

United States Department of Energy

Uranium Mill Tailings Remedial Action Project

Appendix

Appendix F, Hydrology Report

Appendix G, Floodplain and Wetlands Assessment

٠

APPENDIX F

HYDROLOGY REPORT

TABLE OF CONTENTS

Secti	on			Page
F.1	F.1.1	WATER. Surface-water features. F.1.1.1 Grand Junction tailings site F.1.1.2 Cheney Reservoir alternate disposal site F.1.1.3 Two Road alternate disposal site F.1.1.4 Borrow sites Flood analysis. F.1.2.1 Grand Junction tailings site F.1.2.2 Cheney Reservoir alternate disposal site	· · ·	F-1 F-1 F-8 F-11 F-13 F-13 F-13 F-24
	F.1.3	F.1.2.3 Two Road alternate disposal siteF.1.2.4 Borrow sitesSurface-water qualityF.1.3.1 Grand Junction tailings siteF.1.3.2 Cheney Reservoir alternate disposal siteF.1.3.3 Two Road alternate disposal siteF.1.3.4 Borrow sites	• • • • • •	F-27 F-27 F-27 F-28 F-28
F.2	GROUND F.2.1 F.2.2	WATER	• •	F - 31
F.3	PROCESS F.3.1	CALLY AFFECTED HYDROGEOLOGIC ENVIRONMENT- SING SITE.Characterization of hydrogeologic environmentF.3.1.1 Previous investigations.F.3.1.2 Recent investigations.F.3.1.3 StratigraphyF.3.1.4 Unsaturated zone hydraulics.F.3.1.5 Saturated zone hydraulics.F.3.1.6 Water quality.F.3.1.7 Proximity of site to surface water	· · · · · · · · · · · · · · · · · · ·	F-35 F-35 F-36 F-36 F-50 F-50 F-50 F-62
	F.3.2 F.3.3	Physical and chemical characterization of waste and contaminant transport	• • • • • • • •	F-216 F-217 F-231 F-231 F-235 F-235
	F.3.4	F.3.3.1 Climate	•••	F-237 F-242 F-242
	F.3.5 F.3.6	Alternate water supplies. Future usage and value of water resources F.3.6.1 Ground water F.3.6.2 Surface water	•••	F-244 F-244 F-244
	F.3.7	Impacts in affected hydrogeologic environment		F-246

Page

Section

F.3		IALLY AFFECTED HYDROGEOLOGIC ENVIRONMENT- SING SITE (Continued)
	TROCES	F.3.7.2 Damage to crops and vegetation
	F.3.8	Aquifer restoration
		F.3.8.2 Cost
		F.3.8.3 Future value of the resource
		F.3.8.5 Degree of human exposure likely to occur
		F.3.8.6 Summary
	F.3.9	No action alternative
F.4		IALLY AFFECTED HYDROGEOLOGIC ENVIRONMENT- RESERVOIR SITE
	F.4.1	
		F.4.1.1 Previous investigations
		F.4.1.2 Recent investigations
		F.4.1.3 Stratigraphy
		F.4.1.5 Saturated zone hydraulics. $\dots \dots \dots$
		F.4.1.6 Water quality
		F.4.1.7 Proximity of site to surface water
	F.4.2	Climatic effects on contaminant migration
		F.4.2.1 Climate
		F.4.2.2 Contaminant migration in the unsaturated zone F-287 Existing usage and value of water resources
	r.4.J	F.4.3.1 Ground water \cdot
		F.4.3.2 Surface water
	F.4.4	Alternate water supplies
	F.4.5	Future usage and value of water resources
		F.4.5.1 Ground water
		F.4.5.2 Surface water
	F.4.6	Impacts in affected hydrogeologic environment
		F.4.6.1 Human health risks
		F.4.6.2 Damage to crops and vegetation
		F.4.6.4 Persistence and permanence of adverse
		affects
F.5		IALLY AFFECTED HYDROGEOLOGIC ENVIRONMENT- AD SITE. .
	F.5.1	Characterization of hydrogeologic environment
		F.5.1.1 Previous investigations
		F.5.1.2 Recent investigations
		F.5.1.3 Stratigraphy
		F.5.1.4 Unsaturated zone hydraulics
		F.5.1.5 Saturated zone hydraulics
		F.5.1.6 Water quality
		$1 \cdot 5 \cdot 1 \cdot 7$ $1 \cdot 5 \cdot 1 \cdot 5 \cdot 5$

TABLE OF CONTENTS (Continued)

Section

F.5		IALLY AFFE AD SITE (C			LOGIC	CENV	IRON	MEN	Т								
		Climatic			ontami	inant	mic	grat	ion			•	•		•		F-303
		F.5.2.1															
		F.5.2.2	Contami	inant m	igrat	tion	in t	:he	unsa	atu	rat	ed	ZO	ne.	•	•	F - 303
	F.5.3	Existing	usage a	and val	ue of	f wat	er r	reso	urce	es		•	•	• •	•	•	F-306
		F.5.3.1	Ground	water			• •	•		•		•	•	• •	•	•	F-306
		F.5.3.2	Surface	e water	` .		• •	•	•••	•	•••	•	•	• •	•	•	F - 306
	F.5.4	Alternate	e water	suppli	es.	• • •	• •	•		•	• •	٠	•	•	•	•	F - 306
	F.5.5	Future us	sage and	d value	e of v	water	res	sour	c es	•		•	•	•	•	•	F-307
		F.5.5.1	Ground	water	• • •		• •	•	•••	•	•••	•	•	•	•	•	F-307
		F.5.5.2	Surface	e water	•••	• • •	• •	•	•••	•	•••	•	٠	•	•	•	F-307
	F.5.6	Impacts i	in affec	cted hy	/droge	eolog	ic e	envi	ron	nen	t.	•	•	•	•	•	F-307
		F.5.6.1	Human h	nealth	risk	s	• •	• •	•••	•	• •	•	•	•	•	•	F-307
		F.5.6.2	Damage	to cro	opsan	nd ve	geta	atio	n.	•	•••	•	•	•	• •	•	F - 307
		F.5.6.3										•	•	•	• •	•	F - 307
		F.5.6.4	Persist	tence a	and pe	erman	ence	e of	ad	ver	se						
			effects	S	• •		•	••	•••	•	•••	•	٠	•	• •	•	F · 308
F.6	CONCLUS	SIONS - GA	ROUND WA	ATER .	• •	•••	•	••	•••	•	•••	•	•	•	• •	•	F - 309
REFERE	ENCES FO	OR APPEND	IX F		• •		•	• •	•••	•		•	•	•		•	F-313

LIST OF FIGURES

Figure		Page
F.1.1 F.1.2 F.1.3	Location of Grand Junction site	F - 3
F.1.4	Grand Junction, Colorado	F - 4
Г•⊥•4	Surface drainage characteristics - Cheney Reservoir site	F - 10
F.1.5 F.1.6	Surface drainage characteristics, Two Road site	F - 12
F.1.7	boundaries of the 100-year flood event	
F.1.8	boundaries of the 500-year flood event	F - 18
F.1.9	of the PMF event after stabilization on site	F - 25
r.1.9		F - 26
F.3.1	Monitoring well locations near Grand Junction site	
F.3.2	Cross-section locations for processing site	
F.3.3	Geologic cross-section: Section A-A'	
F.3.4	Geologic profile: Section B-B'	F - 41
F.3.5	Geologic profile: Section C-C'	F - 42
F.3.6	Geologic cross-section D-D'	F - 43
F.3.7	Geologic cross-section E-E'	
F.3.8	Geologic cross-section F-F'	
F.3.9	Geologic cross-section G-G'	
F.3.10	Hydrologic setting Grand Junction site	
F.3.11	June, 1983 water levels in the alluvial system	
F.3.12	March, 1985 water levels in the alluvial system.	
F.3.1 [°]	May, 1985 water levels in the alluvial system.	
F.3.14	Saturated thickness of alluvium March, 1985	
F.3.15	Iso-concentrations of ammonium in alluvial ground	
10	water for March, 1985	F - 201
F.3.16	Iso-concentrations of arsenic in Mancos Shale for March, 1985	F-202
F.3.17	Iso-concentrations of uranium in alluvial ground water	
	for March, 1985	F-203
F.3.18	Iso-concentrations of chloride in alluvial ground water	F-204
F.3.19	Results of distilled drip leach tests on beach	
		F-219
F.3.20	sand and slimes	F-221
F.3.21	Solute transport simulation, ammonium.	F_226
F.3.22	Solute transport simulation, uranium	F_220
F.3.22	Solute transport simulation, arsenic	F_220
F.3.23	Solute transport simulation, chloride	E 220
	Dumping anound water near a niver induces flow	F - 229
F.3.25	Pumping ground water near a river induces flow	r-250
F.3.26	Low-permeability barrier reduces induced flow	F 051
	from river	F-251

LIST OF FIGURES (Concluded)

Figure		Page
F.4.1 F.4.2	Location of boring/monitoring wells, Cheney Reservoir site	
F.4.3 F.4.4 F.4.5 F.4.6 F.4.7	Cheney Reservoir site geologic cross-section A-A' Cheney Reservoir site geologic cross-section B-B' Mancos Shale surface iso-contours, Cheney Reservoir site May, 1985 water levels at Cheney Reservoir site Hydrologic setting Cheney Reservoir site	F-261 F-262 F-264 F-269
F.5.1 F.5.2 F.5.3 F.5.4 F.5.5	Location of boring/monitoring wells, Two Road site Geologic cross-section location map, Two Road site	F-298 F-299 F-300

LIST OF TABLES

Table			Page
F.1.1	Select characteristics of subbasins of the Colorado River above Grand Junction, Colorado		F-5
F.1.2	Maximum recorded streamflow of the Colorado River		
F.1.3	near Grand Junction, Colorado	•	F-9
F.1.4	basin area of 8150 square miles	•	F-16
	above Rifle	•	F-20
F.1.5	Probable Maximum Flood discharges in the Colorado River near Grand Junction, Colorado	•	F-22
F.2.1	State of Colorado and EPA National Interim Drinking		E 22
F.2.2	Water Standards		
	water-quality parameters of interest	•	F-34
F.3.1	Grand Junction processing site borehole and		c 07
F.3.2	well information	•	F-3/
F.3.3	Packer-testing results for the Grand Junction site		
F.3.4	Well-development and hydrologic-test methods for the		
	Grand Junction site		
F.3.5	Ground-water flux rate		
F.3.6 F.3.7	Volume of alluvial ground water below the tailings Ground-water quality data, background alluvium		
F.3.8	Ground-water quality data, upgradient alluvium		
F.3.9	Ground-water quality data, on-site alluvium		
F.3.10	Ground-water quality data, crossgradient alluvium	•	F - 91
F.3.11	Ground-water quality data, downgradient alluvium		
F.3.12	Ground-water quality data, upgradient shale		
F.3.13 F.3.14	Ground-water quality data, on-site shale		
F.3.15	Ground-water quality data, downgradient shale		
F.3.16	Ground-water quality data, upgradient sandstone		
F.3.17	Ground-water quality measurements exceeding statistical		
	maximum value, alluvium upgradient	•	F - 137
F.3.18	Ground-water quality measurements exceeding statistical		C 1 4 1
F.3.19	maximum value, alluvium on-site	•	⊦-141
1.3.19	maximum value, alluvium crossgradient		F-153
F.3.20	Ground-water quality measurements exceeding statistical	•	1 100
		•	F - 157
F.3.21	Ground-water quality measurements exceeding EPA drinking		
	water quality standards, background alluvium	•	F-17 0
F.3.22	Ground-water quality measurements exceeding EPA drinking		
ເ ວ່າວ	water quality standards, upgradient alluvium	•	r-1/2
F.3.23	Ground-water quality measurements exceeding EPA drinking water quality standards, on-site alluvium		F-175
F.3.24	Ground-water quality measurements exceeding EPA drinking	•	, 1/5
– .	water quality standards, crossgradient alluvium	•	F-181

LIST OF TABLES (Continued)

Table		Page
F.3.25	Ground-water quality measurements exceeding EPA drinking water quality standards, downgradient alluvium	F-183
F.3.26	Ground-water quality measurements exceeding EPA drinking	
F.3.27	water quality standards, upgradient shale	
F.3.28	water quality standards, on-site shale	
F.3.29	water quality standards, crossgradient shale	F-193
	water quality standards, downgradient shale	F-194
F.3.30	Ground-water quality measurements exceeding EPA drinking water quality standards, upgradient sandstone	F-197
F.3.31 F.3.32	Comparison to background alluvial ground-water quality Comparison of ground-water quality to EPA standards	
F.3.33	Chemical analysis of first effluent sample for distilled water leaching test	
F.3.34	Results of mixing cell model for residual uranium	
F.3.35	concentration in ground water	F-222 F-224
F.3.36	Results of mixing cell model of uranium concentration in ground water for stabilization on site	F-232
F.3.37 F.3.38	Selected pan evaporation data for the Grand Junction area Predicted infiltration rate through the cover at the	
	Grand Junction site	F-238
F.3.39	Rate schedule for water users within Grand Junction city limits	F-243
F.3.40	Approximate costs for some expenditures required for aquifer restoration	F - 254
F.4.1	Cheney Reservoir site borehole and well information	F - 258
F.4.2 F.4.3	Cation-exchange capacity results	
	of soils at the Cheney Reservoir site	
F.4.4 F.4.5	In-situ permeability tests at Cheney Reservoir	
F.4.6	Stream flow measurements on Whiting's Ditch.	
F.4.7	Ground-water quality data, upgradient shale	
F.4.8	Ground-water quality data, on-site shale	F-282
F.4.9	Ground-water quality measurements exceeding EPA drinking	
F.4.10	water quality standards, upgradient shale	F - 284
F.4.11	water quality standards, on-site shale	F-286
F.4.12	the Cheney Reservoir site	F-288
	wetting front advance	F-289
F.4.13	Capillary moisture retention for Cheney Reservoir cover source	F-289
F.4.14	Rate schedule for bulk water users near Whitewater	F-291
F.5.1 F.5.2	Two Road site borehole and well information	F-296
1.J.L	IN-SILU PETHEADITILY LESIS AL TWU KUAU	r=302

F.1.1 SURFACE-WATER FEATURES

F.1.1.1 Grand Junction tailings site

The tailings pile at the Grand Junction site is on the north side of the Colorado River about 0.75 mile upstream from its confluence with the Gunnison River (Figure F.1.1). The Colorado River is braided by several islands from the upstream end of the pile to a point about 0.5 mile past its downstream end. The northern channel of the braided segment passes extremely close to the toe of the pile.

The northern edge of the tailings varies between 4569 and 4578 feet above sea level. The stream bed of the Colorado River is about 4559 feet above sea level.

The southern side of the river banks against a steep cliff, approximately 60 feet high, with the lower segment composed of Mancos Shale.

The northern bank of the river along the site boundary is now stabilized to some degree with riprap, consisting of broken slabs and blocks of concrete, bricks, and "river-run" gravels. The crest of the protective bank is about 15 feet above the surface of the river.

There are industrial and residential developments around the tailings site. A highway and a railroad bridge are located less than 3500 feet downstream of the site and another highway bridge is located further downstream.

The only surface-water bodies at the site are two drainage ditches that divert overland runoff around the tailings pile to the Colorado River. One drainage ditch, east of the pile, extends to the east of the abandoned filtration plant (Figure F.1.2) and along the upstream face of the pile to the Colorado River. The other drainage ditch is on the west (downstream) side of the pile and runs from the mill site to the Colorado River.

The basin upstream of the site comprises 8150 square miles of steeply sloped terrain. The basin is bounded on the north by basins of the White and North Platte Rivers; on the east by basins of the South Platte and Arkansas Rivers; and on the south by the Gunnison River Basin. Major tributaries to the upper Colorado River include the Roaring Fork River, Eagle River, and Blue River. Elevations in the basin range from 4560 feet at Grand Junction to more than 14,000 feet in the highest headwater areas. Watershed boundaries are shown in Figure F.1.3. Approximate drainage areas, channel lengths, and slopes for the streams taken from USGS topographic maps are presented in Table F.1.1.

F-2

F-3

F - Q

Watershed	Area (square miles)	Channel length (miles)	Elevation (feet)	Slope (ft/ft)
Colorado River above Kremmling	1648	5 6. 8	10,100-7200	0.009
Blue River	66 8	5 6. 8	12,500-7200	0.017
Colorado River between Kremmling and Dotsero	1147	56.0	7200-625 0	0.003
Eagle River	965	54.8	10,200-6250	0.013
Roaring Fork	1450	60.0	13,000-5700	0.022
Colorado River between Dotsero and Rifle	1072	42.0	6250-5300	0.004
Colorado River between Rifle and Grand Junction	1200	57.6	5300 - 4560	0.002
TOTAL	8150			

Table F.1.1 Select characteristics of subbasins of the Colorado River above Grand Junction, Colorado

Detailed geologic descriptions of the site area and the lower portions of the drainage basin are contained in Appendix E, Soils, Geologic, and Seismic Information.

Soils in the watershed are mostly deep to moderately deep, well drained residuals of sandstones and mudstones. The Soil Conservation Service (SCS) classified most of the soils as hydrologic group B interspersed with some C soils and minor amounts of A and D soils (USDA, 1978; 1982; 1983).

The climate of the area ranges from semi-arid to mountainous, with yearly precipitation averaging about eight inches at Grand Junction, 10 to 15 inches near Rifle, and 40 inches in the headwater regions. Most of the annual precipitation in the higher elevations occurs as snow; temperatures in the lower areas are often above 90°F in the summer and below 32°F in the winter, while arctic conditions prevail in the highest areas almost year-round. Natural vegetation in valley areas consists primarily of cottonwood and willow, desert shrub, and an understory of hearty grasses. Prominent between 5000 and 8000 feet are juniper, pinion pine, oak, big sagebrush, and Douglas fir. From 8000 feet to timberline, vegetation consists mainly of aspen, spruce, sub-alpine fir, lodge pole pine, and native grasses and shrubs. Vegetation is sparse above timberline, but includes grasses, sedges, and alpine willow (COE, 1976).

The tailings site is in a meander path of the Colorado River and lies on five to 15 feet of unconsolidated alluvial material. Particle sizes of the alluvium at the site vary from cobbly gravels to gravelly sands. Given these site conditions, the river could affect the integrity of the site if not properly controlled or protected against.

As discussed by Schumm and Harvey (1983), no major shift in location of the Colorado River channel at the site has occurred in the past 100 years. The islands near the site are heavily vegetated, which indicates relative stability over the past 20 years, although some shifts in island locations were noted during the floods that occurred in 1984.

In contrast, the meandering patterns displayed both upstream and downstream of the site are characteristic of less stable rivers. Significant shifts have occurred in the reach upstream of the site as evidenced by cutoff meander loops, abandoned channels, and oxbow lakes visible on topographic maps and aerial photographs. Similar features are evident south of the confluence with the Gunnison River but not in the immediate site area probably because the much greater density of human activities in this area has obliterated natural contours.

Regarding localized erosion, the existing islands indicate that aggradation normally occurs near the site. Several factors tend to cause sediment aggradation including a decrease of channel gradient, proximity of the confluence with the Gunnison River, and the broad floodplain along the northern bank. Aggradation also would likely occur during the receding portion of a large flood.

On the other hand, erosion which is presently occurring at the southeast corner of the pile would be accelerated during major flood flows. The area to the east of the site is unprotected, except by the floodplain. High channel and overbank flows could result in significant erosion of the surficial materials in this area and result in northward channel shifts. This would redirect the flow of the river against the east boundary of the pile. The pile would act as a constriction during major flood events causing unstable flow conditions, accelerated velocities, and scouring of alluvium at the site. A detailed geomorphic analysis included is in Appendix E, Soils, Geologic, and Seismic Information.

The U.S. Army Corps of Engineers conducted its latest flood study of the Colorado River near Grand Junction and concluded that the flows for the 100-year and 500-year floods would be 63,000 and 82,000 cubic feet per second, respectively (COE, 1976). The flows for the 200-year and 1000-year floods (72,000 and 90,000 cubic feet per second, respectively) were calculated from these values by interpolation and extrapolation. The corresponding maximum flood elevations at the edge of the pile would be 4577 and 4579 feet above mean sea level, respectively. Because the flood flows at the Grand Junction site would be obstructed by the tailings pile on one side of the river and by the steep cliff on the other side, the velocity of flood water in the main channel of the floodway would be high, reaching 11.8 and 13.2 feet per second for the 200and 1000-year floods, respectively. The velocity of flood waters immediately adjacent to the face of the pile would be somewhat lower because of friction drag.

The average monthly river flows adjacent to the tailings pile can be represented by flow measured at a U.S. Geological Survey gauging station on the Colorado River near DeBeque, approximately 30 miles upstream of the site. The average maximum monthly flow at DeBeque from 1966 through the present was 11,210 cubic feet per second, occurring in late spring, and the average minimum monthly flows are approximately 1580 cubic feet per second. Downstream from the site, at the Colorado-Utah border, the average maximum and minimum monthly flows were approximately 3140 and 16,700 cubic feet per second from 1951 through the present. These higher flows were attributable mainly to the Gunnison River. U.S. Geological Survey gauging stations are also located northeast of Cameo, approximately 22 miles upstream of the site, and at Fruita, approximately 14 miles downstream of the tailings pile. Grand Junction has experienced a number of severe latespring floods, the result of the rapid melting of the deep snow pack accompanied by heavy rains. Ice jams are not a flooding problem for the Colorado River in the vicinity of Grand Junction. The uniform and fairly high temperature of the Gunnison River (since the construction of flood-protection dams) prevents extensive ice formation on the Colorado River between Grand Junction and the Colorado-Utah state line.

The flooding of June-July, 1884, is considered the most severe known on the upper Colorado River (COE, 1976). This flood resulted from rapid melting of snow pack and concurrent heavy rains. In recent times, the floods of 1983 and 1984 were the most significant. The 1884 flood peak would have been approximately 73,600 cubic feet per second (cfs) at Grand Junction, if discharge versus area relationships of the 1984 flood are representative. Information relative to these past floods is shown in Table F.1.2. Other major floods on the Colorado River were recorded in 1917, 1920, 1921, 1935, 1952, and 1957.

There are no major domestic users of Colorado River water for 200 miles downstream from Grand Junction. The normal water supplies for Grand Junction are obtained from Grand Mesa surface water, the Juniata and Purdy Mesa Reservoirs being the major sources. During dry spells, Grand Junction can use Gunnison River water; the intake is approximately one mile upstream from the confluence with the Colorado River. The Ute Water District uses Colorado River water during dry spells, but its intake is just upstream of Palisade and therefore upstream from the pile.

F.1.1.2 Cheney Reservoir alternate disposal site

The Cheney Reservoir site is located on a drainage divide that gently slopes to the southwest at approximately two percent. Total relief across the proposed disposal area is approximately 60 feet. The site is located on a pediment surface that forms a divide between two small ephemeral washes, one approximately 800 feet north of the proposed pile location and one approximately 1700 feet to the south. These washes merge with Indian Creek 0.1 to 0.5 mile below the site. Indian Creek flows into Kannah Creek four to five miles below the ephemeral wash confluences, and Kannah Creek empties into the Gunnison River approximately two miles below the Indian Creek confluence. Figure F.1.4 shows the surface drainage characteristics of the Cheney Reservoir site.

An area of approximately 240 acres drains toward the Cheney Reservoir site. Slopes in the watershed range from two to five percent. Elevations range from 5250 feet to approximately 5600 feet above mean sea level. The maximum flow length is approximately 8000 feet.

Station name	Basin area (square miles)	Period of record	Maximum recorded peak flow (cfs)	Date
Colorado River near Colorado-Utah state line	17,843	1951-present	6 8,000	June, 1984
Colorado River near Fruita	197,100	1884, 1907-1923	125,000	July, 1884
Colorado River near Cameo	8050	1933-present	39,300	June, 1984
Colorado River near DeBeque	7370	1966-present	32,000	June, 1984
Colorado River below Glenwood Springs	6013	1966-present	31,200	June, 1984

Table F.1.2 Maximum recorded streamflow of the Colorado River near Grand Junction, Colorado

Soils in the watershed range from fine-grained, strongly cemented sandy, clayey silts in the site area to basalt cobbles and boulders in a fine-grained matrix of clay, silty sand, and gravel at higher elevations (above 5400 feet). Large boulders, probably deposited by glacial streams or colluvial processes, are present in some of the larger ephemeral washes in the vicinity of the site. Vegetation is sparse, consisting mainly of sagebrush and grasses.

Sheet wash and rill wash are the primary erosive forces currently active on the Cheney Reservoir site. Minor gullying is occurring on the small ephemeral washes that flank the site. Moderate to intense gullying was observed along Indian Creek. Most of the Cheney Reservoir site is classified as having only a moderate potential for future erosion (CGS, 1982). A detailed geomorphic description of the disposal site is provided in Appendix E, Soils, Geologic, and Seismic Information.

No data exist on historical floods for the Cheney Reservoir site.

F.1.1.3 Two Road alternate disposal site

The Two Road site is located in the Upper Colorado subbasin of the Colorado River basin. There are no major streams, lakes, springs, or irrigation ditches on or within two miles of the Two Road site. Several ephemeral creeks occur in the area. The site lies on a drainage divide between two unnamed ephemeral creeks. These creeks join Bitter Creek 0.5 to one mile below the site. McDonald Creek flows approximately 1.5 miles east of the site. West Salt Wash and Badger Wash combine approximately six miles southeast of the disposal area. The Colorado River flows over 10 miles south of the site.

An area of only 35 acres drains toward the site. Elevations in the watershed range from 4945 to 4965 feet above mean sea level.

The surface of the Two Road site is gently rolling, and covered by short grasses and shrubs. Deeply incised gullies are not present at the site, but flank it approximately 1500 feet to the east and west. Due to the narrow highland character of the site, it is subject to erosion by gully systems advancing headward into the site from all sides; however, the surface of the site is supported by resistant pediment gravels which cap the underlying Mancos Shale. Erosion occurs along slopes where the less resistant Mancos Shale is exposed. A detailed geomorphic description of the disposal site is provided in Appendix E, Soils, Geologic, and Seismic Information. Drainage characteristics of the Two Road site are shown in Figure F.1.5.

No data on historical floods exist for the Two Road site.

F.1.1.4 Borrow sites

The 32 and $C_2^{\frac{1}{2}}$ Road borrow areas are located on private land along the south bank of the Colorado River east of the Grand Junction tailings site. The area is approximately 80 to 120 feet above the river surface. Four ephemeral channels drain Central Orchard Mesa in the borrow site area, two on either side of 32 Road. The discussion on Colorado River flows in Section F.1.1.1 is applicable to this borrow area.

