

Building Interoperability

Gary Kohrt

Vice – President of Solutions and Services

Agenda

About ICONICS

Global Presence

Established 1986

HQ Foxborough, MA USA

Largest Independent provider of HMI/SCADA worldwide

Offices USA, UK, France, Italy, Netherlands, Germany, Czech Republic, China, India, Australia

Microsoft Alliance

Award Winning Partner

Partner Ecosystem

80+ Countries

400+ Partners

- Distributor
- OEM
- Systems Integrator

Diverse Industries

300,000 Licenses Installed

Manufacturing
Building Automation
Energy
Water Treatment
Electric Utilities
Renewable Energy
Oil, Gas and Chemical
Metals and Mining
Public Infrastructure

Real-Time Software Solutions

Factory Automation

Analytics

BIZVIZ

Historian

AnalytiX^{*}

Mobility

WebHMI

GENESIS64

Enterprise Historian

Human Machine Interface Supervisory Control & Data Acquisition

- WebHMI™ Portal Dashboards
- **Advanced Graphics in 2D and 3D**
- **Alarm Management**
- **Trend Charting**
- **GEO SCADA Mapping**
- **Asset Management**

High Capacity 100 000

Hyper Historian

- Samples/Sec **Mission Critical Redundancy**
- Virtualization
- **SQL Query Interface**
- **Advanced Archival**
- **Distributable Architecture**
- **Real Time Statistical Calculation**

Analytics and Manufacturing Intelligence

- **Energy Management**
- **Asset Fault Detection &** Diagnostics
- **Manufacturing Productivity (OEE)**
- **Alarm Analysis**
- Reporting
- **Enterprise Data Integration**

Remote Visualization and Control

- Role Based Security
- **Any Place**
- **Any Time**
- **Any Device**

Modular • Interoperable • Secure • Reliable • Scalable • Unified

ICONICS Software Integration Platform

Interoperability Requirements

- Standard Transports
- Secure Transports
- Application Protocols Point/Value Interoperable Services
- Application Protocols Full Object Discovery
- Application Protocols –Independent Certifications
- Application Standards Information Models
 - Standardized Objects/Classes
 - Standard Properties, Standard Naming, Standard Logic
- Hardware Availability

Standard Transports

Standard Secure Transports

OPC UA – Security Functions

Application Authentication

- All application must have a unique Application instance Certificate
- URI should identify the instance, vendor and product

User Authentication

- Username / password, WS-Security Token or X.509
- Fits into existing infrastructures like Active Directory

User Authorization

Granular control over user actions: read, write, browse, execute

Server Availability

- Minimum processing before authentication
 - Restricting message size
 - No security related error codes returned
 - **...**

System Auditability

Generating audit events for security related operations

OPC UA Applied Standards

	Main goal(s)	Algorithm(s)/ Standard(s)	Usage
MACs	Authentication, Integrity	► HMAC-SHA1 ► HMAC-SHA256	► Message authentication
Signature	Authentication, Integrity	► RSA-SHA1	➤ Signing certificates, security handshaking
Symmetric Encryption	Confidentiality	► AES-128-CBC ► AES-192-CBC ► AES-256-CBC	► Message encryption
Asymmetric Encryption	Confidentiality	► RSA-PKCS1 ► RSA-OAEP	► Security handshaking
Key Generation	Confidentiality	► P-SHA1	► Session key generation (for message encryption)
Certificates	Authentication, Authorization	➤ X.509 ➤ X.509v3 (Extensions)	► Application authentication, user authentication, key exchange

ICONICS, Inc. © 2015

Application Protocols - Real-Time Services

Communications Services

Read Property
Read Property Multiple
Subscribe COV

Confirmed Event Notification Get Alarm Summary Get Event Information

Primitive Objects

Analog Input Floor3.Room7.AHU3.Zone_Temp 74.3 DegF

Analog Value

Analog Output

Binary Input

Binary Value

Binary Output

Multi-State Input

Multi-State Value

Multi-State Output

Schedule

Calendar

Trend

Automatic System Generation

Dashboards

Reports

Fault Detection and Diagnostics **Dashboard**

Application Protocol – Information Models

Roof Top Unit Functional Profile

Standard Input/Output Set

Standard Naming

Standard Methods Calculations

Standard Commands

Roof Top Unit Functional Profile

Today – Lack of Standardized Classes

Example – On a single campus

Space Temperature Occupied Status Discharge Air

Zone_Temp

Z_Tmp

SpaceTemp

Space_Temp

Room_Tmp

Room_Temp

OCC

Occupied

OCC_MOD_STS

OCC-Flag

OCC Mode

DA_Temp

DA-Temp

SA-Temp

Supply_Temp

Applications Protocol – Independent Certification

Application Protocol - Hardware Availability

Controls

Industrial

Metering

OPC Foundation International

- OPC Technology Started in 1995
- OPC Foundation Incorporated January 1996
- OPC Classic 1995 –
- OPC Unified Architecture 2004 -
- ▶ OPC Unified Architecture & The Internet, Industrie 4.0 and 2014 -

OPC Unified Architecture

- OPC UA Publish/Subscriber Communication Model
- Generic Pub-Sub Information Model under development
- Evaluation of existing protocols ongoing

OPC Unified Architecture

- OPC Foundation collaborations with organizations and domain experts
- OPC UA defines HOW
- Domain experts define WHAT

Companion Information Models

PLCopen, ADI, FDI, FDT, BACnet, MDIS, ISA95, AutomationML, MTConnect, AutoID, VDW, IEC 61850/61400, ODVA/Sercos and more coming

Built-in Information Models

OPC UA Meta Model

MDIS -

Oil Platforms

IEC61850

Electric Substations

IEC61400

Wind Turbines

FDT

Factory Devices

Working Group OPC UA / BACnet

In September 2012 the OPC Foundation and BACnet Interest Group founded a new WG.

The main task was to create a mapping model for OPC UA and BACnet

BACnet – Building Automation

Interoperability Analysis

Interoperability Analysis

GAPS

Requirements	BACnet IP Annex J	OPC-UA
Standard Transport	V	√
Secure Transports		√
Reverse WWW Connection		
Application Protocols- Real-Time Services	√	√
Application Protocols- Full Discovery		√
Applications Protocol Certification Agencies	√	√
Applications – Standardized Complex Objects		Capable
Hardware Availability	Commercial BAS	Industrial

Hardware Availability

Industrial

Metering

Thank you!

