

A Journey of Discovery and Innovation

Team Invent the Future®

Susan Maddox Chief Estimator

Marcelo de Almeida Simulation Analyst

Sarah Scott
Planning &
Development

Greg Polinger
Energy Simulation
Specialist

Reid Miner Systems Specialist

Team Invent the Future®

Georg Reichard Faculty Advisor

Will ManionFaculty Advisor in Residence

Industry Advisors

COMMUNITY HOUSING PARTNERS

The TOWNHAUZ at Admiral's Landing

Location: Dundalk, MD

IECC Climate Zone: 4 (Mixed-Humid)

EPA Radon Zone: 1

Elevation: 154'

Annual Max Temp: 60°F

Annual Min Temp: 44°F

Mean Temp: 52 °F

Annual Mean Precip: 41"

HDD: 5486

CDD: 795

지 Introduction

C Design Goals © Enclosure Design Quality S Indoor Air

™ MEP Design

8 Energy Analysis 5 Financial Analysis

⊗ Conclusions

1690 SF, 3 stories, 3 bedrooms, 2 ½ bath

⊗ Conclusions

Design Goals & Key Design Methods

- Thermal Performance Analysis
- Hygrothermal Analysis

등 Introduction

- Thermal Bridge Analysis
- Thermal Comfort Analysis
- Energy Simulations
- Financial Analysis
- Construction and Occupant
 Experience Analysis

Enclosure Design Approach

Strategies to improve thermal performance:

- Increasing cavity by moving to 2x6 wall assemblies
 - Works also for production builder
- Adding exterior rigid insulation
 - Additional step/labor/cost required
- Double stud walls
 - Increased cost, production challenge
- Insulated installation cavity
 - Lowest condensation risk
 - Not production builder friendly

Production friendly hybrid R-25 wall system

- Core Panels
 - still fit under production bridge
 - can be safely transported
- Blown-in cellulose
 - already used for ceiling
 - cheaper than rigid insulation
- No significant increase in labor
- Rigid SIP (e.g. ZIP system) strips provide
 - additional (scalable) cavity depth
 - thermal break
 - mounting base for drywall

Final enclosure design: Walls R-40; Roof R-60; Windows R-7.6

Hygrothermal Analysis – steady state

- Code requirement in many European countries
- E.g. German DIN 4108-3
 - 90 days of exposure to condensation risk condition
 - Interior: 20°C at 50% RH
 - Exterior: 5°C at 80% RH
 - Accumulated moisture must dry out in 90 days in summer
- Without vapor retarding layer
 - Condensation starts around 35% RH int. at -5°C (23°F) ext.

Hygrothermal Analysis

Transient simulation tool WUFI allows for

- comparing air tightness of enclosure
- differences in occupancy driven moisture accounted through number of BR
- capturing impact of interior control of relative humidity in summer

e.g. Standard 2x4 wall in Baltimore, MD climate

- will "work" with lots of moisture moving in/out 1
- with "airtight construction" not so well anymore
- can "fix" with interior humidity control (3)
- or better with vapor diffusion control layer 4

C Design Goals

Enclosure
Design

Quality Sindoor Air

₩ MEP Design

S Energy
Analysis

Total Water Content [kg/m²]

Total Water Content [kg/m²]

⊗ Conclusions

Hygrothermal Analysis

R-40 wall in Baltimore, MD climate:

- will not work since we build air-tight 1
- controlling for interior humidity during summer can prevent issues (2)
- vapor retarder on the interior side can do the same without the need of controlled humidity
- redundant, combined solution 4
 - prevent issues resulting from local vapor control layer failures
 - can prevent issues resulting from HVAC system failures

Thermal Bridge Free Details

Thermal Comfort Analysis

R-3.5 Window

R-7.6 Window (Triple Pane)

Thermal Comfort Analysis

Median Radiant Temperature Analysis (MRT)

To achieve a target temperature sensation of 70°F...

Required temp. setpoint for **R-3.5** Windows:

$$T(set) = 70^{\circ} + (70^{\circ}F - 65.5^{\circ}F) \times 1.4 = 76.3^{\circ}F$$

Required temp. setpoint for **R-7.6** Windows:

$$T(set) = 70^{\circ} + (70^{\circ}F - 67.5^{\circ}F) \times 1.4 = 73.5^{\circ}F$$

Indoor Air Quality

Key Ventilation Features:

- Whole-house balanced ductless HRV
- Bathrooms: automatic excess humidity detection
- Kitchens: automatic make-up air
- Ultra quiet operation

Dehumidification:

Relative humidity control (≤ 50%)

Ultra-Aire ENERGY STAR 70H Dehumidifier

Indoor Air Quality

Key Pollution Control Features:

- High-performance MERV Filters
- Source control
- Radon mitigation

Key IAQ During Construction:

- Low/No VOC materials
- Dust control
- Clean cavities
- Maintain good ventilation