The Fruita borrow areas are also located adjacent to the Colorado River, south of the town of the Fruita, Colorado. The area is approximately 11 miles downstream of the Colorado River and Gunnison River confluence. The site is located on private land on the northeast bank of the river. The area is drained by Little Salt Wash to the northwest and Adobe Creek to the southeast. There are a number of irrigation ditches and canals in the area. Maximum stream flows from a USGS gauge located on the Colorado River near Fruita are provided in Table F.1.2.

The Unaweep Canyon borrow area is located west of the Unaweep Divide in Unaweep Canyon. West Creek flows toward the Dolores River in the vicinity of the borrow site. East of of Unaweep Divide, East Creek flows toward Whitewater, Colorado, where it flows into the Gunnison River. A number of small creeks and ephemeral streams drain the upland area adjacent to Unaweep Canyon and feed East and West Creeks. Borrow site activities would be located to avoid these drainages and to minimize the potential for flooding of the site.

F.1.2 FLOOD ANALYSIS

F.1.2.1 Grand Junction tailings site

A flood analysis has been performed to assure that the remedial action design for the uranium mill tailings site at Grand Junction, Colorado, satisfactorily addresses short-term and long-term flood protection. Short-term flood protection simply defines the extent of the 100-year and 500-year floods and the impacts, if any, on the stabilized tailings or on remedial action construction activities. The primary purpose of this part of the analysis is for compliance with floodplain and wetlands environmental review requirements in 10 CFR Part 1022. To accomplish the objective of long-term flood protection, the standard design approach of the DOE is to determine the magnitude and potential impacts resulting from a Probable Maximum Flood (PMF) event. If a design is not practical, then alternative design events or solutions are assessed.

The use of the PMF as the design flood event to achieve long-term control of uranium tailings is not clearly defined. The EPA standards (Appendix A, EPA Standards) require that control of the uranium tailings must be effective for 1000 years (to the extent reasonably achievable) and, in any case, for at least 200 years. The standards do not specifically state that a PMF event must be used for design in order to achieve the stated containment life. An analysis of exceedence probabilities for various events with respect to the containment life (Junge and Dezman, 1983) suggests that design events with a very long return period (e.g., 10,000 years) must be used to meet a long-term containment objective. However, the limited statistical data that are available cannot be extrapolated accurately to such long return periods. The generally accepted alternative, therefore, is to use maximum credible events, such as the PMF, for design purposes. Since a maximum credible event has a very small chance of being exceeded; a tailings disposal system designed to withstand these events would have a very small risk of failure and, thus, would meet both the intent and long-term containment objective of the EPA standards.

The PMF analysis, for this site, first requires the use of Hydrometeorological Report No. 49 (USDOC, 1977) to determine the appropriate Probable Maximum Precipitation (PMP) that could occur over the contributing drainage basins. The analysis then involves the consecutive use of the U.S. Army Corps of Engineers HEC-1 (COE, 1981) and HEC-2 (COE, 1982) models. The HEC-1 model is designed to simulate the runoff response (i.e., PMF) of a river basin to precipitation (i.e., PMP) by representing the basin as an interconnected system of hydrologic and hydraulic components. Then a determination of stream hydraulics, resulting in water-surface elevations and velocity gradients at the tailings site, is developed for the PMF flows using the dynamic HEC-2 model.

The 100-year and 500-year discharges were estimated with a methodology developed by McCain and Jarrett (1976). As in the PMF analysis, water-surface profiles and velocities were estimated with the HEC-2 model.

100-year and 500-year floods

Estimates of the 100-year and 500-year floods were prepared in order to comply with 10 CFR Part 1022 and to compare major historic and predictable floods with the PMF estimate. Peak discharges and depths for various return intervals were approximated by use of a multiple regression analysis of flood data from stream gauges in the vicinity of the study area (McCain and Jarrett, 1976). The method is based on correlating results of Log Pearson III analysis for 90 gauging stations in the region. Of the 90 gauging stations utilized, only eight stations were for basin areas greater than 1000 square miles. The results of the approximations are, therefore, expected to overestimate the flood peaks for large watersheds. Predicted peak flows and depths for select recurrence intervals for the Colorado River at Grand Junction are presented in Table F.1.3.

A 100-year flow of 61,600 cfs and a 500-year flow of 84,200 cfs were used for the Colorado River at the site. These flows compared favorably with the results of the U.S. Army Corps of Engineers estimate in which the 100-year and 500year flood flows were estimated to be 63,000 and 82,000 cfs, respectively (COE, 1976). The Corps of Engineers have a revised flood study underway on the Colorado River near Grand Junction; however, the completion date of their report is beyond the expected completion date of this Environmental Impact Statement. Cross-section data prepared for their study have served as a basis in the HEC-2 model for this analysis and the PMF analysis.

Values of Mannings roughness coefficients "n" were varied to account for conveyance differences and to impose constrictions where topography alone would not adequately define flow paths. The basis of determination of n values was 0.020 to 0.025 for clear channels and 0.060 to 0.100 for floodplains including mid-channel islands. Published values for the Colorado River near Grand Junction are 0.017 to 0.040 for the main channel, and 0.035 to 0.070 for the floodplain (FEMA, Some artificially high n values were used in some of 1982). the floodplains in order to model dead spots due to constrictions.

As previously stated, highway and railroad bridges cross the Colorado River downstream of the site. Since the tailings pile was in the 100-year and 500-year floodplains even without backwater effects from the bridges and since the PMF would likely destroy the bridges before the peak would occur (the bridges would be overtopped by more than 20 feet of water) no attempt was made to model for bridge effects.

As shown in Figure F.1.6, the HEC-2 model indicates that the site is within the 100-year floodplain (Figure F.1.6 also shows HEC-2 cross-section locations). The water surface at the site varies from 4572 to 4576 along the pile with mean velocities of six to 10 fps. The approximate boundaries of the 500-year floodplain are shown in Figure F.1.7. The water surface at the site varies from 4574 to 4578 along the pile with mean velocities of six to 12 fps. The expected elevation of scour ranges from three to 3.5 feet below the present channel bottom for the 500-year event.

<u>PMF hydrologic analysis</u>. The PMF estimate at Grand Junction is based on a HEC-1 model of the Colorado River watershed above Rifle which was prepared as part of the design

Regression equation ^a	Standard error of ^a estimate in percent	Discharge (cfs)	Depth (feet)
$Q_{10} = 59.7 A^{0.709}$	47	35,400	
$Q_{50} = 89.1 A^{0.709}$	50	52,830	
$Q_{100} = 103A^{0.710}$	53	61,600	
$Q_{500} = 137A^{0.713}$	65	84,200	
$D_{10} = 1.25 A^{0.261}$	25		13.1
$D_{50} = 1.54A^{0.254}$	34		15.2
$D_{100} = 1.64 A^{0.254}$	36		16.2
$D_{500} = 1.98A^{0.239}$	44		17.0

Table F.1.3	Peak flows and depths of selected recurrence-interval
	floods for the Colorado River at Grand Junction with
	a basin area of 8150 square miles

^aTaken from McCain and Jarrett (1976).

effort for the two existing tailings sites at Rifle. The larger watershed above Grand Junction was not modelled because a Probable Maximum Precipitation (PMP) could not be readily estimated with any degree of certainty. Hydrometeorological Report (HMR) No. 49 (USDOC, 1977) presents procedures for PMP estimates for the project area; however, the procedures are limited to areas of less than 5000 square miles. Extrapolating the PMP to the study area of 8150 square miles could not be done any more reliably than extrapolating the PMF from the Rifle watershed.

A description of the HEC-1 analysis for Rifle is followed by a discussion of the method used to extrapolate the Rifle PMF. The HEC-1 model is designed to simulate the runoff response of a river basin to precipitation by representing the basin as an interconnected system of hydrologic and hydraulic components. Four parameters were estimated to model the basin: (1) the amount and temporal distribution of the Probable Maximum Precipitation (PMP); (2) the lag time of runoff within the basin; (3) computation interval for the hydrograph; and (4) loss rate of precipitation within the basin.

The PMP was determined according to procedures outlined in Hydrometeorological Report (HMR) No. 49 (USDOC, 1977). The month with the highest 72-hour precipitation was found to be June with 13.4 inches, indicating that the rainfall would likely occur on snow or on a very wet watershed. The PMP was distributed temporally by arranging three-hour incremental amounts in a sequence such that they decrease progressively to either side of the greatest three-hour increment. Since the total volume of flow is not critical in this study, only the greatest 24-hour increment of the 72-hour storm was modeled.

Lag times were computed by assuming bank full velocities. Each subbasin was assumed to have three conveyance components:

- Overland flow and upland channel flow with velocities of 3.5 feet per second and eight feet per second, respectively, for slopes of 12 to 15 percent (DOI, 1973). Allowance was also made for detention time due to lakes and ponds.
- o Secondary channels draining areas of 42 to 103 square miles with velocities of 10 to 12 feet per second.
- o Primary channels with velocities varying from 12 to 14 feet per second.

Lag times for each subbasin are shown in Table F.1.4.

The shortest lag time is 3.8 hours, which corresponds to a time of concentration of 6.3 hours. A selection of a compu-

	Secondary channel			Ma	ain channe	Total		
overland flow (hrs)	L (mi)	v (fps)	t (hrs)	L (mi)	v (fps)	t (hrs)	T _c (hrs)	T _L (hrs)
1.6	25	10	3.7	30	12	3.7	9.0	5.4
2.1	15	12	1.8	45	14	4.7	8.6	5.1
0.9	24	16	2.2	35	11	4.7	7.8	4.7
0.6	29	12	3.5	29	12	3.5	7.6	4.5
0.7	23	11	3.1	40	14	4.2	8.0	4.8
0.5	25	11	3.3	22	13	2.5	6.3	3.8
	1.6 2.1 0.9 0.6 0.7	1.6 25 2.1 15 0.9 24 0.6 29 0.7 23	1.6 25 10 2.1 15 12 0.9 24 16 0.6 29 12 0.7 23 11	1.6 25 10 3.7 2.1 15 12 1.8 0.9 24 16 2.2 0.6 29 12 3.5 0.7 23 11 3.1	1.6 25 10 3.7 30 2.1 15 12 1.8 45 0.9 24 16 2.2 35 0.6 29 12 3.5 29 0.7 23 11 3.1 40	1.6 25 10 3.7 30 12 2.1 15 12 1.8 45 14 0.9 24 16 2.2 35 11 0.6 29 12 3.5 29 12 0.7 23 11 3.1 40 14	1.6 25 10 3.7 30 12 3.7 2.1 15 12 1.8 45 14 4.7 0.9 24 16 2.2 35 11 4.7 0.6 29 12 3.5 29 12 3.5 0.7 23 11 3.1 40 14 4.2	1.6 25 10 3.7 30 12 3.7 9.0 2.1 15 12 1.8 45 14 4.7 8.6 0.9 24 16 2.2 35 11 4.7 7.8 0.6 29 12 3.5 29 12 3.5 7.6 0.7 23 11 3.1 40 14 4.2 8.0

Table F.1.4 Lag time estimation for subbasins of the Colorado River above Rifle

Velocities were estimated using Mannings equation: $T_L = 0.6 \star T_c$

L = Length

v = velocity

t = flow time

 T_{c} = time of concentration

 $T_L = Lag time$

tation interval, "T", of one hour meets the criteria that it be less than 0.25 x TPEAK (COE, 1981),

where

1.7 X TPEAK = $T + T_{c}$

Soils in the Rifle watershed, as with those in the Grand Junction watershed, are classified by the Soil Conservation Services (SCS) as hydrologic group B interspersed with some C soils and traces of A and D soils (USDA, 1978; 1982; 1983). B and C soils have moderate to slow infiltration rates (0.08 to 0.30 inch/hour) when thoroughly wetted.

Although actual major floods are the result of rain on top of the snow pack, the volume of runoff resulting from snow melt is small in comparison to the volume of runoff resulting from the intense rainfall. However, the presence of the snow pack creates severe hydrologic soil conditions. Therefore, runoff resulting from snow melt was not estimated in the analysis because the magnitude of the PMP would make snow melt a minor component of the flood. To account for the severe hydrological conditions created by the presence of snow, no initial loss of precipitation was assumed, and a uniform loss rate based on saturated "B-C" soils of 0.20-inch per hour was selected (DOI, 1973). This value was also selected by the U.S. Army Corps of Engineers for the "C" soils in the lower basin (COE, 1976).

Flows were routed through primary channel reaches by use of the Modified Puls method available in the HEC-1 model. Reach characteristics were determined by field inspection and from topographic maps.

McCain and Jarrett (1976) found that discharge varied with area raised to a power ranging from 0.709 to 0.713 depending on the return interval. The 1984 flood discharges in the Colorado River varied with area raised to a power of 0.68. Therefore, a power of 0.70 was used for the extrapolation estimates at Grand Junction. Two PMF discharges were estimated. The first is for a PMF on the Colorado River only and the second is for a PMF on the Gunnison River and Colorado River combined. The discharges are shown in Table F.1.5.

Crippen and Bue (1977) prepared curves which envelop maximum measured flood flows for regions in the conterminous United States. Grand Junction is in Region 14 near the division with Region 13. The maximum flood peak in the Colorado River near Grand Junction is given as 130,000 cfs for Region 14 and 380,000 cfs for Region 13.

Location	Basin area (square miles)	Discharges ^a (cfs)
Rifle	6950	795,200
Grand Junction above Gunnison River	8150	889,000
Grand Junction below Gunnison River	17,100	1,493,500

Table F.1.5	Probable Maximum Flood discharges in the Colorado
	River near Grand Junction, Colorado

^aNotes: Q = 795,200 x
$$\left(\frac{A}{6950}\right)$$
 0.70

Flow in the Colorado River above the confluence is assumed to be proportional with the 1984 flood; therefore, the flow in the Gunnison River is 630,300 cfs and the flow in the Colorado River above the confluence is 863,200 cfs.
The estimated PMF at Grand Junction of 889,000 cfs is approximately 2.5 to seven times the maximum expected discharge estimated by Crippen and Bue, 11 times the estimated 500-year peak, and 12 times the maximum recorded flow.

PMF hydraulic analysis. Hydraulic characteristics of the river at flood stage are important design considerations for stabilization of the tailings. Water surface profiles were estimated with the HEC-2 model to obtain flow depths and velocities during flood stage. These values were then used to estimate scour depths and riprap requirements. An empirical formula suitable for the Colorado River was utilized to calculate the scour depth (Pemberton and Lara, 1984):

$$D_{S} = Z \times d_{fo}$$

where

- D_{S} = depth of scour below ELMIN (from HEC-2) in feet
- d_{fo} = depth for zero bed sediment transport in feet
- Z = 0.6, coefficient developed by the U.S. Bureau of Reclamation for use on moderate river bends

$$d_{fo} = \frac{q_f}{F_{bo}} \frac{1}{3}$$

 q_f = design discharge per unit width in ft³/s per foot.

 F_{bo} = Blench's "zero bed factor" in ft/s²

Values of Mannings roughness coefficients, "n", were varied to account for conveyance differences and to impose constrictions where topography alone would not adequately define flow paths. Values (n) of 0.020 to 0.025 for clear channels and 0.060 to 0.100 for floodplains including mid-channel islands were used. Published values for the Colorado River near Grand Junction are 0.017 to 0.040 for the main channel, and 0.035 to 0.070 for the floodplain (FEMA, 1982).

The Colorado River banks were extended beyond the normal bank locations to account for a dramatically different river regime during PMF conditions. It was assumed that normal floodplains would be covered at great depth, and that vegetation, buildings, and other topographic features would be submerged or removed, greatly reducing n values. As a rule, an n value of 0.025 was used where depths were greater than five feet and 0.060 where less than five feet, although some variance from this rule occurred in order to achieve reasonable conveyance values for differing topographic conditions along the profile. Values of n in the widened channel varied from 0.022 to 0.030, while some artificially high n values were used in some of the floodplains to model dead spots due to constrictions.

A PMF occurring in only the Colorado River above the site was found to be slightly more critical than a PMF occurring in the Gunnison River and Colorado River simultaneously. At the tailings pile the velocity for a PMF of only the Colorado River was slightly greater than for the combined PMF (19.2 to 18.4 fps); however, the water surface elevation was slightly lower (4595.6 to 4595.8 feet). Upstream and downstream of the pile the situation was reversed. Therefore, the rock erosion protection and scour analysis was performed using the higher velocities encountered during a PMF of only the Colorado For this first condition, a floodway of 4000 to 8000 River. feet wide as shown in Figure F.1.8 would be required to convey the PMF. Many residential and industrial structures would be inundated, and all sides of the site would be exposed to channel flow. The peak water surface elevation was estimated to vary from 4589 to 4600 along the pile and mean channel velocities were estimated to be approximately 12 to 19 fps.

Floodway constrictions at the site cause unstable flow conditions in the form of near critical flow to occur. The river will attempt to moderate the steep energy grade slope the model shows occurring and stabilize the flow by scouring alluvium. A depth of zero sediment transport of 12.4 feet below the channel bottom was determined using the previously described equation. The expected elevation is therefore 4544.4 at station 387.42, 4547.7 at station 387.86, and 4548.7 at station 387.96. A cross-section at station 387.86 presented in Figure F.1.9 shows maximum water surface and scour elevations for the PMF event.

F.1.2.2 Cheney Reservoir alternate disposal site

There are no major streams or rivers within 2.4 miles of the Cheney Reservoir site. The site is at least five miles from the floodplain of the Gunnison River. Kannah Creek and Indian Creek flow at an elevation approximately 200 feet below the site. The Gunnison River flows approximately 500 feet below the site at its closest point.

No data on historical floods exist for the Cheney Reservoir site and because of the distance from and differences in elevation between any major flows and the site, the site is not subject to river flooding.

The effects of a PMP over the pile and the contributing drainage areas are analyzed in order to design erosion protection requirements. Preliminary calculations for the Cheney Reservoir site using very conservative assumptions, indicate

that the flow resulting from the occurrence of a PMP (8.5 inches in one hour) over the Cheney Reservoir watershed would be in excess of 2000 cfs. Details are provided in Appendix B, Engineering Designs.

F.1.2.3 Two Road alternate disposal site

There are no major streams or rivers in the vicinity of the Two Road site. The site is at least 10 miles from the floodplain of the Colorado River, and over 500 feet higher in elevation. The ephemeral streams in the site area, including Bitter Creek and McDonald Creek, have small watersheds and do not present a flood hazard to the site.

As with the Cheney Reservoir design, the effects of the occurrence of a PMP were analyzed to determine erosion protection requirements. Preliminary calculations indicate that a flow in excess of 350 cfs would result from the occurrence of a PMP over the Two Road site watershed. Details are provided in Appendix B, Engineering Designs.

F.1.2.4 Borrow sites

Both the Fruita and 32 and $C_2^{\frac{1}{2}}$ Road borrow areas may be affected by flooding of the Colorado River; however, a separate flood analysis of these sites would not be performed. Since the sites are on privately owned land and are either active or have been recently active, it is expected that the operator of the site would take the appropriate measures to control flooding and minimize impacts to their own structures and equipment.

Due to the high canyon walls separating the site from West Creek and the relatively small watershed above the borrow area, flood flows are not expected to impact the borrow site in Unaweep Canyon.

F.1.3 SURFACE-WATER QUALITY

F.1.3.1 Grand Junction tailings site

In general, the quality of water in the Colorado River depends on the flow, and the flow is determined by the source of water. During low-flow periods, when surface runoff is low and the river flow is basically discharged ground water, the concentration of metals and inorganics leached from the soil is high. During high-flow periods, when the river flow is mainly surface runoff, the concentration of metals and inorganics is low and the concentration of organics and suspended solids is high (DOE, 1983).

The results of measurements made at Cameo, approximately 15 miles upstream from the site, show that the mean concentra-

tions of all constituents except mercury are within the Colorado drinking-water standards; however, the maximum concentrations of many constituents (e.g., cadmium and chloride) exceed the standards. A comparison of the Cameo data with data collected at Fruita, approximately 15 miles downstream from the site, does not indicate any effects of the existing pile on the quality of river water.

It is difficult to draw any conclusions regarding the change in water quality along the Colorado River; however, certain observations are possible. For example, mixing of the Gunnison River, which has a flow approximately equivalent to that of the Colorado River, results in decreases in chloride and molybdenum concentrations in the Colorado River and increases in the concentrations of selenium, fluoride, sulfate, and total dissolved solids. The concentration of total iron appears to increase significantly along the Colorado River independent of the mixing with Gunnison River water.

Additional discussions on water quality are provided in Section F.2, Ground Water.

F.1.3.2 Cheney Reservoir alternate disposal site

No surface-water quality data exist for the ephemeral streams in the vicinity of the Cheney Reservoir site. Limited data exist for Kannah Creek and the Gunnison River downgradient of the site; however, these data indicate that the quality of these bodies is influenced more by ground-water recharge than the flow that enters from the small creeks and ephemeral streams in the Cheney Reservoir disposal site area. A detailed discussion of the quality of the ground water in the Cheney Reservoir site area is included in Section F.2, Ground Water.

F.1.3.3 Two Road alternate disposal site

No water-quality monitoring gauging stations exist on any of the creeks or ephemeral streams in the Two Road alternate disposal site area. Data taken on West Salt Creek east of the site indicate that the major chemical constituents of the water are sodium, magnesium, calcium, and sulfate. During flow events TDS values were high, ranging from several hundred mg/l to over 10,000 mg/l. It is expected that the water quality during flow events would be similar in the drainages adjacent to the site (URS, 1983).

F.1.3.4 Borrow sites

The discussion on water quality of the Colorado River (Section F.1.3.1) is also applicable to the Fruita and 32 and $C\frac{1}{2}$ Road borrow areas. No water-quality data exist for the streams and creeks in the vicinity of the Unaweep Canyon borrow area.

F.2.1 INTRODUCTION

EPA standards (40 CFR Part 192) require site characterization of the hydrogeologic regime at and around each UMTRA Project site. These regulations state that "judgements on the possible need for remedial or protective actions for ground water aquifers should be guided by relevant considerations described in EPA's hazardous waste management system (47 CFR 32274)."

On September 3, 1985, the United States Tenth Circuit Court of Appeals set aside EPA's water protection standards, 40 CFR Part 192.20 (a)(2)-(3), and EPA has not yet reissued these standards. When EPA issues revisions to the water protection standards, DOE will re-evaluate the ground-water issues at the site to assure that the revised standards are met. Performing remedial actions to stabilize the tailings prior to EPA issuing new standards will not affect the measures that are ultimately required to meet the revised water protection EPA standards.

On this basis, it has been determined that fourteen primary items must be addressed during a ground-water characterization at an UMTRA Project site (Brinkman et al., 1985). These fourteen items are:

- o Applicable water-quality standards.
- o Characterization of the potentially affected hydrogeologic environment.
- o Proximity of the site to surface water.
- o Physical and chemical characterization of waste in terms of contaminant migration in ground water and hydraulically connected surface water.
- o Effect of climate on the movement of contaminants.
- Impact of contaminant sources other than those attributable from the UMTRA Project site.
- o Proximity, withdrawal rates, uses, and sources of presently used water.
- o Present value of affected water resource.
- o Availability of alternate water supplies.
- o Potential and expected use of affected resource.
- o Future value of affected water resource.
- Potential health risks to humans and potential damage to wildlife, crops, and vegetation caused by exposure to contaminants in ground or surface water.

- o Persistence and permanence of adverse effects.
- o Aquifer restoration or protection.

Following is a discussion of these fourteen items, for the processing site and alternate disposal sites.

F.2.2 APPLICABLE WATER-QUALITY STANDARDS

The Grand Junction uranium mill tailings are located in Colorado. There are two sets of water-quality standards applicable to characterization of affected or potentially affected ground-water systems: Federal and State of Colorado. Federal and State of Colorado drinking water standards are shown in Table F.2.1. The State of Colorado has no groundwater quality standards in place at this time, but has proposed standards for ground water. Colorado surface-water and proposed groundwater quality standards are based on a classification system which establishes use categories. Both standards include an antidegradation standard which protects existing use classifications of waters, thereby protecting both existing and potential uses of water.

Applicable surface-water quality standards for the State of Colorado are shown in Table F.2.2. In addition, all surface waters of the Colorado River Basin are subject to a policy for uranium. This can be summarized as:

- o Uranium levels in surface waters shall be maintained at the lowest practicable level.
- o In waters assigned a water supply classification, uranium concentration shall not exceed 40 pCi/l. The Colorado River from immediately below the confluence with Parachute Creek to immediately above the confluence of the Gunnison River is assigned a water supply classification (CDH, 1983).

Parameter	EPA Drinking Primary	water standards ^a Secondary	Colorado ^b primary drinking water standards ^a
Arsenic	0.05		0.05
Barium	1.0		1.0
Cadmium	0.01		0.010
Chromium	0.05		0.05
Copper		1.0	
Fluoride	1.4-2.4 ^C		1.4-2.4 ^C
Lead	0.05		0.05
Mercury	0.002		0.002
Nitrate	10.0		10.0
Selenium	0.01		0.01
Silver	0.05		0.05
Zinc		5.0	
Chloride		250.0	
Iron		0.3	
Manganese		0.05	
pH (standard unit)		6.5-8.5	
Sulfate		250.0	
TDS		500.0	
Radium 226-228 combined (in picocuries per liter) Gross alpha (in picocuries	5.0		
per liter)	15.0		

Table F.2.1 State of Colorado and EPA National Drinking Water Standards (40 CFR 141,143)

^aAll values in mg/l unless otherwise noted. ^bRef. CDH, 1981. ^cStandard varies depending on water temperature. ^dDoes not include uranium or radon.

	(Permissible concentration mg/liter)				
Constituent	Colorado River between Parachute Creek and Gunnison River	Colorado River between Gunnison River and Colorado- Utah state line	Tributaries between Parachute Creek and Colorado- Utah state line		
Aluminum,	<u>^</u>	_			
soluble	0.1 ^C	0.1 ^C			
Ammonia	0.06	0.06	₄		
Arsenic	0.05	0.05	0.14		
Cadmium	0.0017	0.001	0.1 ^d 0.01 ^d		
Chloride	250				
Copper	0.018	0.012	0.2 ^d		
Iron					
soluble	0.3				
total	1.0	1.5	d		
Lead	0.025	0.025	0.1 ^d		
Manganese					
soluble	0.05	1 0	0.2 ^d		
total	1.0	1.0	0.2		
Mercury Selenium	0.00005	0.00005	0.02 ^d		
Sulfate	0.02 250	0.02	0.02		
Zinc	0.07		2.0 ^d		
pH(standard unit		0.085 6.5-9.0	2.0 6.5-9.0		
F., Cranes, C. Mills		0.0 5.0	0.0-9.0		

Table F.2.2 State of Colorado surface-water standards for water-quality parameters of interest^a

^aNo numerical standards have been established by the State of Colorado for calcium, carbonate, molybdenum, sodium, and vanadium. A dash indicates that the permissible concentration is to be established on a case-by-case basis, by the Colorado Department of Health.

