design optimization of novel heat exchangers 

•	 Parallel Parameterized CFD 

•	 Approximation Assisted Optimization 

 Build a test facility for air side performance measurement of heat 
exchangers 

 Design, optimize and test 1 kW and 10 kW air-to-water and air-to­
refrigerant heat exchangers 

 Investigate conventional and additive manufacturing techniques 

 Analyze and test system level performance of novel heat exchangers 

• Evaporator and condenser of a system based on same design 
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Approach : Key Issues
 

 Lack of basic heat transfer and fluid flow data for design and analyses of 
air-to-refrigerant heat exchangers with small flow channels 

 Availability for small diameter tubes 

 Joining/manufacturing challenges 

 Face area constraints 

 Fouling and flow mal-distribution 

 Wetting 

 Noise and vibrations 
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Approach: Distinctive Characteristics
 

 Developed a comprehensive multi-scale modeling and optimization 

approach for design optimization of novel heat exchangers
 

•	 Allows for rapid and automated CFD evaluation of geometries with 
topology change 

•	 More than 90% reduction in engineering and computation time 

 Focus on small hydraulic diameter flow channels 

• Bridging the research gaps 

• Heat transfer, pressure drop correlations and design tools 

 Prototype fabrication and testing is in progress, with target production 
within 5 years 

 Initial tests show, <10% deviation against predicted 

 20% size and weight reduction 

 Retrofit applications, limited load carrying capacity of roofs 

 Potential savings in logistics costs 
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Progress and Accomplishments
 

 Analyzed 8+ heat exchanger geometries 

 Developed a new methodology for optimizing tube shapes – no 
longer constrained by circular/rectangular tubes 

 Fabricated and tested three 1kW prototypes 

• Measured data agree within 10% of predicted performance 

 Wind tunnel facility at UMD now online 

 Work in progress 

•	 Design and prototyping of 10kW (nominal 3TR) heat exchangers 

•	 System-test facility is being developed, equipment donated by 
sponsors of UMD-CEEE Consortium 
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Accomplishments  
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Progress and Accomplishments  

 Novel multi-scale approach for tube shape optimization 
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Accomplishments: Measured Capacity  
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Accomplishments: Measured Performance  
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Accomplishments: Performance Comparison  
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Accomplishments:  Performance Comparison  
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Accomplishments: Design tools for industry
 

 Air-side 
performance 
correlations 
for: 

•	 Bare tubes 

•	 Plain Fins 

•	 Wavy Fins 
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Project Integration and Collaboration
 

Project Integration 

 Collaboration with key project partners to identify and solve manufacturing and 
deployment challenges 

 Collaboration with ORNL for performance testing 

 First-hand feedback from industry partners of UMD Consortium 

Partners, Subcontractors, and Collaborators 

 ORNL: Subcontractor; design, advanced manufacturing and testing 

•	 Omar Abdelaziz: Group Leader, PI;  Patrick Geoghegan: Scientist 

 Luvata: Industry partner; manufacturing, system integration and marketing 

• Mike Heidenreich: VP of Product Engg;  Russ Cude: Director of Engg., Americans; 

Randy Weaver: R&D Engineer 

 ICA / Heat Transfer Technologies: Industry partner; heat exchanger manufacturing 
process development 

•	 Yoram Shabtay: President;  John Black: VP of Market Development 

 Wieland: Industry Partner; tube manufacturer 

 Steffen Rieger, Technical Marketing Manager 

 Burr Oak Tool Inc.: Specializing in machines, tools and services for HX mfg. Roger 
Tetzloff, Innovations Manager 
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Project Communications
 

Kick-off Meeting: 
• Kick-off Meeting & Brainstorming Workshop, 22-Apr-2013, University of Maryland 

• Semi-annual in-person progress review meetings (Mar and Sep), every year 

IP: Provisional patent application in progress 

Publications (2014 – 4, 2015 – 3) 
1.	 Bacellar, D., Ling, J., Abdelaziz, O., Aute, V., Radermacher, R., Design of Novel Air-to-Refrigerant Heat Exchangers Using 

Approximation Assisted Optimization, ASME 2014 Verification & Validation Symposium, May 7-9, 2014 – Las Vegas, Nevada.  

2.	 Bacellar, D., Aute, V., Radermacher, R., CFD-Based Correlation Development for Air Side Performance of Finned and Finless 

Tube Heat Exchangers with Small Diameter Tubes, 15th International Refrigeration and Air Conditioning Conference at Purdue, 

July 14-17, 2014. 

3.	 Bacellar, D., Ling, J., Abdelaziz, O., Aute, V., Radermacher, R., Multi-scale modeling and approximation assisted optimization 

of bare tube heat exchangers, Proceedings of the 15th International Heat Transfer Conference, IHTC-15, August 10-15, 2014, 

Kyoto, Japan. 

4.	 Saleh, K., Bacellar, D., Aute, V., Radermacher, R., An Adaptive Multiscale Approximation Assisted Multiobjective 

Optimization Applied to Compact Heat Exchangers, 4th International Conference on Engineering Optimization, EngOpt 2014, 

September 8-11, Lisbon, Portugal. 

5.	 Bacellar, D., Abdelaziz, O., Aute, V., Radermacher, R., Novel Heat Exchanger Design using Computational Fluid Dynamics 

and Approximation Assisted Optimization, ASHRAE 2015, Winter Conference, January 24-28, 2015 - Chicago, IL. 

6.	 Bacellar, D., Aute, V., Radermacher, R., A Method for Air-To-Refrigerant Heat Exchanger Multi-Scale Analysis and 

Optimization with Tube Shape Parameterization, 24th IIR International Congress of Refrigeration, August 16 – 22, 2015 – 
Yokohama, Japan. (MANUSCRIPT SUBMITTED) 

7.	 Bacellar, D., Aute, V., Radermacher, R., CFD-Based Correlation Development for Air Side Performance on Finned Tube Heat 

Exchangers with Wavy Fins and Small Tube Diameters, 24th IIR International Congress of Refrigeration, August 16 – 22, 2015 – 
Yokohama, Japan. (MANUSCRIPT SUBMITTED) 
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Next Steps and Future Plans
 

 Conduct air-side performance measurements (in progress) 

 Design and fabricate 10kW Radiators (in progress) 

 Test radiators and update models as required 

• Conduct noise/vibrations analysis 

 Design and fabricate evaporators and condensers for 3 Ton system (in­
progress) 

 Test evaporators and condensers in wind tunnel 

 System Testing 

• Set up system test facility (HP system acquisition in progress) 

• Test evaporators and condensers as a part of complete system 

 Develop and disseminate tools for heat exchanger analyses
 
(12/30/2015)
 

 Develop and disseminate manufacturing guidelines and lessons learned 
(1/30/2016) 
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  Project Budget
 

Project Budget: DOE Total $1050K, FY13-17 (3/1/2013 to 2/29/2016) 
Variances: No change in overall budget; Higher spending in Year-2, due to 
prototype fabrication and test facility setup 
Cost to Date: $881K 
Additional Funding: No additional funding for DOE is expected. Various in-kind 
contribution from industry partners 

Budget History 

FY2013 – FY2014 
(past) 

FY2015 
(current) 

FY2016 
(planned) 

DOE Cost-share DOE Cost-share DOE Cost-share 
$751 NA $130K NA $169K NA 
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 Project Plan and Schedule
 

22 



Accomplishments: Measured Performance 
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