Space Conditioning

Equipment:

- SEER 16, 1.5 ton heat pump
- High-efficiency 2 ton air handler
- Ductwork dampers

Selection Process:

Transmission and Ventilation losses

Trane XR 15 and Hyperion EXL Units

Zonefirst Damper

Bathroom and Kitchen Re-arrangement

Re-arranged Second Floor Layout

Re-arranged Third Floor Layout

Domestic Hot Water

- PEX lines combined with manifold drastically reduce standby losses
- Energy savings
- Cost savings
- Labor savings

Hybrid Hot Water Heating

GE Geospring Hybrid Water Heater EF 2.9

- 10 year savings = **\$2,740**
- Payback in 3 years

Lighting and Appliances

LED Bulbs:

- 10 year savings vs. incandescent = \$4,833
- Reduces energy consumption by 82%
- Superior to fluorescent

Appliances:

- ENERGY STAR compliant
- Affordable and functional size based on demand

7 Introduction 6 Design Goals

EnclosureDesign

Quality Sindoor Air

₩ MEP Design

Energy
Analysis

Financial Analysis

Energy Analysis: Standard Design

Original townhouse standard design:

Annual Energy Consumption [kBTU/year]							
HERS	Heating	Cooling	Water Heating	Lighting & Appliances	Total		
106	31,800	5,100	21,300	24,700	82,900 kBTU		

Annual Energy Cost [\$/year]						
HERS	Heating	Cooling	Water Heating	Lighting & Appliances	Service Charge	Total
106	365	196	224	763	120	\$1,668

Maryland Residential Standard (EIA)

- 88,900 kBTU/year
- \$2,313/year

∃ Introduction∃ Design∃ Enclosure∃ Indoor Air∃ MEP Design∃ Energy∃ FinancialB ConclusionsGoalsDesignQualityAnalysisAnalysis

Energy Analysis: New Design

Annual Energy Consumption [kBTU/year]						
	HERS	Heating	Cooling	Water Heating	Lighting & Appliances	Total
End Unit	39	6,200	2,400	4,100	14,900	27,600
Middle Unit	39	6,200	2,400	4,100	14,700	27,400
Standard Design	106	31,800	5,100	21,300	24,700	82,900
MD Standard (EIA)						89,000

Annual Energy Cost [\$/year]							
	HERS	Heating	Cooling	Water Heating	Lighting & Appliances	Service Charge	Total
End Unit	39	72	92	159	575	120	1,018
Middle Unit	39	72	92	159	569	120	1,012
Standard Design	106	365	196	224	763	120	1,668
MD Standard (EIA)							2,313

등 Introduction 등 Design 등 Enclosure 등 Indoor Air 등 MEP Design 등 Energy 등 Financial Goals Design Quality 의 Analysis Analysis

Net Zero Energy

PV System:

- Size: 6kW
- Annual Output: 27,316 kBTU
- Annual Energy Value: \$1,041
- Annual Energy Cost: \$0 (-\$26)
- Estimated System Cost (with applicable grants and tax credits): \$12,905

19 PV Panels, 320 Watts Each, South Facing

[∞] Conclusions

Financial Analysis

Original KHOV Design Selling Cost	\$235,490
HVAC Design Changes	\$8,580
Plumbing Design Changes	-\$336
Electrical Design Changes	\$271
Appliances Design Changes	\$1,235
Insulation Design Changes	\$1,513
Windows Design Changes	\$1,157
Total Additional Costs	\$12,420
Proposed Design Selling Cost	\$265,161

AFFORDABILITY ANALYSIS

(PITIU Analysis)

MFI = \$75,000

Down Payment = 20% of Purchase Price = \$53,032

Loan Amount = \$212,129

Annual Mortgage Payment = \$1,074.83

Based on 30 year loan with interest rate of 4.5%

Property Taxes = 2.75% of MFI =\$2,063

Insurance = \$780

Utilities = \$1,012

Debt = 0.5% of MFI =\$375

Total Annual Costs = \$17,128

This total represents 22.8% of the MFI, less than the recommended maximum of 38%

Final Remarks

- Ultimately, we decided on some design solutions that may go beyond the production builder's current strategies
- Why? to *Invent the Future* ...
 - → push the envelope in terms of energy performance
 - → define a new level for occupant comfort

Take it for a "test-drive" and experience the difference! http://TownHauZ.bldgsci.net

Corner Detail

Floor/Ceiling Rim Detail

Enclosure Design

Quality S Indoor Air

S MEP Design

8 Energy Analysis S Financial Analysis

⊗ Conclusions

Air Sealing

IntroductionDesignEnclosureIndoor AirMEP DesignEnergyFinancialConclusionsGoalsDesignQualityAnalysisAnalysis

Mechanical Plans

Plumbing Plans

Ground Floor

First Floor

Second Floor