^bExcept Wallace, Roan, Plateau, and Rapid Creeks and Little Dolores River.

^CColorado Water Quality Standards, Part 1, Table III, Aquatic Life Class I, April, 1981.

^dColorado Water Quality Standards, Part 1, Table III, Agricultural Uses, April, 1981.

F.3 POTENTIALLY AFFECTED HYDROGEOLOGIC ENVIRONMENT-PROCESSING SITE

F.3.1 CHARACTERIZATION OF HYDROGEOLOGIC ENVIRONMENT

F.3.1.1 Previous investigations

Several previous investigators have reported on regional and site-specific hydrogeology in the vicinity of the Grand Junction tailings site. The U.S. Geological Survey conducted a national study on the distribution of uranium and radium in ground water (Scott and Barker, 1962). The U.S. Geological Survey investigated the geology and artesian water supply of the Grand Junction area (Lohman, 1965). The U.S. Bureau of Reclamation has studied shallow ground water in the Grand Valley as part of the Colorado River Water Quality Improvement Program. The Bureau of Reclamation published a report for Phase I of its study, for the area surrounding Fruita; however it has not yet published a report for the area surrounding Grand Junction. Data from this study include stratigraphic information, water-quality analyses, and water-level measurements (U.S. Bureau of Reclamation, no date).

Surface water has also been studied on both a regional and a site-specific basis for the Grand Junction tailings environment. The EPA monitored concentrations of radionuclides along the Colorado River mainstream both upstream and downstream of the Grand Junction tailings from 1961 through 1972 (EPA, 1973). The U.S. Geological Survey also reports waterquality data for the Colorado River Basin (USGS, various dates). The occurrence of molybdenum, a substance associated with uranium mill tailings, has been studied for the surface waters of Colorado (Voegeli and King, 1969). On a site-specific basis, an assessment was made of the potential for contamination of the Colorado River by the Grand Junction tailings (Bush et al., 1980).

Extensive research connected with low-level nuclear waste disposal and the UMTRA Project has centered on or included the Grand Junction tailings. Ambient soil moistures were reported for the Grand Junction area (Rogers et al., 1981). Research on cover design has included studies on movement of water in the unsaturated zone of the Grand Junction tailings (Beedlow, 1984; Mayer et al., 1981).

The geochemistry of the tailings and of the ambient environment has been extensively interpreted (Markos and Bush, 1983a) and reported (Markos and Bush, 1983b), including statistical evaluation of contaminant transport mechanisms (Bush and Markos, 1982). A geotechnical characterization of the tailings included extensive information on stratigraphy, water levels, and hydraulic properties (Nelson and Wardwell, 1982). Ford, Bacon, and Davis Utah, Inc. (FBDU) reported on the site-specific hydrogeology and hydrogeologic setting of the tailings at a reconnaissance level, and also reported limited site-specific data (FBDU, 1981; FBDU, no date). A site-specific study of the hydrogeology of the tailings and the surrounding area was based on an extensive field program (Doty and Versaw, 1984).

Additional data relating to the area surrounding the tailings were gathered from various investigators. Geotechnical borings for the Highway 50 bridge were obtained from the State of Colorado Department of Highways, (Colorado Department of Highways, 1964), and helped to define the stratigraphy of the area. Drillers logs for the Grand Junction area were obtained from the State of Colorado (Colorado Division of Water Resources, no date), although these provided little information not reported by the U.S. Geological Survey (Lohman, 1965).

F.3.1.2 Recent investigations

Recent investigations have included exploratory drilling, hydraulic testing, monitoring well installation, and water sampling in two phases. The first phase was begun with drilling in October, 1982, to January, 1983, February and March, 1985, and July, 1986.

In the first phase, eight exploratory borings were drilled and sampled for stratigraphic logging and to obtain samples for laboratory testing. An additional 10 borings were drilled for the installation of monitoring wells.

In the second phase, 23 borings were drilled and sampled for stratigraphic logging. Packer-permeability tests were conducted in three of the borings. Monitoring wells were installed in 22 of the borings. Well-construction details for both phases are presented in Table F.3.1, and monitoring well locations are presented in Figure F.3.1.

All field and laboratory work was performed in accordance with standard operating procedures. The first phase was conducted in accordance with a Work Plan for geotechnical and ground-water hydrology work (Golder Associates, 1982). The second phase was performed in accordance with standard operating procedures on file with the DOE UMTRA Project Office in Albuquerque, New Mexico.

F.3.1.3 Stratigraphy

The stratigraphy at the processing site has been defined through a series of borings (Figures F.3.1 through F.3.9). The

Table F.3.1 Grand Junction processing site borehole and well information

A B WELL TOTAL SURFACE TOP OF BOREHOLE	
LOCATION NORTH EAST DIAMETER DEPTH ELEVATION CASING BEG DP LENGTH DEPTH ZON	E OF
	LETION
581 59439.6 33674.9 2.000 31.00 4585.20 4586.33 27.00 4.0 35.00 Allu	
582 59310.4 33151.8 2.000 43.20 4585.30 4586.22 35.70 7.5 42.50 Allu	
583 59316.8 33141.5 2.000 33.73 4585.10 4587.04 28.73 5.0 32.00 Allu	
584 59321.0 33153.8 2.000 26.70 4585.40 4586.73 24.70 2.0 25.50 Allu	
585 59179.4 32541.9 2.000 13.90 4566.00 4567.38 11.90 2.0 13.50 Allu	
586 59191.9 32539.8 2.000 9.50 4566.20 4567.77 5.50 4.0 8.70 Allu	
587 60599.9 34829.2 4.000 13.10 4575.00 4575.00 7.60 5.5 15.50 Allu	
588 59447.6 35959.7 4.000 17.90 4571.50 4571.45 7.90 10.0 17.00 Allu	
589 59399.1 31876.9 4.000 17.90 4566.80 4566.84 5.90 12.0 18.00 Allu	
590 59531.2 31295.8 4,000 15.20 4564.70 4566.19 7.20 8.0 15.50 Allu	
591 59404.6 32728.1 4581.60 20.00 Allu	
592 59215.1 33788.2 2.000 34.90 4590.90 4592.80 29.90 5.0 33.00 Allu	
593 59245.2 34957.7 4589.60 27.00 Allu	
594 59789.8 34559.6 2.000 61.40 4612.40 4614.34 56.40 5.0 59.50 Allu	
595 59845,7 33863,1 2,000 25,30 4579,80 4583,31 20,30 5,0 21,80 ^{A11} u	
596 59767,3 32805,2 2,000 23,40 4581,60 4583,00 18,40 5,0 22,00 Allui	ium
597 59530.7 34098.0 2.000 39.60 4596.70 4598.30 34.60 5.0 38.00 Allu	
710 59541.5 36658.1 72.000 40.00 4574.35 4574.35 40.00 Allu	
711 58650.0 49280.0 24.50 4600.00 4601.00 23.50 Allu	
597 595 30.7 34098.0 2.000 39.60 4596.70 4598.30 34.60 5.0 38.00 Allur 710 c 59541.5 36658.1 72.000 40.00 4574.35 4574.35 40.00 Allur 711 d 58650.0 49280.0 24.50 4600.00 4601.00 23.50 Allur 712 d 60780.0 49410.0 30.80 4608.00 4608.80 30.00 Allur	ium
724 59894.5 31371.5 2.000 143.00 4564.70 4566.50 131.00 10.0 142.00 ^{Dakot}	
725 59394.9 31268.0 2.000 101.00 4566.80 4567.30 69.00 30.0 140.00 ^{Dakot}	
726 59393.0 31257.3 4.000 141.00 4566.80 4566.83 110.50 30.0 140.00 Dakot	a SS
727 59380.3 31265.3 2.000 56.20 4566.40 4567.10 44.00 10.0 55.20 ^{Mance}	s Shale
728 59518.5 31296.1 2.000 19.00 4565.00 4565.38 12.00 5.0 17.00 Manco	s/Alluvium
729 59738.7 32572.3 2.000 67.00 4565.30 4567.21 55.00 10.0 65.00 ^{Manco}	s Shale
730 60200.0 33200.0 4575.00 67.00 Manco	s Shale
731 60671.6 29820.3 2.000 36.50 4559.70 4561.34 25.50 10.0 46.00 ^{Manco}	s Shale
732 60659.1 29817.6 2.000 23.00 4559.50 4561.80 16.00 5.0 21.00 Manco	s/Alluvium
733 60997.4 28704.7 2.000 23.00 4556.40 4558.00 16.00 5.0 21.00 Manco	s/Alluvium
735 60211.6 31261.7 2.000 40.00 4564.70 4566.36 26.00 10.0 50.00 Manco	s Shale
736 60197,9 31270,5 2.000 17.00 4564.70 4566.50 10.00 5.0 15.00 Manco	s/Alluvium
737 61898.9 32967.7 2.000 29.00 4575.30 4577.30 22.00 5.0 27.00 Manco	s/Alluvium
738 60039.1 30049.4 2.000 20.00 4561.00 4563.60 13.00 5.0 18.00 Manco	s/Alluvium
739 60273.6 31970.1 2.000 32.00 4572.90 4574.90 25.00 5.0 30.00 Alluv	
740 59908.3 32001.1 2.000 19.00 4566.10 4568.11 12.00 5.0 17.00 Manco	;/Alluvium
741 60796.0 33048.8 2.000 47.00 4572.90 4574.64 35.00 10.0 45.00 Manco	; Shale
742 60774_6 33047_2 2.000 25.00 4572.70 4574.78 18.00 5.0 23.00 Manco	/Alluvium
743 59491.7 37069.7 2.000 37.00 4575.10 4576.70 25.00 10.0 35.00 Manco	Shale
744 59492 2 37051 3 2.000 17.00 4574.80 4576.78 10.00 5.0 15.00 Manco	/Alluvium
745 61040.0 36958.2 2.000 22.00 4579.40 4581.31 15.00 5.0 20.00 Manco	/Alluvium
746 62365.1 35806.3 2.000 26.90 4586.90 4588.50 19.60 5.0 25.00 Alluv	
747 60207.8 36378.8 2.000 19.00 4574.30 4576.07 12.00 5.0 17.00 Alluv	um

^a 581-590 correspond to GWGJ-1 through GWGJ-10 in DOE(1983); 591-597 correspond to GGJ-1 through GGJ-7 in DOE(1983).

^b Site coordinate system is based on a truncation of modified Colorado coordinate system.

^C 710 is an industrial drainage well.

 $^{\rm d}$ 711 and 712 are U.S. Bureau of Reclamation monitoring wells.

NOTE: 3" DIA. PVC OBSERVATION WELLS LEFT IN ALL BORINGS FOR THIS CROSS-SECTION, 3/80

FIGURE F.3.4 GEOLOGIC PROFILE: SECTION B-B'

REFERENCE: NELSON AND WARDWELL (1982)

4580 **D'** D 4570 5<u>8</u>5 590 7<u>3</u>8 TAILINGS SILTS, SANDS, FILL FEET, MSL 4560 733 ANDS A ANDO GR 4550 MANCOS SHALE TRASH 1000' 0 4540 L HORIZ. SCALE FEET FIGURE F.3.6 **GEOLOGIC CROSS SECTION D-D'**

shallow stratigraphy near the Grand Junction site consists of three zones. From top to bottom these are:

- o A surficial disturbed zone.
- o A zone of unconsolidated alluvial sediments.
- o A sequence of consolidated sedimentary formations.

The surficial zone includes a variety of soil classifications and material types which have been deposited or altered through the action of man. It varies in depth from less than one to more than 50 feet. These include the tailings, which are shown in cross-section on Figures F.3.3 through F.3.5; trash, shown on Figure F.3.6; and fill, shown on Figures F.3.6 through F.3.8. The tailings consist of a series of interbedded sands and slimes which have been described in more detail by other investigators (Nelson and Wardwell, 1982).

Underlying or adjacent to the surficial zone is a zone of alluvial deposits (Figures F.3.3 through F.3.9). In the vicinity of the tailings this includes zones of mixed gravel, sand, and silty layers ranging in depth from less than seven to more than 21 feet. In general, the alluvium in this portion of the Grand Valley can be categorized into two types, as described below:

"In deeper sections of the Colorado River paleochannel is a stratum of gravel and cobbles overlying the Mancos Shale referred to as the cobble aquifer. Overlying the cobble aquifer is a layer of alluvium that extends over the entire Grand Valley." (U.S. Bureau of Reclamation, 1978)

In this report these two types of alluvial deposits will be grouped together and referred to as "alluvium."

The "cobble aquifer" borders the Colorado River in a strip two to three miles wide from Palisade to Loma, with a northern boundary approximately 0.5 mile south of the Government Highline Canal shown in Figure F.3.10.

The bottom of the cobble aquifer is formed by the erosional surface of the Mancos Shale which slopes gently (about five feet per mile) to the north where it abuts the base of the Book Cliffs (U.S. Bureau of Reclamation, no date).

Underlying the alluvial deposits is a sequence of consolidated sedimentary rocks, which are, in descending order, (Lohman, 1965):

Mancos Shale Dakota Sandstone Burro Canyon Formation Morrison Formation (Salt Wash and Brushy Basin Members)

Summerville Formation Entrada Sandstone Kayenta Formation, Wingate Sandstone Chinle Formation

The formations shown with an asterisk above are tapped as aquifers in the Grand Junction area. The Dakota Sandstone and Burro Canyon Formation are grouped together as one water-bearing unit; however, the Dakota Sandstone is not an important source of water (Lohman, 1965).

Among the consolidated sedimentary formations, only the Mancos Shale and the Dakota Sandstone are of interest with respect to the tailings. The Mancos Shale is of interest because it is a low-permeability unit which can provide a barrier to downward migration of contamination. The Dakota Sandstone is of interest because it is the uppermost known bedrock aquifer and potentially could be impacted by the tailings.

The Mancos Shale is a thick sequence of shale which includes some sandy layers and thin sandstone beds. It not only underlies all of the Grand Valley but forms most of the Book Cliffs to the north. The Mancos Shale and the Dakota Sandstone intertongue and the contact between the two appears to be conformable and gradational (Lohman, 1965).

The thickness of the Mancos Shale underlying the tailings exceeds 50 feet (boring #729), while 0.5 mile west of the site at the Highway 50 bridge, it appears to thin to the extent that the Dakota Sandstone locally subcrops to the alluvium (Colorado Department of Highways, 1964). The Mancos Shale dips to the northeast, so that at a well approximately 1.5 miles northeast of the tailings it is 638 feet thick (Lohman, 1965).

The Dakota Sandstone consists of beds of sandstone, conglomeratic sandstone, shale, and coal. It is generally grouped with the underlying Burro Canyon Formation as one hydrogeologic unit, and is the least important of the four artesian aquifers in the Grand Junction area (Lohman, 1965). "The sandstone beds of the Burro Canyon Formation and Dakota Sandstone are tightly cemented, lenticular, and generally thin, hence they yield only small amounts of water, generally under insufficient head to flow at the surface." Below the tailings it is more than 65 feet below land surface (boring 729). The log of a well in the NE 1/4 SW 1/4 of section 24, a location approximately the same as the east end of the tailings, reported the top of the Dakota at 168 feet below land surface (Lohman, 1965).

<u>Faulting</u>. A seismic risk evaluation of the Grand Junction site has concluded that the probability of active faulting near or under the site cannot be quantified. Regardless, the effects of possible faults (if present) on the existing hydrogeologic regime appear to be minimal. The differences in water quality between the contaminated alluvial system and the Dakota Sandstone (Section F.3.1.6), and the presence of entrapped oil in the Dakota Sandstone (boring #725) indicate minimal communication between the two systems near the processing site. The presence of oil shows that the overlying rock is so low in permeability as to trap the oil, whereas a fault zone could be a more permeable area along which oil could escape. A more detailed discussion of seismic risk is presented in Appendix E, Soils, Geologic, and Seismic Information.

F.3.1.4 Unsaturated zone hydraulics

The Grand Junction tailings have been extensively characterized in terms of hydraulic properties. The data produced by the characterizations are too many to report, but have been reported or summarized elsewhere (Veyera, 1980; Martin et al., 1980; Veyera and Nelson, 1981).

After cessation of operations (milling) the tailings are expected to have drained relatively rapidly (Veyera and Nelson, 1981). Based on this conclusion and the periodic flux of ground water through the tailings during seasonally high water levels, the importance of the unsaturated zone in the existing hydrologic regime is relatively minor. The main driving force for migration of contaminants in the existing environment is flow of ground water through those portions of the tailings which are below the water table.

F.3.1.5 Saturated zone hydraulics

Dakota Sandstone. No known published quantitative data are available for the Dakota Sandstone in the vicinity of the tailings. An extensive study of the hydrogeology of the Grand Junction area produced no quantitative data (Lohman, 1965).

Results from two slug tests of the upper Dakota Sandstone near the processing site show that it has relatively low permeability, comparable to the Mancos Shale (Table F.3.2). In addition to the slug test data, qualitative observations regarding the hydraulic properties of the Dakota Sandstone indicate that it has a relatively low yield. For example:

- o A four-inch diameter well (30-foot screen) installed during the 1985 field program yielded insufficient water (less than one gpm) to conduct a pump test.
- "The sandstone beds of the Burro Canyon Formation and Dakota Sandstone are tightly cemented, lenticular, and generally thin, hence they yield only small amounts of water..." (Lohman, 1965).

11-11	Hydraulic conductivity ^a by methods			_
Well Location ID	CBP ^C	F-K ^d	Skibitzke ^e	Storage coefficient ^C
724			4.6×10^{-5}	
725	2.6×10^{-5} 4.4×10^{-5}	7.9×10^{-6}		10^{-3}_{-5}
727	5.5×10^{-6}	7.3×10^{-7}	7.7×10^{-7}	10 ⁻⁵
729			1.9×10^{-7}	
731			9.4 x 10^{-7}	
735			3.9×10^{-7}	
741	5.8 x 10 ⁻⁵	1.4×10^{-5}	2.4×10^{-5}	10 ⁻⁴
743	4.9×10^{-4}	1.35×10^{-4}		10-3

Table F.3.2 Slug testing results for the Grand Junction site

^aIn cm/sec converted from transmissivity by assuming effective thickness of aquifer equal to thickness of gravel pack.

^bAll wells except 724 and 725 completed in Mancos Shale. 724 and 725 are completed in Dakota Sandstone.

^CCooper-Bredehoeft-Papadopulos; Ref. Lohman, 1972.

^dFerris-Knowles; Ref. Ferris and Knowles, 1963.

^eRef. Skibitzke, 1963.

<u>Mancos Shale</u>. As reported by various authors, the Mancos Shale on a regional basis is generally accepted as a low-permeability formation which is "not water bearing" or transmits only very limited quantities of water (Lohman, 1965; Cooley et al., 1969). One boring into the Mancos Shale (location #735) encountered artesian flow which lasted for 10 minutes. The U.S. Bureau of Reclamation, at a site approximately 20 miles west of the tailings, characterized an artesian zone in the Mancos Shale with a thickness of 1.5 feet, hydraulic conductivity of 210 to 650 feet/day (0.074 to 0.23 cm/sec), and a storage coefficient of 10 (U.S. Bureau of Reclamation, 1978).

The artesian flow encountered in monitor well 735 was a unique occurrence among the more than 10 monitoring wells drilled at least 30 to 40 feet into the Mancos Shale. The bedrock units beneath the Grand Junction site strike approximately N 45° W and dip 7° to the northeast off the Uncompaghre Uplift into the Piceance Creek Basin. The artesian zone observed in well 735 was not found in wells 729, 730, 741, and 743 since these wells were located down-dip, and their total depths were too shallow to encounter this zone. Note that the chances are good that the artesian zone may have thinned and/or the permeability may have decreased significantly if these wells had been drilled deeper. Well 724 was drilled approximately 400 feet along the structural strike of well 735, and it did not encounter any artesian flow. Ground elevations for wells 724 and 735 are within 0.2 foot. This is the evidence for the discontinuous nature of thin Mancos Shale sandstone units. Wells 725, 726, 727, 731, and 733 were drilled up-dip from well 735. The artesian zone was not encountered in these wells since erosion had removed the interval.

Slug-withdrawal tests of hydraulic conductivity confirm the low permeability of the Mancos Shale (Table F.3.2.). The calculated storage coefficients for Mancos Shale appear to be consistent within an order of magnitude of that reported by the U.S. Bureau of Reclamation, although the determination of storage coefficient by this method has questionable reliability (Cooper et al., 1967).

Packer-permeability tests, analyzed using methods of the U.S. Bureau of Reclamation (U.S. Bureau of Reclamation, 1981), for the Mancos Shale (Table F.3.3) indicate a generally higher permeability than do the slug tests (Table F.3.2). Only one value of hydraulic conductivity is available for a location, 729, at which packer testing was completed. The differing results between slug- and packer-testing can be attributed to the following factors:

o Packer tests are described as semi-quantitative (U.S. Bureau of Reclamation, 1981).

Borehole	Permeability x10 ⁻⁶ cm/sec for different test pressures ^b			
	Test Interval ^C (feet)	P1	P2	Р3
726 ^e	28-33 33-38 38-43 43-48 48-53 53-58 58-63 63-68 68-73	107 46 61 61 61 76 61 46 0 ^d	163 50 63 50 63 63 75 50 0d	480 53 53 53 53 53 53 80 63 32
729 ^f	26-31 31-36 36-41 42-47 47-52 52-57 57-62	244 305 285 122 163 - unab 51	265 265 265 125 171 le to set packers- 93	315 290 164 151 87 126
730	29-34 34-39 39-44 44-49 49-54 54-59 59-64	113 132 169 188 123 188 75	147 103 117 235 161 103 88	144 108 216 156 84 96

Table F.3.3 Packer-testing results^a for the Grand Junction site

^aDouble-packer tests of open boreholes completed March, 1985. Net test pressure, at packers in feet of water; for borehole 726: P1 = 52.5 P2 = 64.0 P3 = 75.5 for borehole 729: P1 = 37.5 P2 = 49.0 P3 = 60.5 for borehole 730: P1 = 40.5 P2 = 52.0 P3 = 63.5 Tests analyzed using methods of the U.S. Bureau of Reclamation (1981). c729 and 730 entirely in Mancos Shale. Lower tests in 726 are in dMancos-Dakota transition zone or Dakota Sandstone. Flow-meter reset after tests; may have been inoperational during tests. eStatic water level, May, 1985: 10.5 feet. Static water level, May, 1985: 34 feet. o Based on later water-level measurements, some of the packer tests may have been completed in a partiallysaturated zone of the Mancos Shale. Permeabilities in Table F.3.3 were calculated assuming the test section was below the water table. Inaccuracies are associated with the application of U.S. Bureau of Reclamation methods to tests above the water table (Stephens and Neuman, 1982).

Despite the drawbacks associated with the packer-permeability tests, they can be used semi-quantitatively to conclude that:

- o The Mancos Shale appears to be relatively uniform with respect to horizontal permeability in the area of the site.
- o There is a small decrease in the horizontal permeability of the shale with increasing depth. This is confirmed by the results of the slug tests, which show decreasing hydraulic conductivity with increasing depth (Tables F.3.1 and F.3.2).

Water levels in the Mancos Shale are generally within a few tenths of a foot of water levels in adjacent alluvial wells. Flow direction in the shallow Mancos Shale is essentially parallel to flow in the overlying alluvium.

<u>Alluvium</u>. Results of hydraulic testing in the saturated alluvium are reported in Table F.3.4. In general, it can be concluded that the alluvium has a relatively high permeability compared to the underlying shale. Water level iso-contour maps are presented in Figures F.3.11 through F.3.13. A contour of the saturated thickness of the alluvium is presented in Figure F.3.14.

The quantity of ground-water flux through the alluvium and tailings at the site can be calculated using Darcy's law (Davis and DeWiest, 1966):

$$Q = KA \frac{h_1 - h_2}{dl}$$

where

Q = flow rate (1³/t)
K = hydraulic conductivity (1/t)
h₁, h₂ = hydraulic head at two points
d1 = length of the flow path between points at
which the head is given

Well	Development method	Hydrologic-test method	Analytical method	Hydraulic conductivity (cm/sec) ^d
581	Air lift and bailing			
582	Air lift and river water circulation			
583	Bailing			
584	Bailing			2
585	Bailing inside steel casing and suction pump	Stable drawdown with probe	Steady state	2.5×10^{-2}
58 6	Suction pump	Stable drawdown with probe	Steady state	2.3×10^{-2}
587	Submersible pump	Transient drawdown with transducer	Transient	2.3×10^{-2} 4.2 × 10 ⁻²
588	Submersible pump	Transient drawdown with transducer	Transient	1.5×10^{-2}
589	Submersible pump	Transient drawdown with transducer	Transient	2.0×10^{-2}
590	Submersible pump	Stable flow, assumed drawdown	Steady state	>3.3 x 10^{-2}

Table F.3.4 Well-development and hydrologic-test methods for the Grand Junction site

^aCentimeters per second.

Ref. NUS, 1983.

F-59

The rate of ground-water flux varies seasonally. Flux calculations for water levels measured in March, 1985, (Figure F.3.12) and May, 1985, (Figure F.3.13) are summarized in Table F.3.5.

The average velocity of the ground water can be used to estimate migration rates of contaminants, or the time needed to flush contaminants from a ground-water system. It can be calculated as follows (Bear, 1979):

 $V = Q/n_{ef} A$

where

V = average velogity (1/t)
Q = flow rate (1²/t)
n_{ef} = effective porosity
A = cross-sectional area (1²)

No measurements of effective porosity were available, so calculations were made assuming that effective porosity is equal to the specific yield. Calculations of average velocity are summarized in Table F.3.5.

The volume of alluvial ground water directly below the tailings can be calculated using the formula

 $V = A \times b \times Sy$

where

V = volume (1³)
A = horizontal area (1²)
b = average thickness of the saturated zone (1)
Sy = specific yield (ft³/ft³)

Volume calculations are summarized in Table F.3.6, and will be used in the assessment of impacts on ground water of various remedial action alternatives.

<u>Tailings</u>. The tailings are saturated in the lower portions of the pile. Laboratory permeability tests have been reported by other investigators (see Section F.3.1.1). These are in the range of $>10^{-5}$ to $>10^{-5}$ cm/sec, depending on the composition of the tailings samples (Nelson and Wardwell, 1982).

Vertical hydraulic gradients. Measured water levels in the shallow Mancos Shale for March and May, 1985, were generally within 0.1 foot to one foot of water levels in adjacent alluvial wells. Calculated gradients (where "+" indicates a

Date	3/85	6/83	6/83
K (cm/sec):	4.2×10^{-2}	4.2×10^{-2}	1.5×10^{-2}
A (ft ²)	20,000	10,000	10,000
^h 1	4570	4567	4567
h ₂	4564	4565	4565
dl (ft)	1450	15 50	1550
Q (ft ³ /yr)	3.6×10^{6}	5.6 \times 10 ⁵	2.00×10^5
Q (liters/yr)	1×10^{8}	1.6×10^{7}	5.67 x 10 ⁶
v^{a} (n _{ef} = 0.10)	1800	560	200
V^{a} (n _{ef} = 0.20)	900	280	100
v^{a} (n _{ef} = 0.35)	514	160	57
^a V = velocity (ft/y)	$r) = k \left(\frac{h_1 - h_2}{dl} \right)$	$\left(\frac{1}{n_{ef}}\right)$	

Table F.3.5 Ground-water flux rate

Table F.3.6 Volume of alluvial ground water below the tailings

Area (acres)	b(ft) ^a	Sy(ft ³ /ft ³) ^b	Volume(ft ³)	Volume (liters)
57	10	0.10	2.48×10^{6}	7×10^{7}
57	10	0.20	4.96 x 10 ⁶	1.4×10^8
57	10	0.35	8.69×10^{6}	2.5 x 10^8

^aFrom Figure F.3.14. ^bRange of values for alluvium selected from Todd, 1980; Davis and DeWiest, 1966.

downward gradient) in March were slightly upward and ranged from -0.030 to +0.104 ft/ft. Calculated gradients in May were downward, in the range +0.021 to +0.201 ft/ft. Anomalous gradients of +2.0 ft/ft were calculated (wells 735 and 736), but this may reflect slow recovery of a well completed in the shale, consequent to well development and water sampling. Studies elsewhere have shown that wells completed in the Mancos Shale may require several months to recover after being developed (Dames and Moore, 1984) or sampled (DOE, 1985). It can be concluded that the gradient between the bedrock and the alluvium is slight, however definite conclusions about the absolute rate and direction of vertical ground-water movement would require additional water-level measurements in wells undisturbed by sampling.

In summary, it has been concluded that:

- o Based on qualitative evidence, the low permeability of the Dakota Sandstone limits its utility as an aquifer.
- The Mancos Shale is generally acknowledged as a formation which inhibits the movement of water. Upper weathered portions and very localized zones transmit moderate quantities of water, relative to the alluvium.
- o The alluvium in the vicinity of the site and the tailings can transmit large quantities of water, relative to the Mancos Shale.

F.3.1.6 Water quality

Data on ground-water chemistry for samples collected on various dates are presented in Tables F.3.7 through F.3.16. On these tables, the cation/anion balances are shown for each analysis under the parameter heading "BALANCE". Several of the balances have an absolute value beyond the five percent accuracy criterion. Most of these analyses were performed in 1983 prior to the present quality assurance program. A few other analyses performed in 1985 have balances beyond five percent. These were performed by a laboratory that was not qualified in the present quality assurance program.

Tables F.3.17 through F.3.20 include all analyses for each parameter which exceed the statistical maximum of background values. The statistical maximum is the greater of the maximum value from background samples and the average value plus two standard deviations. Background samples were all samples collected from wells 711 and 712. All upgradient, on-site, cross-gradient, and downgradient samples from alluvial wells are compared to the background values. Tables F.3.21 through F.3.30 include all analyses whose values exceed the EPA primary or secondary drinking water standards (The State of Colorado drinking water standards are identical to the EPA standards).

STTE: GRAND JUNCTION 03/26/85 TO 09/10/85

			711-01 03/27/85		711-01 06/07/85	7	11-01 09/10/85	-06	DATE7 712-01 03/26/85		712-01 06/07/85
PARAMFTER	UNIT OF MEASURE	VA	PARAMETER LUE+/-UNCERTAINTY	VA	PARAMETER LUE+/-UNCERTAINTY	VAL	PARAMETER .UF+/-UNCERTAINTY	VA	PARAMETER LUE+/-UNCERTAINTY	VAI	PARAMETER _UE+/-UNCERTAINTY
AL KALJNJTY	MG/L CACO3		385.		737.		536.		1016.		494.
	MG/L	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1
	MG/L	•	2.1	•	0.34		0.1		0.29		15.7
	MG/L	(0.003		0.008	<	0.003	<	0.003	<	0.003
	MG/L	ì	0.01	(0.01	ć	0.01	ć	0.01	ć	0.01
	X	•	-1.33	•	-1.38	•	-1.43	•	-4.46	•	-1.6
	Â MG/L	1	0.1	(0.1	(0.05	(0.1	<	0.1
	MG/L	`	0.07	•	0.81	•	0.6	•	0.58	•	0.64
	MG/L	,	0.002		0.001	1	0.001	1	0.002	(0.001
	MG/L	`	390.	``	313.	•	331.	•	350.	•	241.
	MG/L		300.		316.		328.		350.		208.
		,			0.01	1	0.01		0.02	(0.01
	MG/L	>	0.01 0.01		0.05	>	0.05	1	0.01	ì	0.05
COBALI	MG/L	C		•	4880.	`	5392.	``	5400.	``	2379.
	UMH0/CM		3400.					,		,	0.02
	MG/L		0.01	Ś	0.07		0.05		0.01 0.01		0.02
	MG/L	<	0.01	(0.01			(•	
FLUORIDE	MG/L.		0.4		0.8		0.8/		0.9		0.4
	PCI/L		90.				-		50.		
GROSS BETA	PCI/L	<	50.		-		-	< C	50.		-
HYD. SULFIDE	MG/L	<	0.2		-	<	0.1	<	0.2		
IKON	MG/L		0.1		0.76		0.32		1.2		0.89
LEAD	MG/L	<	0.01	<	0.01		-	<	0.01	<	0.01
MAGNESIUM	MG/L		140.		420.		370.		360.		97.1
MANGANESE	MG/L		1.4		1.55		1.33		1.1		8.74
MFRCUKY	MG/L		0.0003	<	0.0002	<	0.0002	<	0.0002	<	0.0002
MOLYBDENUM	MG/L		0.01		0.05		0.04		0.06	<	0.01
N) CKEI	MG/L.	<	0.04	<	0.04		0.06	<	0.04		0.05
N (TRATE	MG/L		2.	<	1.		3.6		8.	<	1.
OKG. CARBON	MG/L		5.4		26.1		14.		53.6		17.7
	PCI/L		2.3	<	1.5		-	<	1.5	<	1.5
PH	SU		6.7		7.1		7.		7.1		7.1
	MG/L	<	0.1	<	0.1		_	<	0.1		2.04
	PCJ/L	è	1.	ć	1.		-	<	1.	<	1.
	MG/L	•	12.	•	13.1		11_4	-	12.		15.3
	PCI/L	(1.		1.	<	1.	<	1.	<	1.
	PCI/L	ì	1.	ì	1.	•	-	ċ	1.	ć	1.
SELENJUM	MG/L.	ì	0.005	•	0.014		0.005	•	0.009	-	0.005
SILICA	MG/L	•	9.		9.8		16.9		8.1		7.7
SILVER	MG/i	1	0.01	1	0.01		-	(0.01	(0.01
SODIUM	MG/L	`	340.	•	662.		690.	•	/30.	•	231.
STRONTIUM	MG/L		3.2		3.41		3.72		3.8		2.1
SULFATE	MG/L		1500.		5/80.		2860.		2/00.		831.
SULFIDE	MG/L		1500.	1	0.1					(0.1
	C - DEGREE		11.5	`	15.		15.		11.	•	15.
1H-230	PCI/L	1	1.	1	1.			1	1.	<	1.
TIN	MG/L	ì	0.005	ì	0.005	(0.005	ì	0.005	è	0.005
	MG/L	•	3008.	`	5486.	``	5370.	`	5382.	-	2072.

Table F.3.7 GROUND WATER QUALITY DATA BY LOCATION STIF: GRAND JUNCTION 03/26/85 TO 09/10/85 (Continued)

		7 11-	01 03/2//85	711-01 06/07/85		- SAMPLE JD AND 1-01 09/10/85		TE 12-01 03/26/85	7	12-01 04/07/85
PARAMFTER	UNIT OF MEASURE	VALUE	PARAMETER -/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	VALU	PARAMETER F+/-UNCERTAINTY	VALL	PARAMETER JE+/-UNCERTAINTY	VAL	PARAMETER UE+/-UNCERTAINTY
TOX U-234 U-238 VANAD LUM ZINC	MG/L PCI/L PCI/L MG/L MG/L	۲ ۲	0.1 9. 8. 0.01 0.06	0.2 25. 16. 0.02 0.018	<	- 28. 18. 0.01 0.009	< < <	0.1 23. 17. 0.01 0.05	< < <	0.01 9. 6. 0.01 0.005

Table F.3.7 GROUND WATER QUALITY DATA BY LUCATION SITE: GRAND JUNCTION 03726785 TO 09740785 (Continued)

FORMATION OF COMPLETION: ALLUYTUM HYDRAULIC FLOW RELATIONSHIP: BACKGROUND

		742-04 09/06/85				na nam ann ran ann agu ann ama agu ann ann ann ann ann ann ann ann ann an
PARAME TER	UNIT OF MEASURE	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+7-UNCERTA)NTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+Z-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINT
ALKALINITY	MG/L CACO3	446.	and and and and the set of the set			
ALUMINUM	MG/L	< 0.1				
AMMONDUM	MG/L	1.8				
ANTIMONY	MGZL	< 0.003				
AKSENIC	MGZL	0.01				
BALANCE	X	-3.73				
BARTUM	ñg/l	< 0.05				
BURON	MG/L	0.05				
CADIDUM	MG/L	< 0.001				
CALCIUM	MG/L	274.				
	MG/L	241.				
CHLORODE		< 0.01				
CHROMEUM	MG/L MG/L	(0.05				
COBALT		2925.				
CONDUCTANCE	UMH0/CM	0.07				
COPPER	MG/L	0.07				
CYANIDE	MG/L	0.76				
FI UORD DE	MG7L	-				
GROSS ALPHA	PCT/L					
GROSS BETA	PCI/L					
HYD. SULFIDE		1.2				
IKON	MG/L	0.06				
I.F.AD	MG/L					
MAGNESTUM	MGZL	105.				
MANGANESE	MG/L	0.93				
MERCURY	MG/L	< 0.0002				
MOLYBDENUM	MG/L	0.02				
NICKEL	MGZL.	(0.04				
NITRATE	MG/L	2.5				
ORG. CARBON	MGZL	16.6				
PB-210	PCT/L					
PH	SU	7.3				
PHOSPHATE	MG/L	-				
P0-240	PCI/L	-				
POTASSIUM	MGZL	10.8				
RA-226	PC17L	< 1.				
KV558	PCT/L	< 1.				
SELENJUM	MG/L	< 0.005				
STLECA	MG/L	18.6				
SDI VEK	MGZL					
SODEUM	MGZŁ	251.				
STRONTLIUM	MGZL	2.38				
SULFATE	1967L	930 .				
SULFIDE	MGZL	—				
TEMPERATURE		17.				
18-230	PCTA					
ETH	MG/L	(0.005				
TOTAL SULTES		2340.				

Table F.3.7 GROUND WATER GUALITY DATA BY LOCATION SITE: GRAND JUNCTION 03/26/85 TO 09/10/85 (Concluded)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULUC FLOW RELATIONSHIP: BACKGROUND

		712-01 09/06/85	LOCATION 1D - SAMPLE ID AND LOG DATE
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE +7-UNCERTAINTY	
TOX U-234 U-238 VANADTUM ZINC	MG/L PCI/I PCI/L MG/L MG/L	10. /. (0.01 0.005	

MAPPER INPUT FILE: GRJ01+UDPGWQ100374

ı.

STTE: BRAND JUNCTION 02/04/83 TU 09/05/85

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

F-67

		588-01 02/01/83		588-01 09/04/85	710-01 03/21/85	710-01 06/0//85
PARAMETER	UNIT OF MEASURE	PARAMETER	PARAMETER VALUE+7UNCERTAINTY	PARAMETER	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY
ALKAL INT Y	MG/L CACO3	281.	265.	299.	535.	507.
ALUMINUM	MG/L	-	< 0 .1	٥.١	< 0 .1	< 0.1
AMMONIUM	MG/L		9.87	11.8	45.	24.9
ANTEMONY	MG/L		۲.00%	< 0.003	(0.003	(0.003
ARSENIC	MG/L	0.004	0.01	0.01	< 0.01	< 0.01
BALANCE	7	5.65	3.81	-2.08	~.66	3.86
BARIUM	MG/L	0.04	< 0.1	0.05	< 0.1	< 0.1
BORON	MG/L		0.07	0.04	0.31	0.37
CADMJUM	MG/L		< 0.001	< 0.001	< 0.002	< 0.001
CALCIUM	MG/L	118.	94.	46.1	590.	524.
CHLORIDE	MG/L	167.	143.	82.6	770.	607.
CHRDMIUM	MG/L	0.002	< 0.01	< 0.01	0.02	< 0.01
	MG/L	< 0.001	< 0.05	(0.05	< 0.01	(0.05
COBAL T	UMHO/CM	\ 0.001	910.	· · · · · · · · · · · · · · · · · · ·	6700.	4300.
CONDUCTANCE		0.0111	< 0.02	< 0.02	0.02	< 0.02
COPPER	MG/L	0.0111	< 0.07 < 0.01		< 0.01	(0.01
CYANIDE	MG/L	-	0.4	0.49	1.	1.1
FLUORIDE	MG/L.		0.4		< 70	-
GROSS ALPHA	PC1/L		-		100.	-
GROSS BETA	PC1/L	-	-	2.0	< 0.2	
HYD. SULF (DE						0.11
1RON	MG/L.	2.3	0.33	0.29	0.1	< 0.01
LEAD	MG/L		< 0.01		< 0.01	327.
MAGNESTUM	MG/L	42.8	35.	19.5	330.	2.91
MANGANESE	MG/L	0.16	0.15	0.15	2.7	
MFRCURY	MG/L.	-	(0.0002	< 0.0002	0.0003	< 0.0002
MOLYBDENUM	MG/L	٥.03	۷.01	0.03	0.08	0.07
NJ CKEL	MG/L	-	٥.04	۷.04	< 0.04	0.04
NETRATE	MG/L	۷.۱	< 1.	1.6	3.	< 1 <u>-</u>
NITROGEN, KJL	MG/L	7.7	-			-
ORG. CARBON	MG/L	64.5	4.6	5.	7.2	8.9
PB-210	PCI/L		< 1.5	-	< 1 <u>.</u> 5	< 1.5
рн	SU	7.1	7.8	1./	7.1	6.85
PHOSPHATE	MG/L		< 0 .1	-	< 0 .1	< 0.1
PD-210	PCT/L		< 1.	-	< 1.	< 1.
POTASSIUM	MG/L	9.	12.4	9.77	24.	23.6
RA-226	PCI/L	_	< 1.	< 1.	< 1.	< 1.
RA-228	PCI/L		< 1.	< 1.	1.	< 1.
SELENIUM	MG/L	< 0.002	0.005	(0.005	٥.005	< 0.005
SILICA	MG/L		6.2	17.3	7.8	8.2
SILVER	MG/L	_	< 0.01		٥.01	< 0.01
SODIUM	MG/L	141.	111.	96.1	780.	665.
STRONFLUM	MG/L		0.75	0.55	6.1	5.84
	MGZL.	184.	142.	50.4	3000.	2430.
SULFATE	MGZL. MGZL.	104.	< 0.1		-	(0.1
SULFIDE TEMBE DATURE		_	18.	19.5	11.5	16.
TEMPERATURE	C - DEGREE PCI/L		< 1.	-	< 1.	< 1.
TH-230			< 0.005		< 0.005	< 0.005
TIN	MGZL		1 0.005	(0.005		

Table F.3.8 GROUND WATER QUALITY DATA BY FUCATION SITE: GRAND JUNCTION 02/01/83 00 09/05/85 (Continued)

•

			LOCA'I I	ON 1D - SAMPLE 10 AND	LOG DATE	
		588-01 02/01/83	588-01 04/07/85	588-04 09704/85	710-01 03/21/85	710-01 06/07/85
PARAMETER	UNIT OF MEASURF	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE +/-UNCERTAINTY	PARAMETER VALUE +ZUNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY
TOTAL SOLIDS	MG/L	878.	656.	452.	6204.	5658.
TOTAL U	PPM	0.01	***	-		-
TOX	MGZL	-	0.1	-	0.2	0.21
U-234	PCI/L		1.	4.	29.	36.
U~238	PCI/L		1.	1.	23.	30.7
VANADIUM	MG/L	0.006	٥.01	< 0.01	< 0.01	٥.01
71NC	MG/L.	< 0.01	< 0.005	0.073	0.05	(0.005

Table F.3.8 GROUND WATER QUALITY DATA BY EDITATION SITE: GRAND JUNCTION 02704783 10 09705785 (Continued)

		7	10-01 09/04/85				/44-01 06/0//85		744-02 06/07/85		44-03 06/0//85
PARAMETER	UNIT OF MEASURE	VAI	PARAMETER .UE+/-UNCERTAINTY	VAI	PARAMETER UE+Z-UNCERTAINTY	VAI	PARAMETER	VA	PARAMETER	VA	PARAMETER .UE+ /-UNCERTAINT
ALKALDNITY	MG/L CACO3		498.		462.		332.		332.		332.
	MIJ/L	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1
AMMONIUM	MG/L		62.1		1.6		1.2		1.2		2.2
ANTIMUNY	MG/L	<	0.003	<	0.003	<	0.003	<	0.003	(0.003
ARSENIC	MG/L.	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01
BALANCE	z		0.62		-4.3/		1.86		2.22		2.57
BARIUM	MG/L	<	0.05	<	0.1	<	0.1	(0.1	<	0.1
BURON	MG/L	•	0.43		0.25		0.23		0.23		0.24
CADITUN	MG/L	(0.001	<	0.002	(0.001	(0.001	· (0.001
CALCIUM	MG/L	•	503.	•	260.		842.		234.		237.
CHLORIDE	MG/L		783.		450.		202.		204.		199.
CHROMEUM	MG/L	(0.01		0.07	<	0.01	<	0.01	<	0.01
CUBALT	MG/L	è	0.05	(0.01	ć	0.05	<	0.05	<	0.05
	UMHOZEM	`	6613.	•	1200.	•	2150.		2150.		2150.
COPPER	MG/L	(0.02		0.01	(0.02	(0.02	<	0.02
	MGZL	`	-	(0.01	ì	0.01	i	0.01	(0.01
CYANIDE			1.2	`	0.4	``	0.6	•	0.6		0.6
FLUORIDE	MG/L		1.2		80.				-		
	PCI/L		_		50.		-		-		
GROSS BETA	PC1/L	,		,	0.2		_				-
HYD. SULFIDE		<	0.1	<			0.1		0.11		0.12
1RON	MG/L		3.04	,	1.	<	0.01		0.01	(0.01
LEAD	MG/L		-	<	0.01	``		``	144.	•	142.
MAGNESLUM	MG/L		325.		140.		144.		1.16		1.15
MANGANESE	MG/L		2.86		2.		1.19	,	0.0002		0.0002
MERCURY	MGZL.		0.0003	<	0.0002	<	0.0002	· ·	0.002	ì	0.01
PIOLYBDENUM	MG/L		0.1		0.02		0.02		0.04	ì	0.04
NICKEL	MGZL		0.04	(0.04	(0.04				1.
NETRATE	MG/L	<	1-	<	1.	(1.	(1.	``	
NTTRUGENZKUL			-						- 9.8		10.4
ORG. CARBON	MG/L		/_4		10.2		9.4				-
PB-240	PC1/L			<	1.5	(1.5		-		7.4
PH	SU		6.8		1.05		1.4		1.4	,	0.1
PHOSPHATE	MG/L		-	<	0.1	<	0.1	(0.1	(
P0-240	PCI/L		-	<	1.	<	1.		-		8.97
PUTASSIUM	MG/L		24.7		8 .9		9.02		9.1		-
RA-226	PC1/L	<	1.	<	1.	<	1.		-		-
KA-228	PC1/L	<	1.	<	1.	<	1.		-		0.005
SFLENEUM	MG/L	<	0.005	<	0.005	<	0.005	(0.005	<	
STELCA	MG/L		19.5		8.2		6.2		6.7		6.6
STLVER	MG/L		-	<	0.01	(0.01	(0.01	(0.01
SUDIUM	MU/L		853.		420.		307.		312.		310.
STRONTIUM	MG/L		5.6		2.8		2.41		2.36		2.33
SHLFATE	MG/L		2880.		4200.		1150.		1120.		1110.
SULFIDE	MG/L				_	(0.1	<	0.1	(0.1
TEMPERATURE			18.		10.5		14.		14.		14
1H-230	PCI/L			<	1.	(1.		-		
				•			0.005		0.005	(0.005

Table F.3.8

B GROUND WATER WUALLY DATA BY LOCATEDN STIF: GRAND JUNCIION 02/01/83 D 09/05/85 (Continued)

			LOCAT10	UN 1D - SAMPLE (D AND :	LOG DATE	
		710-01 09/04/85	744-01 03/21/85	744-01 06/07/85	744-02 06/07/85	744-03 06/0//85
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE +/-UNCERTAINTY	PARAMETER VALUE+Z-UNCERTAINTY	PARAMETER VALUE +/UNCERTAINTY	PARAMETER VALUE+Z-UNCERTAINTY
TOTAL SOLIDS	MG/L	6320.	4462.	2386.	ź: 4 1 0.	2456.
TUTAL U	PPM		~*			-
10X	MG/I	-	8.2	0.31	0.29	0.29
0-234	PCT/L	58.	19.	19.3		_
0-238	PC1/I	20.	14.	13.4		-
VANADIUM	116/L	0.01	< 0.01	50.02	0.02	(0.01
ZINC	MG/L	0.018	0.04	< 0.005	< 0.005	(0.005

SITE: GRAND JUNCTION 02/01/83 UD 09/05/85 (Continued)

					LOCALI						
		.					and wanted when them toget their takes there are the take to a party to be take to be a ball have and				
PARAMETER	UNIT OF MEASURE	VA	PARAMETER LUE+/-UNCERIAINTY	VA	PARAMETER UE+7-UNCERTA] NTY	VA	PARAMETER UL+Z~URCERTAINTY	VA	PARAMETER LUE+/-UNCERTAINTY	VAI	PARAMETER _UE+/~UNCERTAINTY
ALKALINITY	MG/L CACO3		332.		337.		440.		440.		440.
ALUMENUM	MG/L	<	0.1	<	0.1	<	0.1	(0.1	<	0.1
AMPIONIUM	MG/L		1.3		1.6		1.7		1.6		1.6
ANTEMONY	MG/L	<	0.003	<	0.003	<	0.003	(0.003	<	0.003
ARSENIC	MG/L	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01
BALANCE	7.		1.53		1.26		0.		-2.		-1.21
BARIUM	MGZE.	<	0.1	<	0.1	<	0.05	<	0.05	<	0.05
BURON	MG/L		0.23		0.24		0.26		0.26		0.25
CADMIUM	MG/L	<	0.001	<	0.001	<	0.001	<	0.001	<	0.001
CALCIUM	MG/L	•	240.		2.36.		253.		250.		252.
CHLORIDE	MG/L		204.		202.		296.		302.		306.
CHROMIUM	MG/L	<	0.01	<	0.01	(0.01	<	0.01	<	0.01
COBALT	MG/L	ì	0.05	ì	0.05	ì	0.05	ć	0.05	i	0.05
CONDUCTANCE	UMHO/CM	`	2150.	•	2150.	``	3719.	•	37 19.	`	37 19.
COPPER	MG/L	,	0.02	1	0.07		0.02	(0.02		0.02
		ì	0.01		0.01		0.01	``	0.02		-
CYANTOE	MGZL	1		``					0.57		0.57
FLUORIDE	MG/L.		0.6		0.6		0.56		0.5/		0.5/
GROSS ALPHA	PCT/L		-		-						-
GROSS BETA	PC1/L		-		-	,	·	,		,	
HYD. SULF (DE			-		-	Ś	0.1	<	0.1	<u> </u>	0.1
IKON	MG/L.		0.11		0.12	<	0.03	<	0.03	<	0.03
LEAD	MG/L	<	0.01	<	0.01						
MAGNESIUM	MG/L		147.		143.		156.		158.		158.
MANGANESE	MG/L		1.19		1.2		1.34		1.35		1.38
MERCURY	MG/L	<	0.0002	<	0.0002	<	0.0002	<	0.0002	<	0.0002
MOLYBDENUM	1913/L		0.01		0.02		0.02		0.02		0.02
NICKFL	MG7L.		0.04	<	0.04	<	0.04		0.04		0.05
NETRATE	MGZL	<	1_	<	1.		4.		3.8		3.6
NI TROGEN, KUL	MG/L		-								-
ORG. CARBON	MG/L		9.4		9.2		6.3		6.8		6.9
PB-210	PC1/L										·
PH	SU		7.4		1.4		6.8		6.8		6.8
PHOSPHATE	MG/L	<	0.1	<	0.1						<u></u>
P0-210	PCT/L	•	-	•							_
POTASSIUM	MG/L		9.05		8.89		10.2		10.4		10-4
RA-226	PCI/L				-	<	1.	<	1.	<	1.
RA-228	PC17L					ì	1.	ì	1.	ì	1.
SFLENIUM	MG/L	<	0.005	<	0.005	ì	0.005	ì	0.005	ì	0.005
		`		``	6.6	``	19.3	•	19.5	•	19.9
SHLICA	MG7L MG7L	<	6.7 0.01	1	0.01		17.3		17.5		-
SILVER		`		`	304.		425.		425.		423.
SODIUM	MG/I		312.						3.1		3.12
STRONT LUM	MG/L.		2.3/		2.28		3.14				1340.
SULFATE	MGZL.	,	1150.	,	1140.		1300.		1380.		
SULFIDE	MGZL	(0.1	<	0.1				40 F		40 5
TEMPERATURE	C - DEGREE		14.		14.		19.5		19.5		19.5
1H-530	PCTZL				-		-	,		,	
N I I	MGZL	<	0.005	<	0.005	<	0.005	<	0.005	(0.005

Table F.3.8 GROUND WATER NUALLY DATA BY LUCATION SITE: GRAND JUNCTION 02/04/83 10 09/05/85 (Continued)

					LUCALL	0N 10	- SAMPLE ID AND	LUG DA	1£		
		744	-04 06/0//85	14	44-05 06/07/85	74	44-01 09/04/85	74	4-02 09/04/85	/44-03	09/04/85
PARAMETER	UNET OF MEASURE	VAL UE	PARAMETER +/-UNCERTAINTY	VALL	PARAMETER JE+Z-UNCERTAINTY	VAI I	PARAMETER JE+Z-UNUERTAINTY	VALU	PARAMETER F+/-UNCERTAINTY		RAMETER JNCFRTAINTY
TOTAL SOLIDS	MGZL	24	38.		2430.		3080.	3	080.	4000.	
TOTAL U	ррм		-				-		-	-	
TOX	MG/L	<	0.1	<	0.1				-		
U-234	PCTZL				_		20.		20.	21.	
U-238	PCI/L				-		14.		16.	16.	
VANAD (UM	MG/L	<	0.01	<	0.01	<	0.01	<	0.01	0.0	D 1
ZINC	MG/L.	<	0.005	<	0.005		0.013		0.017	0.0	0 12

Table F.3.8 GROUND WATER QUALITY DATA BY LOCATION SITE: GRAND JUNCTION 02/04/83 DD 09/05/85 (Continued)

FURMATION OF COMPLETION: ALLUVIUM Hydraulic Flow Relationship: UP Gradient

						LOCALL		- SAMPLE TO AND	00 I			
				744-04 09/04/85		44-05 09/04/85		45-01 03/30/85		745-01 06/07/85		45-01 09/05/85
PAKAME	FTER	UNIT OF MEASURE	VAI	PARAMETER LUE+/-UNCERTAINTY	VAL	PARAMETER UE+/-UNCERTAINTY	VAL	PARAMETER UE+/-UNCERTAINTY	VA	PARAMETER LUE+/-UNCERTAINTY	VAL	PARAMETER .UE+/-UNCERTAINT
ALKAL I		MG/L CAC03		440.		440.		460.		343.		415.
ALUMIN		MG/L	<	0.1	<	0.1		0.3	<	0.1	<	0.1
AMMUN		MG/L		1.6		1.7		0.64		0.51		0.2
ANTIMO		MG/L	<	0.003	<	0.003	<	0.003	<	0.003	(0.003
ARSEN		MG/L	ć	0.01	<	0.01	<	0.01	<	0.01	<	0.01
BALAN		X	-	5.14		-3.28		5.88		5.08		97
BARJUN		MG/L	<	0.05	<	0.05	<	0.1	<	0.1	<	0.05
BURON		MG/L	•	0.26		0.25		0.6		0.58		0.55
CAUMIL		MG/L	<	0.001	<	0.001	<	0.002	<	0.001	<	0.001
CALCE		MG/L	•	252.	•	250.		490.		431.		366.
CHLORI		MG/L		283.		323.		344.		390.		352.
CHROM		MG/L	<	0.01		0.02		0.02	<	0.01	<	0.01
CURAL		MG/L	ì	0.05	(0.05	<	0.01	<	0.05	<	0.05
	CTANCE	UMHO/CM	•	37 19.	•	37 19.		5300.		3900.		5002.
COPPER		MG/L		0.04	<	0.02		0.02	<	0.02		0.03
CYANTI		MG/L		_		_	<	0.01	<	0.01		
FLUOR		MG/L		0.57		0.50		0.7		0.8		0.82
	ALPHA			_				80.		-		-
GROSS		PCI/L		_			<	50.		-		-
	SULFIDE		<	0.1	<	0.1	<	0.2		-	<	0.1
IKON	501.1 10.	MG/L	i	0.03	ć	0.03		2.2		1.24		0.49
LEAD		MG/L	•	-			<	0.01	•	0.01		-
MAGNES	STUM	MG/L		193.		162.		340.		401.		297.
MANGA		MG/L		1.37		1.34		1.8		1.47		1.29
MERCUI		MG/L	<	0.0002	<	0.0002	<	0.0002	<	0.0002		0.0002
MOLYBI		MG/L	•	0.03	•	0.03		0.04		0.01		0.03
NUCKEI		MG/L	<	0.04	(0.04	· <	0.04	<	0.04	<	0.04
NUTRA		MG/L	•	3.4		3.7	<	1.	<	1.	<	1.
	GEN,KJL			_				-				-
	CARBON	MG/L		6.7		6.3		9.1		11.2		8.9
PH-21		PCIZI				-	<	1.5	<	1.5		-
PH	•	SU		6.8		6.8		6./		6.8		1.1
PHOSPI	HATE	MG/L		_		-	<	0.1	<	0.1		
P0-21		PCI/L		_		-	<	1.	<	1.		
POTAS		MG/L		10.5		10.2		6.8		7.94		5.85
RA-22		PCI/L	<	1.	(1.	<	1.	<	1.	(1.
RA-22		PCI/L	•	1.1	ć	1.	<	1.	•	1.	<	1.
SELEN		MG/L	<	0.005	ć	0.005	<	0.005	•	0.005	<	0.005
SH IC		MG/L	•	19.3		19.5		10.4		7.9		16.5
S (LVE		MG/L		_			<	0.01	<	0.01		576.
SODIU		MGZL		425.		418.		620.		585.		4.3
STRON		MG/L		3.21		3.12		4.8		4.89		2450.
SUL FA		MG/L		1240.		1410.		2700.		2620.		2730.
SULFI		MG/L				_		-	(0.1		15.
		C - DEGREE		19.5		19.5		10.		16.5		10.
TH-23		PCI/L		~		-	<	1.	(1.	,	0.005
TIN		MG /L	1	0.005	<	0.005	(0.005	•	0.005	<	V.V03

¥

Table F.3.8 BROUND WATER WUGLERY DATA BY LOCATION SITE: GRAND JUNCTION 02701/83 10 09705/85 (Continued)

		/44-04 09/04/85	744-05 09704785	3N 10 - SAMPLE 10 AND 745-01 03730785	LUG DATE745-01 04/07/85	/45-01 09/05/85
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE +/-UNCERTAINTY	PARAMETER VALUE+7-UNCERTAINTY	PARAMETER VALUE+7-UNGERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY
TUTAL SOLIDS	MG/L	4000.	3090.	5450.	5376.	4760.
TOTAL U	P P M		-		-	_
TOX	MG/L	-	-	0.3	0.13	
U-234	1/104	19.	21.	1/.	19.	19.
0230	PC171	14.	14.	11.	12.	13.
VANADIUM	MG/L	0.01	(0.01	(0.01	0.01	(0.01
ZDNC	MG/L	0.009	0.013	1.	< 0.005	0.019

SITE: GRAND JUNCTION 02/04/83 DD 09/05/85 (Continued)

PARAMETER ME ALKALINITY MG ALUMINUM MG AMMONJUM MG ANTIMONY MG	G/L G/L G/L	<	PARAMETER UE+/-UNCERTAINTY 417.		PARAMETER .UE+7-UNCERTAINTY		PARAMETER	PARAMETER	PARAMETER
ALUMINUM MG AMMONJUM MG ANTIMONY MG ARSENJC MG	3/L G/L G/L G/L		417.				UF+/-UNCERTAINTY	VALUE+/-UNCERTAINTY	VALUE+/UNCERTAINT
ALUMINUM MG AMMONJUM MG ANTIMONY MG ARSENIC MG	3/L G/L G/L G/L				464.		431.		
AMMONJUM MG ANTIMONY MG ARSENIC MG	G/L G/L G/L		0.1	<	0.1	<	0.1		
ANT LMONY MG ARSENIC MG	G/L G/L		0.29		0.34		0.2		
ARSENIC MG	G/L.	<	0.003	<	0.003	<	0.003		
		<	0.01	<	0.01	<	0.01		
		•	1.57		5.3/		0.43		
		<	0.1	<	0.1	<	0.05		
	6/L	•	0.58		0.83		0.68		
	G/L.	<	0.002	<	0.001	<	0.001		
	G/L	`	490.	•	595.		4/2.		
	G/L		460.		637 .		656.		
	G/L	<	0.01	<	0.01	<	0.01		
		λ.	0.01	ì	0.05	- i	0.05		
	G/L		5500.	``	5000.	•	7735.		
	MHO/CM		0.01		0.02		0.03		
	G/L	Ś			0.01		-		
	G/L	<	0.01	``	1.5		1.6		
	G/ l		1.1		1.0		-		
	CI/L	,	230.				_		
		< .	50.			<	0.1		
HYD. SULFIDE MG		<	0.2			``	0.41		
	G/1		0.8	,	1.15		V.41		
	6/L	<	0.01	<	0.01				
	G/L		380.		570.		484.		
MANGANESE MG	G/L		5.3		1.//	,	1.42		
IHFRCURY MG	G/L	<	0.0002	<	0.0002	<	0.0007		
MOLYBDENUM MG	G/L		0.12		0.11		0.15		
NICKEI MO	G/L	<	0.04	<	0.04		0.07		
NUTRATE MG	6/L	<	1.	<	1.	<	1.		
NITROGEN, KJL MG	G /l .								
URG. CARBON MG	G/L		525.		17.4		17.2		
PR540 bc	CI/L	<	1.5	<	1.5				
PH SL	U		6.7		/.25		7.5		
PHOSPHATE MG	G/L	<	0.1	<	0.1		-		
PO-240 PC	CI/L	<	1.	<	1.		-		
POTASSIUM ME	6/L		12.		11.5		9.72		
	CT/L	<	1.	<	1.	<	1.		
	CI/L	<	1.	<	1.		1.1		
	G/L	<	0,005	<	0.005	<	0.005		
	16/L		10.5		9.9		17.8		
	G/L	<	0.01	<	0.01		-		
	IG/L	•	650.		747.		793.		
	167 L		5.6		5.87		6.84		
	167L		2900.		3410.		3370.		
	167 E 167 E			<	0.1		_		
	- DEGREE		13.	•	16.		16.		
		<	1.	<	1.				
	167L	ì	0.005	Ì	0.005	<	0.005		

Table F.3.8 GROUND WATER DUALITY DATA BY LUCATION SITE: GRAND JUNCTION 02/04/83 TO 09/05/85 (Concluded)

FORMATION OF COMPLETION: ALLOVIUM HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

UNIT OF PARAMETER PARAMETER PARAMETER PARAMETER PARAMETER PARAMETER MEASURE VALUE+/-UNCERTAINTY VALUE+/-UNCERTAINTY VALUE+/-UNCERTAINTY VALUE+/-UNCERTAINTY TUTAL SOLIDS MG/L 6038. 6878. 6930. TUTAL U PPM - - - TUX MG/L 0.1 (0.1 - U-234 PCI/L 22. 30. 35. U-238 PCI/I 16. 20. 27. VANADIUM MG/L (0.01 0.01 (0.01			746-01 03/22/8		LOCAT 746-01 06/0//85) - SAMPLE (46-01 09/0	 L
PARAMETER MEASURE VALUE+/-UNCERTAINTY VALUE+/-UNCERTAINTY VALUE+/-UNCERTAINTY TUTAL SOLIDS MG/L 6038. 6878. 6930. TOTAL U PPM - - - TOX MG/L 0.1 (0.1 - U-234 PCI/L 22. 30. 35. U-238 PCI/I 16. 20. 27. VANADTUM MG/L (0.01 0.01 (0.01								
TOTAL U PPM - - TOX MG/I 0.1 (0.1 - U-234 PCI/L 22. 30. 35. U-238 PCI/I 16. 20. 27. VANADIUM MG/L (0.01 0.01 (0.01	PARAMETER			י אד		VAL		
TOX MG/l 0.1 0.1	TUTAL SOLIDS	MG/L	6038.		6878.		6930.	 •
U-234 PCI/L 22. 30. 35. U-238 PCI/I 16. 20. 27. VANADIUM MG/L (0.01 0.01 (0.01								
U-238 PCI/I 16. 20. 27. VANADIUM MG/L (0.01 0.01 (0.01				•			-	
VANADIUM MG/L (0.01 0.01 (0.01								
	ZINC	MG/L MG/L	< 0.01 < 0.05		0.01	<	0.01	

MAPPER INPUT FILE: GRJ01*UDPHW0100373

Table F.3.9 GROUND WALLER WUALLET DATA TO FUCATION STLL: BRAND JUNCTION 01/31/83 TO 09/11/05

		581-01 07/07/83	584~04 06709783	UN 1D - SANPEE ID AND 584-04 09722783	581-01 03/26/85	581~01 05707785
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER	PARAMETER VALUE+Z-UNCERTAINTY	PARAMETER	PARAMETER VALUE+Z-UNCERTAINTY
ALKALINITY	MG/L CACO3	485.	450.	490.	568.	521.
ALUMINUM	MG/L	-	-	0.004	< 0.1	< 0 _1
AMMENTA	MGZL.	-	86.33			-
AMMON LUM	MG/L	_	-	232.	166.	205.
ANTIMUNY	MG/L.	-	-	(0.005	(0.003	(0.003
ARSENIC	MG/L	< 0.001	< 0.001	0.008	0.016	0.01
BALANCE	X	-12.54	-8.69	0.14	0.53	
BARIUM	MG/L	(0.02	0.03	0.062	< 0.1	< 0.1
BORON	MG/L	-		- 100 -	0.34	0.4
CADMIUM	MG/L	-	_	0.001	(0.002	< 0.001
CALCIUM	MG/L	360.	654.	420.	550.	483.
CHLORIDE	MG/L	· \$15.	640.	530.	490.	563.
CHROM) UM	MG/L	0.001	0.005	0.002	0.07	
COBALT	MG/L	< 0.001	0.053	0.001	(0.01	(0.05
COND. IN-SITU		4 180.	5200.		-	
CONDUCTANCE	UriHO/CM		-	- 100	6300.	6000.
COPPER	MG/L	0.011	< 0.0005	(0.0005	0.05	(0.02
CYANIDE	MG/L	-			< 0.01	(0.01
FLUORIDE	MGZL	-		4.4	4.7	4.3
		-		1.1	160.	
	PETZ	-	-		70.	-
GROSS BETA	PCI/L	-			(0.2	-
HYD. SULFIDE		-	_		12.	11.2
IRON	MGZL	3.24	1.31	3.72	(0.01	< 0.01
I F AD	MG/L	-	-	0.01		202.
MAGNESIUM	MG/L	189.	210.	340.	200.	4.59
MANGANESE	MGZE.	2.72	2.85	4.5	5.	
MERCURY	MG/L	-		(0.0002	(0.0002	<pre></pre>
MOLYBOENUM	MG/L	0.31	0.25	0.078	0.13	0.08
NJCKET	MGZL.	-	1807		(0.04	
NETRALE	MG/L	0.12		0.19	< 1.	< 1.
NJTROGEN, KJL	MG/L	188.	-	-		
ORG. CARBON	MG/L	96.3	88.2	113.	10.5	10.
PB-210	PCI/L	-	-		< 1.5	1.8
PH	SU	7.3	7.3	1.2	6.9	7 - 1
PHOSPHATE	MGZL	-	-	·-· •	< 0.1	< 0.°1
PHOSPHORUS	MG/L	-		٥.04		-
P0-210	PC17L	-		-	< 1.	< <u>1</u> .
POTASSLUM	Mii/L	66.4	56.	52.	57.	61.2
RA-226	PCTZI	-			1.4	1.
RA-228	PCTZL	-		n .	< 1.	< 1.
SELENDUM	MGZL	0.07	(0.002	< 0.007	(0.005	(0.005
SILICA	MGZŁ	-		55	12.4	11.9
SILVER	MGZL.	-	-	< 0.002	< 0.01	(0.01
SODIUM	11671.	819.	870.	520.	/20.	664.
STRONTIUM	MGZE				6.7	6.49
SULFATE	107L	3215.	.3800.	5800	ፖማ ህወ	2810.
SULFIDE	MGZE		·····			(0.1

Table F.3.9 GROUND WATER QUALETY DATA BY LUCATION STIF: GRAND JUNCTION 04/34/83 DD 09/44/85 (Continued)

		LOCALIUN ID - SAMPLE ID AND LOG DATE						
		581-01 02/0//83	581-01 06/09/83	581-01 09722783	581-01 03/26/85	581-01 04/07/85		
PARAMETER	UNIT OF MEASURF	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+Z-UNCERTAINTY	PARAMETER VALUE+Z-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY		
TEMP, IN-SITU	C-DF GREE	10.	1/.5		Man ann ann ann ann ann ann ann ann ann	allen dien verstenden meis anles sollte sollt sollt sollt sollt sollt sollt sollt ander sollt ander ander sollt		
TEMPERATURE	C - DEGREE	~	-		14.	16.		
TH-230	PC1/I	-	-	-	< 1.	(1_		
TIN	MG/L	-	-	-	0.008	(0.005		
TUTAL SOLIDS	MG/L	5260.	5610.	5700.	5394.	5464.		
TOTAL U	PPM	0.189	0.096	0.112	-	-		
TOX	MG/L.	-		-	0.3	0.2		
U-234	PCI/L	-	-		-	23.		
U-238	PCI/I	-	-	-	-	23.		
URANIUM	MG/L	-	-		0.056	-		
VANADIUM	MG/L	0.074	0.0/11	0.018	0.02	0.02		
ZINC	MG/L	0.03	0.04	0.04	0.1	(0.005		

SITE: GRAND JUNCTION 04/31/83 TO 09/11/85 (Continued)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: ON-SITE

F-79

			581-02 06/07/85		LOCATI 581-03 06/07/85	UN I	0 - SAMPLE 10 AND 584-04 06/07/85) LOG	DATE		581-01 09/11/85
PARAMETER	UNIT OF MEASURE		PARAMETER LUE+/-UNCERTAINTY	VA	PARAMETER UE+/-UNCERTAINTY	VA	PARAMETER LUE+/UNCERTAINTY	VAI	PARAMETER .UE+/-UNCERTAINTY		PARAMETER LUE+/-UNCERTAINT
ALKALINITY	MG/L CACO3		521.		521.		521.		521.		1375.
ALUMINUM	rig/L	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1
AMMONJA	MG/L								-		
AMMONEUM	MG/L		206.		199.		202		201.		204.
ANTIMONY	MG/L	<	0.003	<	0.003	<	0.003	<	0.003	<	0.003
ARSENIC	HG/L		0.01		0.01		0.01		0.01		0.01
BALANCE	%		43		-1.46		-3.69		-1.64		-8.35
BARIUM	MG/L	<	0.1	<	0.1	<	0.1	<	0.1	<	0.05
BORON	MG/L	`	0.45	•	0.44	•	0.45		0.43		0.42
CADMIUM	MG/L	<	0.001	<	0.001	<	0.001	<	0.001	<	0.001
CALCIUM	MG/L	`	481.	``	4/4	•	477.		474.		535.
CHLORIDE	MG/L		573.		564.		5/6.		579.		579.
CHROMOUM	MG/L	<	0.01	1	0.01	<	0.01	<	0.01	(0.01
)	0.05	ì	0.05	ì	0.05	i	0.05	ì	0.05
COBALT		`	-	`	-	`	-	`	-	`	-
COND,)N-SITU			6000.		6000.		6000.		6000.		6765.
CONDUCTANCE	UMHO/CM	,	0.02	,	0.02	<	0.02	<	0.02		0.02
COPPER	MG/L	<			0.01	ì	0.01	ì	0.01		-
CYANIDE	MG/L	<	0.01	`		`		`	4.1		4.8
FLUORIDE	MG/L		4.2		4.3		4.3		-		
GROSS ALPHA	PCT/L		-						-		
GROSS BETA	PC1/L									,	0.1
HYD. SULFIDE					-					`	9.88
IKON	MGZL		11.1	,	11.5	,	11.1	,	11.4		7.00
LEAD	MG/L	<	0.01	<	0.01	<	0.01	<	0.01		202.
MAGNESIUM	MG/L		221.		226.		190.		229.		
MANGANESE	MG7L.		4.56		4.61		4.58		4.54		4.72
MERCURY	MGZL.	<	0.0002	<	0.0002	<	0.0002	<	0.0002		0.0002
MOLYBDENUM	MG/L		0.08		0.08		0.1		0.09		0.13
NICKEL	MG/L		0.09		0.08		0.03		0.08	,	0.08
NITRATE	MG/L	<	1.	<	1.	<	1.	<	1.	<	1.
N) TROGEN, KJL	MG7L						~				
ORG. CARBON	FIG/L		10.		9.9		9.6		10.2		10.1
PK-210	PCI/I				· · · ·						_
рн	SU		7.1		1.1		7.1		7.1		7.
PHOSPHATE	MG/1.	<	0.1	<	0.1	<	0.1	<	0.1		
PHOSPHORUS	MG/L						-		-		-
P0-210	PC1/L		-				<u> </u>		-		
POTASSIUM	MG/L		61.2		60.8		60.		60.4		58.9
RA-226	PC1/l		-								1_4
RA-228	PUTZL										
SELENJUM	MG/L	<	0.005	<	0.005	<	0.005	<	0.005	<	0.005
SILICA	MG/L		12.5		12.8		11.6		12.8		26.7
SJLVER	MG/L	<	0.01	<	0.01	<	0.01	<	0.01		
SODIUM	MG/L		654.		658.		669.		662.		704.
STRONTDUM	MGZL		6.5		6.03		6.57		5.74		6.48
SULFATE	MGZL		2810.		2900.		2960		2920.		2860.
SULF10E	MG/L	<	0.1	(0.1	<	0.1	<	0.1		

Table F.3.9 GROUND WATER QUALITY DATA BY LOCATION SITE: GRAND JUNCTION 01/31/83 TO 09/11/85 (Continued)

					LOCA11	UN 10 -	SAMPLE 10 AND	LOG DA	1E		
		584-02	06/07/85	584	-03 06/07/85	584	-04 06/07/85	58	1-05 04/07/85	51	81-01 09/11/85
PARAMETER	UNIT OF MEASURE			Val ue ·	PARAMETER +/-UNCERTAINTY	VAL UE	PARAMETER +/-UNCERTAINTY	VALU	PARAMETER E+/-UNCERTAINTY	VALI	PARAMETER JF+/-UNCERTAINTY
TEMP, IN-SITU	C-DEGREE	-									
	C - DEGREE PCI/L	16.			16.		16.		16.		14.5
TIN	MG/L	(0.0	005	<	0.005	<	0.005	<	0.005	<	0.005
TOTAL SOLIDS	MG/L PPM	5498.		548	32.	54	60.	5	482.	9	5490.
TOX	MGZL.	0.1	4		0.2	<	0.1	<	0.1		-
U-234	PC1/L								-		25.
U-238 URANIUM	PCI/L MG/L				-						25.
VANADIUM	MG/L	0.0	3		0.01		0.02		0.03	<	0.01
ZINC	MGZL	< 0.0	005	<	0.005	<	0.005	<	0.005		0.015

Table F.3.9 GROUND WATER QUALITY DATA BY LOCATION STIF: GRAND JUNCION 01/31/83 TO 09/11/85 (Continued)

				581-02 09/11/85	!		1	581-04 09/11/85		581-05 09/11/85	583-01 0	
	PARAMETER	UNIT OF MEASURE	VA	PARAMETER LUE+/-UNCERTAINTY	VA	PARAMETER LUF+/-UNCER1AINTY		PARAMETER UF+Z-UNCERTAINTY	VA	PARAMETER I UE+/-UNCERTAINTY	PARAM	ETER
	AL KAL INITY	MG/L CACD3		1375.		1375.		1375.		1375.	504.	
	ALUMINUM	MG/L	<	0.1	<	0.1	<	0.1	<	0.1		
	AMMON3 A	MG/L.		-		-		-		-		
	AMMON EUM	MG/L		210.		204.		206.		210.	-	
	ANTIMONY	MG/L	<	0.003	<	0.003	<	0.003	<	0.003	-	
	ARSENTC	MG/L		0.01		0.01		0.01		0.01	0.006	•
	BALANCE	X		-8.94		-8.		-7.84		-7.91	- 10 . 4	
	BARIUM	MG/L	<	0.05	<	0.05	<	0.05	<	0.05	0.05	
	BORON	MG/L		0.42		0.42		0.41		0.42		
	CADMEUM	MG/L	<	0.001	<	0.001	<	0.001	<	0.00í	-	
	CALCIUM	MG/L.		541.		548.		546.		540.	555.	
	CHLOR (DE	MG/L		598.		540.		537.		567.	760.	
ч	CHROM) UM	MG/L	<	0.01	<	0.01	<	0.01	<	0.01	< 0.001	
5	COBALT	MG/L	ć	0.05	<	0.05	<	0.05	<	0.05	0.03	
Ω	COND, IN-SITU			_		_					6800.	
		UMHOZCM		6765.		6765.		6/65.		6765.	- .	
	COPPER	MG/L		0.07		0.03	<	0.02	<	0.02	0.044	1
	CYANIDE	MG/L		-								
	FLUORIDE	MG/L		4.7		4.9		4.9		4.7	-	
	GROSS ALPHA			_		-				-	-	
	GROSS BETA	PCI/L		-		-				-	-	
	HYD. SULFIDE		<	0.1	<	0.1	<	0.1	(0.1	-	
	IRON	MG/L	•	9.91		9.85		10.		9.88	0.49	
	LEAD	MG/L		_						-	-	
	MAGNESIUM	MG/L		204.		205.		202.		195.	334.	
	MANGANESE	MG/L		4.64		4.65		4.75		4.61	3.1	
	MERCURY	MG/L		0.0002		0.0007	<	0.0002		0.0007		
	MOLYBDENUM	MG/L		0.14		0.43		0.12		0.14	0.53	
	NICKEI	MGZL		0.11		0.09		0.0/		0.12	-	
	NITRATE	MG/L	<	1.	<	1.	<	1.	<	1.	0.19	
	NTTROGEN, KJL		•	-		_		-		_	346.	
	ORG. CARBON	MG/L		10.6		10.2		11.3		10.2	111.	
	PB-210	PCI/I		_						-		
	PH	SU		7.		1.		7.		7.	7.2	
	PHOSPHATE	MG/L		_		_				-		
	PHOSPHORUS	MG/L		-		-		_		~	-	
	P(1-210	PCI /L		-		-		-		-	-	
	POTASSIUM	HG/L		59.6		59.6		59.8		58.5	104.	
	RA-226	PCI/I		1.2		1.3		1.4		1.3	-	
	RA-228	PCIZE		-		-				-		
	SELENJUM	MGZL	<	0.005	<	0.005	<	0.005	(0.005	0.092	
	STLICA	MG/L	•	24.6		26.1		26.3		25.2	-	
	STEVER	MGZL		_								
	SODIUM	MGZL		712.		702.		678.		691.	890.	
	STRONIJUM	MGZL		6.48		6.4		6.5		6.38		
	SULFAIE	MGZL.		2960.		2870.		2890.		2800.	4200.	
	SULFIDE	MGZI										

Table F.3.9 GROUND WATER QUALITY DATA BY LUCATON STIF: GRAND JUNCTION 01/31/83 TH 09/11/85 (Continued)

			LOCA'I)	ON 1D - SAMPLE JD AND	LOG DATE	
		581-02 09/11/85	581-03 09/11/85	581-04 09/11/85	58105 09/11/85	583-01 02/07/83
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+Z-UNCERTADNTY	PARAMETER VALUE+/-UNCERTAINIY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUF+/-UNCERTAINTY
TEMP, JN-SITU	C-DEGREE					13.
TEMPERATURE	C - DEGREE	14.5	14.5	14.5	14.5	
TH-230	PCI/L	-				-
TIN	MG/L	< 0.005	(0.005	(0.005	(0.005	-
TOTAL SOLIDS	MG/L	5560.	5370.	5460.	5400.	6420.
TOTAL U	PPM	-				0.229
TOX	MG/L	-				-
U~234	PCI/L	26.	23.	26.	23.	-
U-238	PCI/L	24.	22.	23.	23.	-
URANIUM	MG/L	-	-		-	-
VANAD)UM	MG/L	0.01	0.01	(0.01	0.01	1.6
ZINC	MG/L	0.015	0.015	0.015	0.017	0.87

SITE: GRAND JUNCTION 01/31/83 TO 09/11/85 (Continued)

		583-04 06/07/83	583-01 09/21/83	583-01 03/26/85	583-01 06/07/85	583-01 09/11/85
PARAMETER	UNIT OF MEASURE	PARAMETER VALUF+/-UNCERTAINTY	PARAMETER VALUE+7~UNCERTAINTY	PARAMETER	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINT
ALKALINITY	MG/L CACO3	360.	570.	517.	464.	560.
ALUMINUM	MG/L	-	0.17	< 0 _1	< 0.1	< 0.1
AMMONIA	MG/L.	254.1				456.
AMMONIUM	MG/L	-	335.	357.	274.	
ANTIMONY	MG/L.	-	(0.005	(0.003	< 0.003	<pre> 0.003 0.03</pre>
ARSENIC	MG/L	0.011	0.077	0.019	0.02	
BALANCE	X	-3.57	-3.19	0.54	1.84	1.22
BAR LUM	MG/L	0.002	0.17	< 0.1	< 0.1	< 0.05
BORON	MG/L.			0.57	0.66	0.56
CADMIUM	MG/L	-	0.072	0.01	0.008	0.014
CALCIUM	MG/L	475.	520.	520.	492.	545.
CHLORIDE	MG/L	770.	790.	660.	787.	862.
CHROMUUM	MG/L	0.01	0.004	0.01	< 0.01	0.01
CUBALT	MG/L	0.049	0.53	0.02	0.05	< 0.05
COND, IN-SITU		6100.				
CONDUCTANCE		0100.		8600.	1320.	9516.
	MG/L	0.008	0.067	0.11	< 0.02	0.07
COPPER		0.000		< 0.01	< 0.01	-
CYANTDE	MG/L		4 - 4	4.2	3.	4.2
FLUORIDE	MG/L			255.		-
GROSS ALPHA		·	_	140.		-
GROSS RETA	PCI/L	-		< 0.2		< 0.1
HYD. SULFIDE		-	-		1.08	1.91
IRON	MGZL	0.018	0.071	1.8	< 0.01	
LEAD	MG/L		< 0.001	< 0.01	185.	249.
MAGNESTUM	MG/L	178.	450.	230.		4.15
MANGANESE	MG/L	1.75	10.	4.3	2.56	0.0002
MFRCURY	MG/L	-	< 0.0005	0.0004	< 0.0002	0.26
MOLYBOENUM	MG/L	0.4	0.19	0.3	0.13	
NJCKEL	MG/L	-		0.18	0.18	0.23
NTTRAFE	MG/L		50.	< 1.	< 1 <u>.</u>	4 - 4
NITROGEN, KJL				-	-	
ORG. CARBON	MG/L	84.2	129.	11.7	10.5	12.5
PH-210	PCI/I			< 1.5	< 1 . 5	
PH	SU	7.	6.9	6.8	7.1	7.
PHOSPHATE	MG/L	-		< 0.1	< 0.1	-
PHOSPHORUS	MG/L	_	0.1		-	-
				< 1.	< 1.	
P0-210	PCI/L	49.	96.	96.	69.2	93 . 1
POTASSIUM	MG/L	47.	29.	4.5	5.	6.9
RA-226	PCI/L	-	<i>C.</i> 7 •	1.6	2.2	
RA-228	PCI/L		0.12		0.005	0.011
SELENIUM	MG/L.	0.013		< 0.005 11.7	8.8	21.2
SILICA	MG/L		23.		< 0.01	
STEVER	MGZL	_	0.002	< 0.01	1 130.	944.
SODIUM	MGZL	1090.	980.	920.	3,55	4.7
STRONTIUM	MG/L.	-		4.3	3,55	3750.
SULFATE	MG/L	3100.	4900.	3700.		• ## _e \e •
SULFIDE	MG/L	-	-	-	< 0.1	

Table F.3.9

BROUND WATER QUALLIY DATA BY LOCATODN SITE: GRAND JUNCTION 04/34/83 10 09/14/85 (Continued)

		583-01 06/0//83	583-01 09/21/83	IN ID - SAMPLE ID AND 583-01 03/26/85	LOG DATE583-01 06/07/85	583-01 09/11/85
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE +/~UNCERTAINTY	PARAMETER VALUE+Z~UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY
TEMP, IN-SITU	C-DEGREF	19.				
TEMPERATURE	C - DEGREE	<u> </u>		13.	15.	15.
TH230	PCJ/I	-	< 1.1	< 1.	< <u>1</u> .	
TIN	MGZŁ	-		(0.005	(0.005	< 0.005
TOTAL SOLIDS	MG/L	5830.	8000.	6606.	6150.	6890.
TOTAL U	PPM	0.524	0.075			_
TOX	MG/L			0.3	0.33	
U23 4	PCIZE	-			41.	64.
U-238	PC1/L				42.	66.
URANLUM	MG/L		-	0,185		_
VANADIUM	MGZŁ	1.7	7.6	0.6	0.28	1.14
ZINC	MG/L	0.51	23.	0.6	0.267	0.72

Table F.3.9 GROUND WATER QUALITY DATA BY LOCATION STIF: BRARD JUNCTION 01/34/83 TO 09/41/85 (Continued)

		584-01 02/08/83	584-01 06/08/83	DN 10 - SAMPLE 10 AND 584-01 09721783	LOG DATE	584-01 06/07/85		
PARAMETER	UNIT OF MEASURE	PARAMETER VALUF+/-UNCERTAINTY	PARAMETER VALUE+7-UNCERTAINTY	PARAME LER VALUE + Z-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+Z-UNCERTAINT		
ALKALINITY	MG/L CACO3		530.	560.	582.	540.		
ALUMENUM	MG/L	-		0.51	< 0.1	< 0.1		
AMMUNIA	MG/L	-	544.5	-				
AMMONIUM	MG/L	-	-	374.	439.	440.		
ANTIMONY	MG/L		-	(0.005	٤٥٥.٥ ٢	(0.003		
ARSENIC	MG/L	0.007	0.045	0.07	0 . 1 8	0.09		
BALANCE	X	-17.31	-16.31	-3.15	1	-1.28		
BARIUM	MG/L	_	(0.02	0.083	< 0.1	-		
BORON	MG/L	-	-		0.5	0.63		
CADMIUM	MG/L	-		0.42	0.097	0.073		
CALCIUM	MG/L	556.	585.	4/0.	530.	605.		
CHLORIDE	MG/L	822.	970.	/90.	720.	/91.		
CHROMEUM	MG/L	0.001	0.007	0.004	0.03	< 0.01		
	MG/L	0.16	0.15	0.66	0.05	0.07		
COBALT		7000.	6200.	-	~			
COND, IN-SITU		/000.	6700.		7600.	7564.		
CUNDUCTANCE	UMHOZCM				0.15	0.076		
COPPER	MG/L	0.17	0.049	0.2	< 0.01	(0.01		
CYANTEE	MG/L	-				3.7		
FLUORIDE	MG/L	-	-	4.3	J•/	3./		
GROSS ALPHA	-	-		_	2:30 .			
GROSS BETA	PCI/I	-		· _	155.	-		
HYD. SULFIDE	MG/L	-		-	< 0.2			
IRON	MG/L	0.189	0.019	0.066	(0.05	0.06		
LEAD	MG/L	-	-	< 0.001	< 0.01	(0.01		
MAGNESIUM	MG7L.	25.1	270.	470.	260.	220.		
MANGANESE	MG/L	4.22	3.04	8.1	4.	3.4		
MERCURY	MGZL	-		< 0.0002	< 0.0002	(0.0002		
MOLYBDENUM	MG/L	0.42	0.38	0.17	0.28	0.22		
N) CKEL	MG/L		-	_	0.29	0.28		
NITRATE	MG/L	0.3	-	41.	٢ ١.	< 1.		
NETROGENERUL		388.		-	-	-		
ORG. CARBON	MG/L	120.	84.6	139.	10.4	11.6		
PH-210		-			2.8	2.7		
PH	50	7.2	7.2	6.8	6.8	7.1		
PHOSPHATE	MG/L	··· L	, . <i>.</i>		< 0.1	< 0.1		
				0.08	· · · ·	· · · · · ·		
PHOSPHORUS	MG/L	-	_	-	1.1	(1.		
P0-210	PC1/L		-		106.	99.6		
POTASSIUM	MG/L	113.	97 -	99.	7.5	6.		
RA-226	PCI/L	-		15. •		1.9		
RA-228	PCIZL	-			< 1. 0.24	0.178		
SFLENJUM	MGZL.	0.051	0.027	0.72		42.6		
STLECA	MG/L			29.	13.3			
S JL VI-R	MGZL	-		0.002	(0.01	(0.01 860.		
SODIUM	MGZL.	1210.	Y30 .	550.	9/0-			
STRONTJUM	MGZL		~	_	4.6	3.67		
SULFATE	MG/L	4440.	4200.	4900.	4100.	3960.		
SOLFIDE	MGZL					0.1		

Table F.3.9 BROUND WATER WHALETY DATA BY LOCATEON SITE: GRAND JUNCTION 01/31/83 TO 09/11/85 (Continued)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHJP: ON-SITE

.

		584-01 02/08/83	584-01 06/08/83	DN ID - SAMPLE ID AND 584-01 09/21/83	LOG DATE	584-01 06/0//85
	UNIT OF MEASURE	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+Z-UNCERTAINTY	PARAMETER VALUE+/~UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY
TEMP, IN-SITU	C-DEGREE	13.	15.5	unte spor anna dien here plans ver mer ver ver eine and ver der ber and der ber and	ander best der sint finn dere blen ber men der best vers den den den den den best den ber ber vers som	anna fann fann barn dhur anns anns anns anns anns anns anns ann
TEMPERATURE	C - DEGREE	-	-		14.	15.
1H230	PCI/L	-		0.95	< 1 _	< 1.
TIN	MG/L	-	-	-	0.005	(0.005
TOTAL SOLIDS	MG/I	6350.	6380.	8400.	7 186 .	6716.
TOTAL U	PPM	0.148	0.913	0.181		-
TOX	MG/L.	-			0.6	0.14
U-234	PCI/L	. –	-	-	-	47.
0-238	PCI/I	-				49.
URANIUM	MG/L	-			0.165	
VANADIUM	MG/L	6.	5.2	9.	7.48	6.75
ZINC	M6/L	6.7	4.9	37.	4.1	2.56

SETE: GRAND JUNCTION 04/34/83 10 09/11/85 (Continued)

		584-01 09/11/85	LOCATION ID - SAMPLE TO AND LOG DATE 584-01 09/11/85 587-01 01/31/83 587-01 06/08/83 587-01 09/21/83						
PARAMETER	UNIT OF MEASURE	PARAMETER	PARAMETER VALUE+/UNCERTAINTY	PARAMETER VALUE + Z UNCERTAINTY	PARAMETER	PARAMETER VALUE+/UNCERTAINTY			
ALKAL IN IT Y	MG/L CACO3	575.	381.	340.	400.	520.			
ALUMENUM	MG/L	< 0.1	-	-	0.011	< 0.1			
AMMON) A	MG/L		-	37.51					
AMMONILUM	MG/L	521.			32.3	95.9			
ANTIMONY	MG/L.	< 0.003			< 0.005	〈 0.0 03			
ARSENIC	MG/L	0.14	< 0.001	0.007	< 0.001	(0.01			
BALANCE	X	0.8	-1.73	-2.05	8.85	1.2			
BARIUM	MG/L	< 0.05	0.026	0.03	0.036	0.1			
BURON	MG/L	0.54	-		-	0.42			
CADMIUM	MG/L	0.142			0.004	(0.002			
CALCIUM	MG/L	523.	454.	505.	4 10.	580.			
CHLORIDE	MG/L	867.	375.	520.	400.	740.			
CHROM1UM	MG/L	< 0.01	0.002	0.001	0.001	0.02			
COBALT	MG/L	0.13	< 0.001	0.038	0.001	0.01			
COND, IN-SITU		-	2800.	3800.					
	UMH0/CM	10004.				7000.			
COPPER	MG/L	0.14	0.0119	< 0.0005	(0.0025	0.03			
CYANIDE	MG/L	-		-		< 0.01			
	MG/L	3.9			1.	0.4			
FIUORIDE GROSS ALPHA	PCI/L	-	-	_		< 65.			
GROSS BETA	PCI/L	_	_			90.			
		< 0.1	_	_		(0.2			
HYD. SULFIDE		-	0.37	0.0152	0.064	3.4			
JRON	MG/L	< 0 <u>.</u> 03	0.3/	0.0132	< 0.001	< 0.01			
LEAD	MG/L		292.	330.	350.	300.			
MAGNESIUM	MG/L	307.		7.1	1.91	4.			
MANGANESE	MG/L	3.92	0.46	/ • 1 ~		< 0.0002			
MERCURY	MG/I	< 0.0002				< 0.01			
MOLYBDENUM	MG/L	0.35	0.14	0.128	0.076	0.08			
N) CKEL	MG/L	0.38	-		-				
NITRATE	MG/L	23.	0.64		< 0.1	2.			
NO TROGEN, KJL			24-						
ORG. CARBON	MG/L	12.7	99.9	63.5	87.4				
PB-210	PC1/L	-				< 1.5			
РН	SU	6.9	/.	7.2	7.1	6.8			
PHOSPHATE	MG/L.	-	·			< 0.1			
PHOSPHURUS	MG/L	-	_	-	< 0.04				
P0-240	PCI/I	-		-		< 1.			
POTASSIUM	MG/L	101.	12.9	14.4	15.	36.			
Ra-276	PCJ/L	7.				< 1.			
RA~228	PCI/L	-	-		-	ζ 1.			
SFLENDUM	MGZL	0.199	< 0.002	< 0.002	0.002	< 0.005			
SILL CA	MGZL	24.8	-	- .	22.	10.3			
SJLVFR	MGZL	_			(0.005	(0.01			
SUDIUM	MGZL.	940.	419.	490.	490.	880.			
STRONTIUM	MGZE	4.7		-	-	6.			
SULFAIL	MGZL	4100.	2370.	2700.	20 00 -	3100.			
SULFIDE	MGZL		-						

Table F.3.9 GROUND WATER WHALLIY DATA BY LUCATION STTE: GRAND JUNCTION 01/31/83 TO 09/11/85 (Continued)

		LOCATION ID - SAMPLE ID AND LOG DATE									
		584-01 09/11/85	587-01 01/31/83	587-01 06/08/83	587-01 09/21/83	747-01 03/22/85					
	UNIT OF MEASURE	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUF+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY					
TEMP, IN-SITU	C-DEGREF			18.5							
TEMPERATURE	C - DEGREE	15.		-		10.					
TH-230	PCI/L	-				< 1.					
TIN	MG/L	< 0.005	-	-	-	< 0.005					
TOTAL SOLIDS	MG/L.	7440.	4220.	4570.	4/90.	6780.					
TOTAL U	рьы		0.081	0.0/6	0.085						
TOX	MG/L				-	0.7					
U-234	PCI/L	47.	-	-		29.					
U-238	PCI/L	50.		 21	5.000	19.					
URANIUM	MG/L	_	-	27	-						
VANADJUM	MG/L	13.8	0.049	0.062	0.03	< 0.01					
ZINC	MG/L	4.14	0.02	0.06	0.11	0.1					

Table F.3.9 GROUND WATER QUALITY DATA BY LOCATION SITE: GRAND JUNCIEDN 04/34/83 TO 09/14/85 (Continued)

			/47-01 04/0//85		747-01 09/05/85			
PARAMETER	UNIT OF MEASURE	VA	PARAMETER LUE+/-UNCERTA)NTY	VA	PARAMETER LUE +/~UNCERTA) NTY	PARAMETER VALUE+/-UNCERTA}NTY	PARAMETER VALUE+/-UNCERTA)NTY	PARAMETER VALUE+/-UNCERTAINT
ALKAL JNITY	MG/L CAC03		571.		530.			
ALUMINUM	MG/L	<	0.1		0.2			
AMMONJA	MG/L		-					
AMMONIUM	MG/L		128.		129.			
ANTIMONY	MG/L.	<	0.003	<	0.003			
ARSENIC	MG/L	<	0.01	<	0.01			
BALANCE	z		3.95		1.85			
BARIUM	MG/L	<	0.1	<	0.05			
BURON	MG/L		0.58		0.52			
CADMIUM	MG/L	<	0.001	<	0.001			
CALCIUM	MG/L		645.		502.			
CHLORIDE	MG/L		1030.		1000.			
CHROMIUM	MG/L.	<	0.01	<	0.01			
COBALT	MG/L	<	0.05	<	0.05			
COND, IN-SITL			-		-			
CONDUCTANCE	UMHO/CM	,	5500.		9200.			
COPPER	MG/L.	Ś	0.02		0.04			
CYANIDE	MG/L	(0.01		-			
FLUORIDE	MG/L		0.6		0.65			
GROSS ALPHA	PCI/L	•	,		-			
GROSS BETA	PCI/L.		-	<	0.1			
HYD. SULF (DE			2.01	`	0.44			
IKON	MG/L MG/L	<	0.01		0.44			
LEAD MAGNESIUM	MG/L MG/L	`	434.		386.			
	MG/L		3.13		2.5			
MANGANESE	MG/L	<	0.0002	<	0.0002			
MERCURY		ì	0.002	`	0.06			
MOLYBDENUM NJCKEL	MG7L MG71	`	0.04		0.08			
	MG/L	<	1.	<	1.			
N TTRATE NJTROGEN / KJL		`	-	`	-			
ORG. CARBON	MG/L		12.8		13.3			
PR-210	PCI/L	<	1.5		-			
PH	SU	•	7.		6.9			
PHOSPHATE	MG/L	<	0.1					
PHOSPHORUS	MG/L		_		-			
P(1-210	PCI/L	<	1.					
POTASSIUM	MG/L		39.7		41.8			
RA226	PC1/L	<	1.	<	1.			
RA-228	PCI/L	è	1.		1. 1			
SFLENIUM	MG/I		0.005	<	0.005			
SILICA	MG/L		5.8		18.2			
SILVER	MG/L	<	0.01					
SODEUM	1967L		1000.		1050.			
STRONTIUM	MG/1		5.81		5.88			
SULFATE	MG/L		3360.		3260.			
SULFIDE	MG/L	<	0.1		-			

Table F.3.9 GROUND WATER QUALITY DATA BY LOCATION SITE: GRAND JUNCTION 01/31/83 TO 09/11/85 (Concluded)

FORMATION OF COMPLETION: ALLUV(UM HYDRAULIC FLOW RELATIONSHIP: ON-SITE

		747-01 06/07/85	
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE + Z UNCERTADINTY
TEMP, IN-SITU	C-DEGREE		
TEMPERATURE	C - DEGREE	13.	18.
TH-230	PCI/L	< 1.	-
TIN	MG/L	< 0.005	< 0.005
TOTAL SOLIDS	MG/L	7174.	7130.
TOTAL U	PPM	-	
τοχ	MG/L.	0.65	-
U-234	PCI/L	36.	36.
U2(18	PCI/L	24.	25.
URANIUM	MG/L	-	
VANADIUM	MG/L	< 0.01	< 0.01
ZINC	MG/L	< 0.005	0.01

.

MAPPER INPUT FILE: GRJ01*UDPGWQ100371

F-90

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSH)P: CROSS GRADIENT

F**-**91

			737-01 03/22/85		737-01 06/07/85		737-01 09/06/85	LUG DATH			739-01 06/07/85	
	UNIT OF MEASURE	PARAMETER VALUE+/-UNCERTAINTY			PARAMETER			PARAMETER VALUF+/-UNCERTAINTY		PARAMETER		
ALKALINITY	MG/L CACO3		470.		463.		468.		486.		498.	
ALUMINUM	MG/L	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1	
AMMONIUM	MG/L	-	0.54		0.57		6.6		0.47		0.44	
ANTEMONY	MG/L	<	0.003	<	0.003	<	0.003		0.004	<	0.003	
ARSENIC	MG/L	Ì	0.01	<	0.01	<	0.01	<	0.01	<	0.01	
BALANCE	x	•	4.47	-	4.86		73		1.82		5.09	
BARIUM	MG∕L	<	0.1	<	0.1	<	0.05	<	0.1	<	0.1	
BIJRON	MG/L	•	0.69	•	0.83	•	0.7		0.77		0.79	
	MG/L	<	0.002	<	0.001	<	0.001	<	0.002	<	0.001	
CADMJUM		`	550.	``	640.	•	489.	•	540.	•	630.	
	MG/L		880.		1080.		1100.		970.		1130.	
CHLORIDE	MG/L.		0.03	<	0.01	<	0.01		0.03	<	0.01	
CHROMEUM	MG/L	,		ì		ì	0.05	<	0.01	Ì	0.05	
CORALI	MG/L	<	0.01	``	0.05	``	9000.	``	8300.	`	8024.	
CONDUCTANCE	UMH0/CM		8900.	,	/800.	<				(0.02	
COPPER	MG/L		0.02	S.	0.07	•	0.02	,	0.01	č	0.01	
CYANIDE	MG/L	<	0.01	<	0.01		-	<	0.01	•		
FLUORIDE	MG/L		1.		1_1		1.2		0.9		1.	
GROSS ALPHA	PCT/L		185.		-		-	<	90.			
GROSS BETA	PCI/L		60.				-	<	50.		-	
HYD. SULF (DE	MG/L	<	0.2			<	0.1	<	0.2			
IRON	MGZŁ.		1.7		0.6		0.3		3.4		1.47	
LEAD	MG/L	<	0.01	<	0.01			<	0.01	<	0.01	
MAGNESIUM	MG/L		540.		675.		533.		520.		600.	
MANGANESE	MG/L		2.6		2.42		2.19		1.8		1.76	
MH RCURY	MG/L	<	0.0002	<	0.0002		0.0002	<	0.0002	<	0.0002	
MOLYBDENUM	MG/L		0.11		0.08		0.14		0.11		0.14	
N) CKEL	MG/L	<	0.04	<	0.04	<	0.04	<	0.04	<	0.04	
NITRATE	MG/L	È	1.	<	1.	<	1.	<	1.	<	1.	
ORG. CARBON	MG/L	•	18.		13.3		14.3		14.2		23.3	
PH-210	PCI/L	<	1.5	<	1.5		_	<	1.5	<	1.5	
PH	SU	•	6.6		7.1		7.4		6.9		7.3	
PHOSPHATE	MG/L	<	0.1	<	0.1		-	<	0.1	<	0.1	
P0-210	PCI/L	è	1.	ì	1.			ć	1.	<	1.	
		`	12.	``	15.1		12.8	•	11.	-	12.8	
POTASSIUM	MG/L	,	1.	,	1.	<	1.	1	1.		4.	
RA-226	PCI/L	Ş				``	-	ì	1.	ć	1.	
RA-228	PCT/L	< (1.		1.	,	0.005	ì	0.005	ì	0.005	
SELENIUM	MG/L	C	0.005	``	0.005	``		`	10.	•	8.8	
SILICA	MG/L		8.7		8.5		17.8	,	0.01	<	0.01	
SIL VER	MG/L	<	0.01	<	0.01			``	1260.	`	1150.	
SODIUM	MG/L		1 190.		10/0.		1140.				6.93	
STRONTLUM	MG/L		7.3		7.19		7.32		7.4		3680.	
SULFATE	MG/L		3800.		3/70.		3820.		4000.	,	0.1	
SULFIDE	MG/l		-	<	0.1					(
TEMPERATURE			12.		16.		15.5	_	14.	,	17.	
TH-230	PCI/I	<	1.	<	1.		-	<	1.	Ş	1.	
FEN	MG/L		0.005	<	0.005	<	0.005	<	0.005	(0.005	
TOTAL SOLIDS	MG/L		8134.		8300		8340.		8324.		8444.	

Table F.3.10

GROUND WATER DUALITY DATA BY LOCATION SITE: GRAND JUNCTION 03/22/05 FD 09/10/05 (Continued)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: CROSS GRADIENT

.

		737-01 03/22/85	737-01 06/0//85	737-01 09/06/85	739-01 03/22/85	739-01 06/07/85						
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE+/-UNCERIAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTA) NTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY						
TOX	MG/L	0.6	0.11		0.6	0.13						
U-2:34	PCI/L	36.	40.	39.	34.	36.						
U-238	PCI/I	24.	26.	26.	24.	24.						
VANADIUM	MG/L	< 0.01	0.02	< 0.01	< 0.01	0.03						
ZJNC	MG/L	0.04	< 0.005	0.006	0.06	(0.005						

Table F.3.10

GROUND WATER WUALITY DATA BY LOCATION SITE: GRAND JUNCTION 03/22/85 10 09/10/85 (Continued)

FORMATION OF COMPLETION: ALLUVIUM Hydraulic flow relationship: cross gradient

			LUCATION 10 - SAMPLE 10 AND LOG DA 739-04 09/05/85 742-04 03/22/85 742-04 06/07/85 745							742-01 09/10/85		
	PAKAMETER	UNIT OF MEASURE		PARAMETER LUE+/-UNCERIAINTY		PARAMETER UE+/-UNCERTAINTY		PARAMETER UF+/~UNCERTAINTY	VAI	PARAMETER _UF+/-UNCERTAINTY	PARAMETER	
	ALKAL JN JTY	MG/L CACO3		471.		535.		507.		471.		
	ALUMINUM	MG/L		0.2	<	0.1	<	0.1	<	0.1		
	AMMONDUM	MG/L		0.31	•	0.51	•	0.54		0.47		
	ANT LMONY	MG/L	<	0.003	<	0.003		0.003	<	0.003		
	AKSENJC	MG/L	è	0.01	ì	0.01	<	0.01	<	0.01		
	BALANCE	X	•	-2.16	•	1.01		5.59		0.32		
	BAKTUM	ÃG/L	<	0.05	<	0.1	<	0.1	<	0.05		
	BURON	MG/L	•	0.7	-	0.7		0.19		0.72		
	CADMIUM	MG/L	<	0.001	<	0.002	<	0.001	<	0.001		
	CALC IUM	MG/L		506.		570.		6554		499.		
	CHLORIDE	MG/L		1250.		590.		6/3.		705.		
	CHRUMIUM	MG/L		0.02		0.03	<	0.01		0.01		
	CUBAL T	MG/L	<	0.05	<	0.01	<	0.05	<	0.05		
Τ		UMHO/CM		9360.		6900.		6100.		7605.		
9	COPPER	MG/L		0.04		0.01	<	0.07		0.04		
ū	CYANIDE	MG/L		-	<	0.01	<	0.01		-		
	FLUOR) DE	MG/L		1.1		0.7		0.8		0.9		
	GROSS ALPHA	PCT/L		-	<	60.		-		-		
	GROSS BETA	PCI/L		-		80.		-		· -		
	HYD. SULFIDE	MG/L	<	0.1	<	0.2		-		0.36		
	IRON	MGZL.		0.47		5.7		0.56		0.68		
	LEAD	MG/L		-	<	0.01	<	0.01				
	MAGNESIUM	MG/L		535.		460.		550.		448.		
	MANGANESE	MG/L		1.58		4.6		2.77		2.45		
	MERCURY	MG/L		0.0007	<	0.0002	<	0.0002	<	0.0002		
	MOLYBDENUM	MG/L		0.11		0.04		0.01		0.05		
	ND CKEI	MG/L	<	0.04	< c	0.04	<	0.04		0.06		
	NUTRATE	MG/L	<	1_	<	1.		2.	<	1.		
	ORG. CARBON			19.7		567.		13.4		508.		
	PB-2 1 0	PCT/L		_	<	1.5	<	1.5				
	PH	SU		7.3		6.7		7.		6.9		
	PHOSPHATE	MG/L		-	< c	0.1	Ś	0.1		-		
	P0-210	PCI/L		-	<	1.	(1. 11.4		9.48		
	POTASSIUM	MG/L		10.6	,	9.6	,	1.	<	1.		
	RA-226	PCI/I	<	1.	((1.	ì	1.	•	-		
	RA-228	PCI/L	<	1.	č	1. 0.005	ì	0.005	<	0.005		
	SELENDUM	MG/L	C	0.005	``	11.1	``	9.7	•	18.8		
	SILICA	MG/L		18.	<	0.01	<	0.01		-		
	SILVER	MG/L		4200	``	8/0.	``	800.		Y00.		
	SODIUM	MG/L		1200. 7.24		6.5		5.82		6.44		
	STRONTTUM	MG/L		3960.		360 0.		3460.		3420.		
	SULFATE	MG/L MG/L					<	0.1				
	SULFIDE TEMPERAFURE			47.		12.	•	15.		47.		
	1H-230	PCI/I		1/.	<	1.	(1.		_		
	LEN	MG/L	<	0.005	•	0.005	i	0.005	<	0.005		
	TOTAL SOLDDS		•	8530.		6828.	•	7 126.		7070.		
	TOTAL OULIDO			0.000								

Table F.3.10 BROUND WATER DUALTLY DATA BY LOCATION SIH: GRAND JUNCTION 03722785 10 09740785 (Concluded)

FORMATION OF COMPLETION: ALLUV()IM HYDRAULIC FLOW RELATIONSH)P: CROSS GRAD)ENT

		739-01 09/05/85	742-01 03/22/85	0N 10 - SAMPLE 10 AND 742-01 06/0//85	LOG DATE
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE+/-UNUERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+Z-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY
TOX U-234	MG/L PCT/L	- - 36.	0.5	0.49 31.	45.
U-238	PCJA	27.	31.	31.	33.
VANADIUM Zinc	MG/L MG/l	<pre> 0.01 0.005</pre>	< 0.01 0.0स	< 0.01 < 0.005	0.02 0.009

MAPPER INPUT FILE: GRJ04*UDPGWQ400375
FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: DOWN GRADIENT

		585-01 02/03/83	585-01 06/09/83		585-01 03/25/85	585-01 06/07/85		
PARAMETER	UNIT OF MEASURE	PARAMETER	PARAMETER	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER	PARAMETER VALUE+/~UNCERTAINT		
ALKAL IN IT Y	MG/L CACO3	510.	540.	520.	592.	585.		
ALUMINUM	MG/L	-	-	0.012	< 0 .1	٥.١		
AMMONJA	MG/L	-	471.9	-		-		
AMMONIUM	MG/L			335.	383.	369.		
ANTIMONY	MG/L	-		< 0.005	< 0.003	< 0.003		
ARSENIC	MG/L	0.008	< 0.001	0.018	0.015	< 0.01		
BALANCE	X	1.31	- 13.71	1.87	3.49	3.63		
BARIUM	MG/L	< 0.02	0.03	0.051	< 0.1	< 0.1		
BORON	MG/L			-	0.62	0.66		
CADMIUM	MG/L	-		(0.0005	< 0.002	< 0.001		
CALCIUM	MG/L	556.	584.	540.	540.	625.		
CHLORIDE	MG/L	790.	800.	840.	850.	868.		
CHROMJUM	MG/L	0.001	0.007	0.003	0.03	< 0.01		
	MG/L	0.004	0.032	0.005	< 0.01	(0.05		
COBALT		5900.	7200.	-	-			
COND, IN-SITU		5700.		-	5300.	8296.		
CONDUCTANCE	UMHO/CM		< 0.0005	0.004	0.04	< 0.02		
COPPER	MG/L	0.0082	(0.0005	0.007	< 0.01	< 0.01		
CYANIDE	MG/L		-	_	3.1	3.2		
FIUORIDE	MG/L	-	-	3.2	380.	5.2		
GROSS ALPHA	PCI/L		-	-				
GROSS BETA	PCI/L		-	-	200.	-		
HYD. SULFIDE		-	-		< 0.2	44.0		
J'RON	MG/L	4.03	2.64	2.71	13.	11.2		
LEAD	MG/L	-	-	< 0.004	< 0.01	< 0.01		
MAGNESIUM	MG/L	620.	280.	310.	310.	354.		
MANGANESE	MG/L	3.42	3.38	4.8	4.8	4.05		
MFRCURY	MG/L.			(0.0002	< 0.0002	(0.0002		
MOLYBOENUM	MG/L	0.44	0.29	0.21	0.27	0.18		
NJCKEI	MG/L			-	0.15	0.05		
NITRATE	MG/L	0.1		< 0.01	< 1.	< 1.		
NTTROGEN, KJL	MG/L	340.			-			
ORG. CARBON	MG/L	64.7	103.	99.1	9.8			
PB-210	PC1/L	-			< 1.5	(1.5		
РН	SU	7.6	7.3	1.2	6.9	7.1		
PHOSPHATE	MG/L	_	-	-	< 0 .1	(0.1		
PHOSPHORUS	MG/L	_	_	(0.04	-	-		
P0-210	PCI/L	-		-	< 1 <u>-</u>	< 1.		
POTASSIUM	MGZL	99.5	97.	100.	95.	98.4		
RA-226				18.	< 1.	(1.		
RA-228	PCI/L	-			4.5	< 1.		
SELENJUM	MGZL	0.004	(0.002	< 0.002	(0.005	< 0.005		
	MGZE. MGZE	-		-	-			
SILCON	M671		-	21.	11.6	10.6		
SILICA	PIGZI.			0.004	(0.01	(0.01		
SILVER		4020	960.	940.	970.	916.		
SODIUM	MGZI	1020.	700.	770.	4.1	5.22		
SERONTEUM	MG/L	4020	-	2000	3600.	3780.		
SULFAIL	MGZL	4320.	4500.	3800.	JUVV.			

F-95

Table F.3.11 GROUND WATER QUALITY DATA BY LUCATION SITE: GRAND JUNCTION 02/04/83 TO 09/40/85 (Continued)

		585-01 02/03/83	LOCATION DD - SAMPLE TD AND LOG DATE								
PARAMETER	UNIT OF MEASURF	PARAMETER VALUF+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINIY	PARAMETER VALUE+/~UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY					
SULFIDE	MG/L		une der der der der der der der der der de	ente appe que des des las ente ente ente ente anne anne anne anne		< 0.1					
TEMP, IN-SITU	C-DEGREE	10.	18.5	-	-						
	C - DEGREE				12.5	15.					
TH-230	PCI/L			5.4	< <u>1</u> .	< <u>1</u> .					
NET	MGZL.				0.005	(0.005					
TOTAL SOLEDS	MG/L	6440.	6520.	6640.	7 198 .	7310.					
TOTAL U	PPM	0.24	0.225	0.193	_						
TOX	M6/L	-	-		0.9						
U-234	PCI/I					84.					
U~238	PCT/L	-	-	-	-	84.					
URANIUM	MG/1.				0.31						
VANADIUM	MG/L	0.027	0.141	0.097	0.11	0.09					
ZINC	MG/L	0.03	0.03	0.01	0.05	< 0.005					

Table F.3.11 GROUND WATER QUALITY DATA BY LOCATION SITE: GRAND JUNCTION 02/04/83 FD 09/40/85 (Continued)

		585-0	1 09/10/85	586-01 02/02/83	586-01 06/09/83	586-01 09/	20/83	5	86-01 03/25/85
PARAMETER	UNIT OF MEASURE		ARAMETER ~UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+Z-UNCERTAINTY	PARAMET VALUE +/-UNCER		VAL	PARAMETER UE+/-UNCERTAINT
ALKALINITY	MG/L CACO3	650).	56?.	570.	610.			618.
ALUMINUM	MG/L	< 0	. 1		-	0.011		<	0.1
AMMONJA	MG/L.		-		484.				
AMMONICUM	MG/L	411	•	-	-	310.			393.
ANTIMONY	MG/L	< 0	.003			(0.005			0.012
ARSENIC	MG/L	0	.02	0.004	0.027	0.11			0.018
BALANCE	z	0	.03	-11.27	-3.27	0.7			4.55
BARIUM	MG/L	< 0	.05	0.074	0.303	0.099		<	0.1
BORON	MG/L	0	. 67	-					0.56
CADMIUM	MG/L	< 0	.001	~	-	0.0005		<	0.002
CALCIUM	MG/L	484	•	487.	589.	570.			550.
CHILOR (DE	MG/L	854	•	805.	860.	820.			740.
CHROMJUM	MGZL.	< C	.01	0.002	0.011	0.003			0.02
COBALT	MG/L	< 0	.05	0.001	0.017	0.003		<	0.01
COND, IN-SITU			-	6200.	59 00.	-			-
CONDUCTANCE	UMHO/CM	10080)_		-	-			8900.
COPPER	MG/L		.02	0.0048	< 0.0005	0.004			0.07
CYANIDE	MG/L	-	-	-		-		<	0.01
FLUORIDE	MG/L	3	.7	\	-	3.4			3.1
ROSS ALPHA	PCI/L	-	_		-	·			490.
GROSS BETA	PCI/L		_			-			180.
HYD. SULFIDE		()	.1					<	0.2
IRON	MG/L	. 1		13.5	6.09	4.77			16.
EAD	MG/L	•	· •			(0.001		<	0.01
MAGNESTUM	MGZL	297)	323.	270.	290.			310.
MANGANESE	MG/L		.31	4.07	334.	4.6			4.8
MFRCURY	MGZL		.0002		_	(0.0002		(0.0002
MOLYBDENUM	MG/L	•	.29	0.47	0.36	0.36			0.23
NJCKEL	MG/L		. 14	-	-	-			0.12
NITRATE	MG/L			0.19	-	< 0.1		(1.
NITROGEN,KJL	MGZL	•	-	389.	-				
DRG. CARBON	MGZL		_	118.	¥6.9	78.6			10.1
PR-210	PCI/L		_			· · · · · · · · · · · · · · · · · · ·		(1.5
PH	SU		.9	7.3	7.3	7.1			Ż.
	MG/L	Ľ	_	-	-			<	0.1
PHOSPHATE PHOSPHORUS			-	_	-	0.14			
	MGZL. PCIZL		_		100 F			<	1.
PO-210		96		110.	94.	120.			94.
POTASSIUM	MG7L DOTA			-		18.			1.1
KA-226	PC1/I	`	1.		<i></i>				2.5
RA-228	PCT/L	, ,			(0.002	(0.002		(0.005
SELENIUM	MGZL	((0.005	< 0.005	· · · · · · · · · · · · · · · · · · ·	· ····································		`	_
SILCON	MG/L	6 4	-			23.			12.6
SILI CA	MGZL MCZI	25	.9			0.002		(0.01
SILVER	MGZL.		~	-		1000.		•	990.
SODIUM	MGZE	980		1020.	940.				4.7
STRONT CUM	MGZL		4.96	-	-	3800.			3700.
SULFATE	MG/1	3820	/.	4320.	4400.	0000			

Table F.3.11 GROUND WATER QUALITY DATA BY LOCATION STIT: GRAND JUNCTION 02/04/03 10 09/10/05 (Continued)

FORMATION OF COMPLETION: ALLUV(UM HYDRAULIC FLOW RFLATIONSHIP: DOWN GRAD)ENT

		585-01 09/10/85	586-01 03/25/85			
		303-01 077 10785	586-01 02/02/83	586-01 06/09/83	586-01 09/20/83	388-01 01/25/83
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/UNCERTAINTY	PARAMETER VALUF+/-UNCERTAINTY	PARAMETER VALUF+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY
SULFIDE	MG/L	÷			+	· •
TEMP , IN-STTU	C-DEGREE	-	10.	1/.	-	-
TEMPERATURE	C - DEGREE	19.	-	••••	-	12.5
TH-230	PC1/L	+	-	-	4.2	< 1.
TIN	MG/L	(0.005		. .		(0.005
	MG/L	7 120.	6/60.	6620.	6530.	7276.
TOTAL U	PPM		0.386	0.147	0.229	-
TOX	MG/L	· _	-	-	-	0.5
U-234	PCI/L	72.			***	-
IJ-·238	PCI/L	73.	-	-	-	-
URANTUM	MG/I		· -		-	0.445
VANADIUM	MG/L	0.1	0.14	0.4	0.25	0.13
ZINC	MG/L.	0.015	0.3	0.05	0.01	0.05

٠

SITE: GRAND JUNCTION 02/01/83 TO 09/10/85 (Continued)

			6-01 06/0//85	ę	86-01 09/10/85	ę) – SAMPLE ID AND 589–01 02/01/83	589	7-01 06/08/83	ų	589-01 09/22/83
PARAMETER	UNIT OF MEASURE		PARAMETER E+/-UNCERTAINTY		PARAMETER UE+Z-UNCERTAINTY		PARAMETER UE+/-UNCERTAINTY		PARAMETER E+/-UNCERTAINTY		PARAMETER _UE+/-UNCERTAINT
ALKALINJT Y	MG/L CACO3		609.		650.		479.		570.		510.
ALUMINUM	MG/L	<	0.1	<	0.1						0.19
AMMONIA	MG/L		~						118,58		
AMMONIUM	MG/L	:	384.		438.						10.4
ANTIMONY	MG/L.		0.003	<	£00.0		••••		-	(0.005
ARSENIC	MG/L		0.04		0.02	<	0.001	<	0.001		0.022
BALANCE	7		4.66		0.5		-1.89		-3.29		8.32
BARIUM	MG/L	<	0.1	<	0.05		0.08		0.06		0.13
BORON	MG/L		0.67		0.71						
CADMIUM	MG/L	<	0.001	<	0.001		#				0.003
CALCJUM	MG/L.		630.		471.		574.		581.		480.
CHLORIDE	MG/L	1	B60.		878.		/49.	1	340.		860.
CHROMIUM	MG/L	<	0.01	<	0.01		0.001		0.005		0.004
COBALT	MG/L	<	0.05	<	0.05	<	0.001		0.071	<	0.001
COND, IN-SITU							4600.	6	100.		
	UMH0/CM	7	320.		10080.		_				
COPPER	MG/L	<	0.02		0.04		0.116		0.0077		0.003
CYANIDE	MG/L	ì	0.01		-		_		_		_
FLUORIDE	MG/L	•	3.3		3.7						0.54
GROSS ALPHA	PCI/L		_		-				_		
GROSS BETA	PCI/L						****				
HYD. SULF (DE				<	0.1				-		-
IRON	MG/L		12.8	``	15.4		2.72		0.08		3.42
	MG/L	<	0.01						-		0.01
		•			282.		303.		260.		360.
MAGNESIUM	MG/L		364.				1.2	4	1.11		1.61
MANGANESE	MG/L	,	4.02	,	4.33		1.2		1.11 	,	0.0002
MFRCURY	MG/L	<	0.0002	<	0.0002					``	
MOLYBDENUM	MG/L		0.2		0.22		0.2		0.093		0.012
NICKEL	MGZI		0.14		0.17					,	
N TIRATE	MG/L	<	1.	<	1.		0.98		-	<	0.1
NT TROGEN, KJL			-		-		58.		-		
ORG. CARBON	MG/L		-		-		116.		92.		118.
PB-210	PCI/L		2.7								
PH	SU		7.		6.9		7.		7.4		7.3
PHOSPHATE	MG/L	<	0.1								
PHOSPHORUS	1167L				-		-			<	0.04
P0-210	PCI/L	<	1.								
POTASSTUM	MG/L		101.		100.		52.5		53.		53.
RA~226	PCI/I		2.		2.1						
RA-228	PCI/L	<	1.		-		-				-
SELENJUM	MGZL	<	0.005	<	0.005		0.012	<	0.002	<	0.002
SELCON	MG/L		-				-				-
SILICA	MGZL		11.8		27.8						17.
SILVER	MGZ1.	<	0.01		_		-				0.004
SODIUM	MGZI		914.		990.		1090.	10	000.		1300.
STRONTLUM	MOZL		4.63		4.64		— —	-			
SULFATE	MGZL	3	740.		3730.		3630.	33	.00.		2900.

Table F.3.11 BROUND WATER BUALITY DATA BY LOCATION SITE: GRAND JUNCTION 02/04/83 10 09/40/85 (Continued)

		LOCATION ID - SAMPLE ID AND LOG DATE										
		586-01 06/07/85	586-01 09/10/85	589-01 02/01/83	589-01 06/08/83	589-01 09/22/83						
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+7UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY						
SULFIDE	MG/L	0.2	_									
TEMP, IN-STTU	C-DEGREE			13.	18.5	-						
TEMPERATURE	C - DEGREE	15.	19.	-								
TH-230	PC1/L	< 1.				-						
NIT	MG/L	< 0.005	< 0.005			****						
TOTAL SOLIDS	MG/L	7186.	71/0.	5 4 00.	6030.	6150.						
TOTAL U	PPM		****	0.277	0.147	0.302						
тох	MG/L		-	uan.		-						
U~234	PCI/L	118.	67.			****						
0-238	PCI/L	116.	68.	-	-	-						
URAN) UM	MG/L		_		****							
VANADIUM	MG/L	0.27	0.13	0.027	0.058	0.11						
23 NC	MG/L	< 0.005	0.01/	0.05	0.08	0.39						

Table F.3.11 GROUND WATER DUALLEY DATA BY LUCATION STIF: GRAND JUNC(JUN 02/04/83 TO 09/40/85 (Continued)

		LOCATION ID - SAMPLE ID AND LOG DATE 589-01 03/25/85 589-01 06/07/85 589-01 09/09/85 590-01 02/02/83									90-01 06/0//83
PARAMETER	UNIT OF MEASURF	VAI	PARAMETER VALUE+/-UNCERTAINTY		PARAMETER VALUE+ZUNCERTAINTY		PARAMETER	PARAMETER VALUE+/UNCERTAINTY		PARAMETER	
ALKAL JNJ TY	MG/L CACO3		522.		633.	<u> </u>	578.	449.		390.	
ALUMENUM	MG/L	<	0.1	<	0.1	<	0.1		-		
AMMON) A	MG/L		_								12.1
AMMONTUM	MG/L		124.		148.		149.				
ANTIMONY	MG/L	<	0.00(1	<	0.003	<	0.003				-
ARSENIC	MG/L	è	0.01	i	0.01	ć	0.01	<	0.001	<	0.001
BALANCE	X	•	1.72		2.32		-1.29		1.51		-1.96
BARIUM	MG∕L	<	0.1	<	0.1	<	0.05		0.019		0.03
BURON	MG/L	•	0.6	•	0.6		0.54		-		-
CADMIUM	MG/L	<	0.002	<	0.001	<	0.001		-		-
	MG/L	`	590.	`	665.	•	611.		500.		493.
	MG/L		930.		1100.		1260.		736.		990.
CHLORIDE			0.02	<	0.01	1	0.01		0.002		0.003
CHROMD UM	MG/L	<	0.01	ì	0.05	ì	0.05	<	0.001		0.052
COBALT	MG/L	``	-	`		``		•	4810.		3480.
COND, JN-SJTU					/800.		9542.				
CONDUCTANCE	UMHO/CM		/200.	,			0.06		0.0122	<	0.0005
COPPER	MG/L	,	0.05		0.02 0.01		-		-	-	
CYANIDE	MG/L	<	0.01	,			0.38				••••
FLUORIDE	MG/L.		0.3		0.4		0.38		-		-
GROSS ALPHA	PCI/L		260.								
GROSS BETA	PCI/L		130.			(0.1				
HYD. SULFIDE		<	0.2			•			0.0183		0.056
IKON	MG/L		1.1		3.79		3.05				~
LEAD	MG/L	<	0.01	<	0.01				407.		254.
MAGNESIUM	MG/L.		310.		360.		326.				0.38
MANGANESE	MG/L		2.		2.18		5.08		0.36		
MERCURY	MG/L	<	0.0002	<	0.0002		0.0002				0.101
MOLYBDENUM	MG/L		0.06		0.01		0.04		0.13		-
NICKEL	MGZL	<	0.04		0.11		0.13				
NUTRATE	MG/L		39.	<	1.	<	1.		3.6		
NJ TROGEN / KUL	MG/L		-		alle v		-		8.5		79.7
ORG. CARBON	MG/L		16.		43.7		. 19.		81.9		//./
FH-210	PCI/L	<	1.5	<	1.5		aarv				7.1
PH	SU		6.9		/.		/_4		7.1		/.1
PHOSPHATE	MG/L	<	0.1		0.1				· · · ·		
PHOSPHORUS	MG/L		-		-						1
P0-210	PC1/L	<	1.	<	1.						(7)
POTASSIUM	MG/L		52.		66.4		63./		22.2		17.2
RA-226	PCI/L	<	1.	<	1.	(1.				
RA-228	PCI/L	<	1.	<	1.		-				
SELENIUM	MGZŁ.	(0.005	<	0.005	<	0.005	(0.002	(0.005
SILCON	MG/L		_		-						-
SILICA	MGZL		7.1		7.2		14.9				
STUVER	MGZL.	(0.01	<	0.01				-		
SODIUM	MGZU		1120.		1060.		1180.		1030.		700.
STRONTIUM	MGZL.		6.1		5.94		6.68				-
SULFAIT	MG/L		3400.		3350.		3560.		3410.		2400.

Table F.3.11 GROUND WATER QUALITY DATA BY LOCATION SITE: GRAND JUNCTION 02/04/83 TO 09/40/85 (Continued)

		LOCATION ID - SAMPLE ID AND LOG DATE												
		589-01	03/25/85	589	01 06/07/85	5	89-01 09/09/85	59	0-01 02/02/83	5900	06/07/83			
PARAMETER	UNIT OF MEASURE		RAMETER UNCERTAINTY	VAI LIE	PARAMETER +/-UNCERTAINTY	VAI	PARAMETER UF+/-UNCERTAINTY	VALU	PARAMETER E+/UNCERTAINTY	-	ARAMETER UNCERTAINTY			
SULFIDE	MG/L	-		<	0.1				-					
TEMP, IN-SITU	CDEGREE	-			-		-		10.	45	5.5			
TEMPERATURE	C – DEGREE	13.			13.		17.5				-			
TH-230	PCI/L	< 1.		<	1.		-		-		-			
TIN	MGZL.	0.0	01	<	0.005	<	0.005							
TOTAL SOLIDS	MG/L	7302.		74	184.		7550.	6	560.	4670).			
TOTAL U	PPM	-			-		-		0.376	C	0.135			
TOX	MG/L	0.6	6		0.22		-		-		-			
U-234	PCI/L				99.		86.		-		-			
U-238	PCT/L	-			89.		79.		-		-			
URANTUM	MG/L	0.7	27				-		-		-			
VANADIUM	MG/L	(0.0	01		0.01	<	9.01	<	0.01	C	.055			
73 NC	MG/L	0.4	1		0.031		0.024		0.02	(0.04			

			90-01 09/22/83		590-01 03/25/85		90-01 06/07/85		90-01 09/09/85		32-01 03/26/85
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE+/-UNCERTAINTY		PARAMETER VALUE+/UNGERTAINTY		VAI	PARAMETER UF+/-UNCERTAINTY	VAI	PARAMETER UE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	
ALKALINITY	MG/L CACO3		460.	_	522.		498.		498.		466.
ALUMENUM	MG/L		0.018	<	0.1	<	0.1	<	0.1	<	0.1
AMMON]A	MG/L										0.29
AMMONEUM	MG/L		18.1		17.4		8.36	,	18.5		
ANTIMONY	MG/L	<	0.005		0.004	< (E00.0	Ś	0.003	<	0.003 0.01
ARSENIC	MG/L	<	0.001	<	0.01	<	0.01	<	0.01	`	
BALANCE	%		9.06			,	1.37	,	2.54	,	2.13
BARTUM	MG/L		0.07	<	0.1	<	0.1	(0.05	(0.1
BORON	MGZL				0.56		0.41	,	0.59	,	0.51
CADMIUM	MG/L		0.001	<	0.005	<	0.001	<	0.001	<	0.002
CALCIUM	MG/L		480.		580.		316.		495.		540.
CHLORIDE	MGZL		670.		830.		459.		759.		930.
CHROMIUM	MG/L		0.002		0.02	<	0.01	<	0.01		0.02
COBALT	MGZL	<	0.001	<	0.01	<	0.05	<	0.05	<	0.01
COND, IN-SIT	J UMHO/CM		-		-						
CONDUCTANCE	UMHD/CM		-		6700.		2700.		6960 .		7600.
COPPER	MG/L		0.005		0.01	<	0.02		0.05		0.01
CYANIDE	MG/L		_	<	0.01	<	0.01		-	<	0.01
FLUORIDE	MG/L.		0.53		0.3		0.5		0.65		0.9
GROSS ALPHA	PCI/L				240.						105.
GROSS BETA	PCI/L		-		110.		-				60.
HYD. SULFID			-	<	0.2			<	0.1	<	0.2
IKON	MGZL		0.062		1.1	<	0.03		0.15		0.2
LEAD	MG/L		0.02	<	0.01	<	0.01			<	0.01
MAGNESTUM	MG/L		420.		340.		177.		299.		500.
MANGANESE	MG/L		1.23		1.5		0.74		1.57		1.
MERCURY	MGZL	<	0.0002	<	0.0002	<	0.0002		0.0002	<	0.0002
MOLYBDENUM	MG/L	•	0.015	•	0.02		0.01		0.04		0.04
N) CKEI	MG/L			<	0.04	<	0.04		0.07	<	0.04
NETRATE	MG/L		0.11	•	12.	ć	1.		7.4	<	1.
NITROGEN,KJ			_			-	_				
ORG. CARBON	MG/L		98.1		3.7		9.9		10.7		
PR-210			-	<	1.5	<	1.5			<	1.5
PH	SU		7.1	•	6.7	•	/.		7.2		6.95
	MG/L		/.1	1	0.1					<	0.1
PHOSPHATE	MG/L		0.1	``							
PHOSPHORUS			···	,	1.	1	1.			<	1.
P0-210	PCI/L			``	20 .	`	15.7		23.1	•	9.5
POTASSIUM	MGZL	,	19.1	,	د ن. 1.	1	1.	<	1.	<	1.
RA-226	PCI/L	<	0.6			ì	1.	``	••	i	1.
RA-228	PCI/L	,			1. 0.005	>	0.005	1	0.005	,	0.005
SELENDUM	MG/L	<	0.002	(0.005	`	0.003	`	0.000	•	
SILCON	MGZI.								18.8		67
SHLICA	MGZI		20.	,	8.5	,	7.9		10.0	(0.01
STLVER	MGZL	(500.0	<	0.01	<	0.01		840.	`	980.
SUDIUM	M671		830.		940.		498.		5.72		6.8
STRONTLUM	MGZL				5.9		2.9/				3400.
SULFAIL	MGZL		2 500.		3200.		1370.		2520.		NJ 11/17 #

Table F.3.11 GROUND WATER QUALITY DATA BY LUCATION SITE: GRAND JUNCTION 02/01/83 TO 09/10/85 (Continued)

		LOCATION ID - SAMPLE ID AND LOG DATE											
		590-01 09/22/83	ć	590-01 03/25/85	5	90-01 06/0//85		590-01 09/09/85	7	132-01 03/26/85			
PARAMETER	UNET OF MEASURE	PARAMETER VALUE+/UNCERTAINTY	VAI	PARAMETER .UF+Z-UNCERIAINTY	VAI	PARAMETER UE+Z-UNCERTAINTY	VA	PARAMETER LUF+/UNCFRTAINTY	VAL	PARAMETER .UE+/-UNCERTAINTY			
SULFIDE	MG/L				<	0.1							
TEMP, IN-SITU	C-DEGREE							-		-			
TEMPERATURE	C - DEGREE			13.		13.		17.5		12.			
TH-230	PCT/L		<	1_	<	1.		-	<	1.			
T) N	MGZL.	-	<	0.005	<	0.005	<	0.005	<	0.005			
TOTAL SOLIDS	MG/L	5600.		6566.		3292.		6020.		7504.			
T01AL U	PPM	0.162											
TOX	MG/L	-		0.5		0.58			<	0.1			
U-234	PCI/I					31.		56.		53.			
0-238	PCI/L					28.		51.		36.			
URANTUM	MG/L.	-		0.205									
VANADIUM	MG/L	0.004	<	0.1		0.02		0.02	<	0.01			
ZINC	MG/L	0.07		0.05	<	0.005		0.022	<	0.05			

Table F.3.11 BROUND WATER BUALCTY DATA BY LUCATION SITE: GRAND JUNCTION 02/04/83 DD 09/40/85 (Continued)

		7	32-01 06/07/85		32-01 09/06/85		- SAMPLE 10 AND 33-01 03/25/85		/33-01 06/07/85		/33-01 09/06/85
PARAME TER	UNIT OF MEASURE	VAL	PARAMETER UE+/-UNCERTA)NTY	VAI	PARAMETER UF+/-UNCERTAINTY	VAI	PARAMETER UE+Z-UNCERTAINTY	VAI	PARAMETER UE+/-UNCERTAINTY	VAL	PARAMETER .UE+7-UNCERTAINT
ALKALINITY	MG/L CACO3		509.		460.		690.		568.		616.
ALUMINUM	MG/L	<	0.1	<	0.1	<	0.1	<	0.1		0.1
AMMONJA	MG/L		-								
AMMONTUM	MG/L		0.51		0.2		0.86		0.54	,	0.58
ANTIMUNY	MG/L	<	0.003	<	E00.0	<	0.003	Ç	0.003	<u> </u>	0.003
ARSENIC	MG/L	<	0.01	<	0.01	<	0.01	(0.01	(0.01
BALANCE	z		2.73		41		1.34		3.61	,	-1.69
BARIUM	MG/L	<	0.1	<	0.05	<	0.1	(0.1	<	0.05
BORON	MG/L		0.7		0.68		0 El 1 مر O		0.84		0.77
CADMEUN	MG/L	(0.001	<	0.001	(0.002	<	0.001	<	0.001
CALC TUM	MG/L		665.		392.		510.		610.		464.
CHLORIDE	MG/L		1130.		H/2.		1100.		1250.		1270.
CHROMJUM	MG/L	<	0.01	<	0.01		0.03	<	0.01	<	0.01
COBALT	MG/L	(0.05	<	0.05	<	0.01	<	0.05	<	0.05
COND, IN-SITU							-		-		-
CONDUCTANCE	UMHOZCH		4000.		/ 140.		-		61300.		9360.
COPPER	MGZI	<	0.02		0.04		0.01	<	0.05	<	0.02
YANTDE	MG/L	(0.01			<	0.01	<	0.01		
TUORIDE	MG/L		0.9		0.94		0.5		0.7		0.76
ROSS ALPHA	PCI/L				_		185.				-
GROSS BETA	PCI/L	•	-		-		60.		-		-
IYD. SULFIDE			-	<	0.1	<	0.2			<	0.1
RON	MG/L		0.08	<	0.03		4.2		2.04		1.31
EAD	MG/L	<	0.01			(0.01	(0.01		-
AGNESTUM	MGZL	•	585.		361.		480.		555.		475.
MANGANESE	MGZL		0.85		0.66		2.2		2.17		1.89
HERCURY	MGZL	<	0.0002	<	0.0002	<	0.0002	<	0.0002	(0.0002
NOLYBDENUM	MG/L	`	0.03	•	0.07		0.03	<	0.01		0.03
NICKEI	MG/L	<	0.04		0.04	<	0.04		0.06		0.04
ALTRATE	116/L	ì	1.	<	1.	<	1.	<	1.	<	1.
NTROGEN, KJL		`		•							-
	MG/L		12.		10.		522.		20.7		31.8
DRG. CARBON	PC1/L	(1.5		_	<	1.5	<	1.5		-
2H-210		`	7.		7.35	•	6.8		6.8		7.3
PHOCENIALC	SU	<	0.1			(0.1	<	0.1		
PHOSPHATE	MGZL	`	-		-	•	_		_		-
PHOSPHORUS	MGZL	,			-	(1.	<	1.		-
20-240	PCIZL	<	1. 12.2		9.65	•	12.	•	12.8		10.8
POTASSIUM	MGZE	,		1	1.	1	1.	<	1.	<	1.
RA-2276	PCIZ	$\langle \cdot \rangle$	1.	ì	1.	è	1.	è	1.	(1.
(A-228	PCIZL	<	1.	è	0.005	ì	0.005	ć	0.005	<	0.005
GELENDUM	MGZL		0.007	`	0.005	`	9.2	•			-
SELCON	MGZL.						7 # Z.		7.8		18.4
511 ICA	MGZL	,	6.8		14.8	<	0.01	<	0.01		-
STLVER	MG/L	<	0.01			`		`	1190.		1220.
50 01UM	MGZI		1060		990.		1230.		7.1		7.24
STRONTIUM	PIGZL.		6.87		5.28		7.9		7•1 3490,		3430.
SUFFAIL	州台 /1		3790.		2860		3400.		347U.		G 1.3V #

Table F.3.11 BRUNND WATER BUALTEY DATA BY LUCATION SITE: GRAND JUNCTION 02/04/H3 TO 09/40/85 (Continued)

		LUCAIION ID - SAMPLE ID AND LOG DATE											
		732-01	06/0//85	7.	32-01 09/06/85		733-01 03725785	Ĩ	33-01 06/0//85		733-01 09/06/85		
PARAMETER	UNIT OF MEASURE		RAMETER UNCERTAINTY	VAL L	PARAMETER IF+/-UNCERTAINTY	VA	PARAMETER LUF+7UNCERTAINTY	VAI	PARAMETER UE+/-UNCERTAINTY	VA	PARAMETER LUE+/-UNCERTAINTY		
SULFIDE	MG/1.	< 0.	1						0.1		_		
TEMP, IN-SITU	C-DEGREE	-			-				-		-		
TEMPERATURE	C - DEGREE	14.5	5		16.		15.		18.		17.		
TH-230	PCI/L	< 1.			-	<	1.	<	1.		-		
FIN	MG/L	(0.0	005	<	0.005	<	0.005	(0.005	(0.005		
TOTAL SOLIDS	MG/L	7864.		6	5:390.		7922.		H092.		/850.		
TOTAL U	PPM	-							-		-		
TOX	MG/L	0.	16						0.39				
U-234	PCI/I	58.			39.		39.		43.		44.		
U-238	PCI/L	38.			28.		25.		29.		29.		
URANIUM	MG/L				-						-		
VANADIUM	MG/L	(0.0	01	<	0.01	(0.01	<	0.01	(0.01		
ZINC	MG/L.	(0.0	005		0.013		0.05	<	0.005		0.005		

		***	/36-01 03/22/85		/36-01 06/07/85	0N 11.	- SAMPLE ID AND 36-01 - 09/10/85	1 OĞ - I	DATE		738-01 06/07/85
	UNIT OF MEASURE	VA	PARAMETER LUF+/-UNCERIAINIY		PARAMETER UE+/-UNCERTAINTY		PARAMETER		PARAMETER UE+/-UNCERTAINTY		PARAMETER LUE+/UNCERTAINT
ALKALINITY	MG/L CACO3		581.		579.		595.		603.		643.
ALUMENUM	MG/L	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1
AMMON) A	MG/L		-								-
AMMONIUM	MGZL		0.37		0.3		0.34		0.66		0.75
ANTIMONY	MG7L.	<	0.003	<	0.00(+	<	0.003		0.004	<	0.003
ARSENIC	MG/L	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01
BALANCE	%		2.49		3.94		05		4.2		2.6
BARTUM	MG/L	<	0.1	<	0.1	<	0.05	<	0.1	<	0.1
BORON	MG/L	•	0.73		0.77		0.9		0.76		0.92
CADMIUM	MG/L	1	0.002	<	0.001	<	0.001	<	0.002	<	0.001
CALCIUM	MG/L	`	570.		665.		496.		470.		422.
CHLORIDE	MG/L		890.		1060.		997.		670.		944.
	MG/L		0.03	(0.01	(0.01		0.03	<	0.01
CHRONDUM		,	0.01	ì	0.05	ì	0.05	<	0.01	ć	0.05
COBALT	MGZL	`	0.01	`	0:05	`	-	•	_	-	
COND,)N-SIT					/930.	,	0780.		/000.		5500.
CONDUCTANCE			9300.	,			0.03		0.04	(0.02
COPPER	MG/L		0.02	Ś	0.07		U . U .3	/	0.01	ì	0.01
CYANIDE	MG/L	<	0.01	<	0.01			`	0.4	•	0.6
FLUORIDE	MG/L.		0.5		0.8		0.86		170.		~
GROSS ALPHA			345.		-						
GROSS BETA	PCI/I		60.		-			,	125.		-
HYD. SULF (U	E MG/L	<	0.2		-	<	0.1	<	0.2		
TRON	MG/L		0.5		0.09		0.03	,	10.	,	9.97
LEAD	MG/L	<	0.01	<	0.01			<	0.01	(0.01
MAGNESIUM	MG/L		490.		575.		421.		330.		415.
MANGANESE	MG/L		2.7		3.		2.16		1.6		1.4
MERCURY	MG/L		0.0004	<	0.0007		0.0005		0.0009	< .	0.0002
MOLYBDENUM	MG/L		0.03	<	0.01		0.02		0.02	<	0.01
NICKEL	MG/L		0.1		0.04		0.09	<	0.04	<	0.04
NITRATE	MG/L		25.		:34.		19.	<	1.	<	1.
N) TROGEN, KJ			_		-		-				
ORG. CARBON			55.3		21.		15.1		11.3		10.8
PB-210	PCI/I	<	1.5	<	1.5		-	<	1.5	<	1.5
PH	SU	•	6.8		1.		6.8		7.		7.15
PHOSPHATE	MG/L	(0.1	<	0.1		-	<	0.1	<	0.1
PHOSPHORUS	MG/L	`	-	•			-		- 100		
	PCI/L	<	1.	(1.		-	<	1.	<	1.
P0-240		`	15.	`	15.6		14.7		18.		21.6
POTASSIUM	MGZL	,			1.	<	1.	<	1.	<	1.
RA-226	PCI/L	<	1.	>	1.	`	-	è	1.	<	1.
RA-228	PCIZE	Ś	1.)	0.005	1	0.005	ì	0.005		0.005
SELENIUM	MGZL	<	0.005	(0.008	`	0.003	`	-		
SILCON	MGZL		10.3						12.3		11.4
SHICA	MGZL		-		11.2		22.5	/	0.01	(0.01
STLVER	MG/L	<	0.01	<	0.01			`	1110.	``	1200.
SODIUM	MGZL		1370.		1200.		1350.		5.8		5.56
STRONTION	PIG/L		6.5		1.49		6.66				3050.
SHLEAN	MG/1		4100.		3890.		3760.		2900.		UV/JV =

Table F.3.11 GROUND WATER QUALITY DATA BY LOCATION SITE: GRAND JUNCTION 02/01/83 TO 09/10/85 (Continued)

		736-01 03/22/85	7:36-01 06707/85	738-01 06/07/85		
	UNIT OF MEASURE	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+7UNCERTAINTY	PARAMETER VALUE+/UNCERTAINTY	PARAMETER VALUF+/-UNCERTAINTY
SULFIDE	MG/L	and the fact and all fill the the set of the	< 0.1			0.1
TEMP, IN-SITU	C-DEGREE	-	-	-	-	-
TEMPERATURE	C - DEGREE	10.	15.	20.	13.	15.
TH-230	PCI/L	< 1.	< 1.		< 1.	< 1_
T) N	MG/L	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
TOTAL SOLIDS	MG/L	8728.	8792.	8220.	12134.	6870.
TOTAL U	PPM					
тох	MG/L	0.5	0.17	-	0.4	0.16
U234	PCI/I	66.	60.	71.	54.	52.
0-238	PCI/L	49.	<u>40</u> .	53.	41.	40.
URANTUM	MG/L	-	-		-	
VANAD LUM	MG/L	< 0.01	0.02	< 0.01	< 0.01	0.02
ZINC	MG/L	0.06	(0.005	0.012	0.2	< 0.005

Table F.3.11 GROUND WATER WHALLTY DATA BY LOCATION SITE: GRAND JUNCTION 02/01/83 TO 09/10/85(Continued)

		738-01 09/09/85 /40-01 03/22/85 /40-01 06/07/85 /40-01 09/09/85									
PARAMETER	UNIT OF MEASURE		PARAMETER LUF+/-UNCERTAINTY		PARAMETER	VAL	PARAMETER UE+Z-UNCERTAINTY	VAL	PARAMETER	PARAMETER	
AL KAL JNJ TY	MG/L CACO3		676.		508.		503.		511.	and the set of the set	
	MG/L	<	0.1	<	0.4	(0.1	(0.1		
	MG/L		_				-				
	MG/L		1-		49.		42.7		50.3		
	MG/L	<	0.003	` (0.003		0.003	<	0.003		
	MG/L	ć	0.01	ć	0.01	<	0.01	<	0.01		
	X		-1.24		0.85		5.31		0.26		
	MG/L	<	0.05	<	0.1	((0.05		
	MG/L	•	0.91		0.67		0.67		0.74		
	HG/L	(0.001	(0.002	<	0.004	<	0.001		
	MG/L	•	515.	•	540.	•	600.		498.		
	MG/L		1000.		650.		707.		/55.		
	MG/L	<	0.01		0.02	<	0.01	<	0.01		
	MG/L	ì	0.05	(0.01	ì	0.05	i	0.05		
COND, IN-SITU		`	-	`	-	``	-	•			
	UMH0/CM		8424.		/000.		6344.		/080.		
	MG/L	<	0.02		0.07	(0.02		0.02		
	MG/L	``	_	(0.01	ì	0.01		-		
FLUORIDE	MG/L		0.63	``	0.6	•	0.6		0.76		
			-		245.		0.0		-		
	PCI/L		-						_		
GROSS BETA	PCI/L	,		,	100.		_	<	0.1		
HYD. SULFIDE		<	0.1	<	0.2		0.08	``	0.06		
IRON	MG/L		10.3	,	0.4	,					
	MG/L		-	(0.01	(0.01				
	MG/L		382.		410.		470.		384.		
	MG/L		1.42		3./	,	2.96	,	3.27		
	MG/L		0.0002	(0.0002	(0.0002	(0.0002		
	MG/L		0.04		0.11		0.05		0.12		
	MGZI	< (0.04	<	0.04	<	0.04	,	0.07		
	MG/L	<	1.		2.	(1.	<	1.		
N ITROGEN, KJL			-								
	MG/L				11.4		11.4		14.4		
PH-210	PCI/l		-	<	1.5	<	4.5				
PH	SU		7.4		6.8		6.9		7.2		
PHOSPHATE	MG/L.			<	0.1	<	0.1		· · · · · ·		
PHOSPHORUS	MG/L		-				-		-		
P0-210	PCI/I		-	(1.	<	1.		-		
POTASSTUM	MG/L		21.8		21.		29.4		31.		
RA-226	PCI/L	<	1.	<	1.	(1.	<	1.		
RA-228	PC1/L			<	1.	<	1.				
SELENJUM	MG/L	<	0.005	<	0.005	<	0.005	<	0.005		
SILCON	MG/L	•	-	•		•					
SILICA	MGZI		25.2		9.4		8.2		19.3		
SILVER	MGZL			(0.01	(0.01				
SODIUM	MGZL		1142.	`	980.	•	853.		936.		
STRONFLUM	MGZL		6.42		5.4		5,38		5.36		
			17.0.11.								

Table F.3.11 BROUND WATER DUALETY DATA BY LOCATEON SITE: GRAND JUNCTION 02/01/83 TO 09/10/85 (Concluded)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: DOWN GRADIENT

		738-01 09/09/85	740-01 03/22/85	UN 10 - SAMPLE JD AND 740-04 03/07/85	1 0G DATE
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE+Z-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/~UNCERTAINTY	PARAME (ER VAL UF+/-UNCE RTA) NTY
SULFIDE	MG/L	-	-	(0.1	-
TEMP, IN-SITU	C-DEGREE	-	-		-
TEMPERATURE	C - DEGREF	17.	10.	15.	16.5
TH-230	PCI/L	-	< 1.	< 1.	-
T]N	MG/L	< 0.005	(0.005	< 0.005	(0.005
TOTAL SOL (DS	MG/L	/4:30.	68/6.	68/2.	6790.
TOTAL U	PPM	-	-	-	-
TOX	MG/L	-	< 0.1	< 0.1	-
J-234	PCI/I	69.	75.	65.	72.
1238	PCI/L	58.	/0.	65.	69.
JRANIUM	MG/L		-	-	-
JANADIUM	MG/L	(0.01	(0.01	(0.01	< 0.01
ZINC	MG/L	0.009	0.07	(0.005	0.008

F-110

MAPPER INPUT FILE: GRJ01*UDPGW0100372

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

		727-04 03/29/85			EDCAT J 727-01 06/07/85	7	27-01 09/16/85		/43-01 03/21/85	743-01 06/07/85	
PARAMETER	UNIT OF MEASURF	VA	PARAMETER LUE+/-UNCERTAINTY	VA	PARAMETER UF+Z-UNCERTAINTY	VAL	PARAMETER	VA	PARAMETER		PARAMETER LUE+/-UNCERTAINT
ALKALINJT Y	MG/L CACO3		1600.		1468.		1615.		447.		325.
ALUMINUM	MG/L	<	0.1	<	0.1		0.1	<	0.1	<	0.1
AMMONIUM	MG/L		0.29		0.01		0.45		6.05		5.42
ANTEMONY	MG/L	<	0.003	<	0.003	<	0.003	<	0.003	<	0.003
AKSENIC	MG/L	<	0.01	<	0.01	<	0.01	<	0.01	<	0.01
BALANCE	X		-3.21		- 1.76		-4.15		-3.55		-4.64
BARIUM	MG/L		0.4		0.51		0.47	<	0.1	<	0.1
BURON	MG/L		0.6		0.64		0.54		0.33		0.26
CADMIUM	MG/L	<	0.002	<	0.001	<	0.001	<	0.002	<	0.001
CALCIUM	MG/L	-	18.		7.1		7.		66.		92.
CHLORIDE	MG/L		360.		312.		325.		650.		838.
CHROMIUM	MG/L	(0.01	<	0.01	<	0.01		0.04	<	0.01
CUBALT	MG/L	ì	0.01	ć	0.05		0.05	<	0.01	<	0.05
CONDUCTANCE	UMHO/CM	•	3200.		3150.		3328.		5900.		4500.
COPPER	MG/L	Ċ	0.01	<	0.02	<	0.02		0.03	<	0.02
CYANIDE	MG/L	ì	0.01	i	0.01			<	0.01	<	0.01
FLUORIDE	MG/L	•	2.8	•	2.4		2.9		0.3		0.4
GROSS ALPHA	PCT/L		45.		_			<	40.		-
GROSS BETA	PCI/L	1	50.					<	50.		
HYD. SULFIDE		è	0.2				0.11	<	0.2		
1KON	MG/L	ì	0.05		0.06	(0.03	<	0.05		0.11
	MG/L	ì	0.01	<	0.01	•	-	<	0.01	<	0.01
LEAD		`	6.	``	1.85		2.12		24.		4.07
MAGNESIUM	MG/L.	<	0.05		0.02		0.08	<	0.05	<	0.01
MANGANESE	MGZL	`	0.0003		0.0002	(0.0002	<	0.0002		0.0003
MERCURY	MGZL	<	0.01	ì	0.01	ì	0.01		0.02	<	0.01
MOLYBDENUM	MG/L	`	0.05	ì	0.04	ì	0.04	(0.04	<	0.04
NICKEL	MG/L.	,	1.	ì	1.	ì	1.	ì	1.	(1.
NUTRATE	MG/L	<	5.1	``	5.4	•	8.6	•	7.7		5.6
OKG. CARBON	MG/L NGT/L	,	1.5	1	1.5		_	<	1.5	<	1.5
PB-210	PCT/L	(``	8.2		8.3	•	10.2		11.4
PB	SU HC (I	,	8.6 0.1		0.1			(0.1	<	0.1
PHUSPHATE	MG/L	S		ì	1.			ì	1.	ć	1.
P(I210	PC1/L	<	1. 6.8	`	/.08		4.35	•	12.	•	13.3
POTASSIUM	MG/L	,	_		1.	1	1.	1	1.	(1.
RA-226	PCIZL	Ś	1.			``	1.	ì	1.	i	1.
RA-228	PCT/L	(1.		1. 0.005	<	0.005	ì	0.005	•	0.009
SELENTUM	MG/L.	<	0.005	(`	8.8	``	5.5		4.2
STLTCA	MG/L	,	5.8	,	5. 0.01		0.0	1	0.01	(0.01
SHIVER	MGZI	(0.01	(870.	``	1:340.	•	1340.
SODIUM	MG/L		880.		840.		0.36		3.9		3.74
STRONTIUM	MGZŁ.		0.4		0.36		2.1		2000.		1900.
SULFATE	MGZL		9.		12./		<i>L</i> 1				0.6
SULFIDE	MG/L				0.2				13.5		13.5
TEMPERATURE			7.	,	14.		13.	1	1.	(1.
TH-230	PCJZL	Ś	1.	Ŷ	1.	1	0.005	ì	0.005	ì	0.005
TIN COLUM	MGZL	۲	0.005	(0.005	`	2150.	`	4034.	•	4316.
101AL S01105) MUZL		2098.		2118.		4. 100 •		1.0.0.1.		

Table F.3.12 GROUND WATER QUALITY DATA BY LUCATION SITE: GRAND JUNCTION 03/24/85 TO 0//25/86 (Continued)

FORMATION OF COMPLETION: SHALE HYDRAUL)C FLOW RELATIONSH)P: UP GRADIENT

		727-01 03/29/85	7	27-04 06/07/85	28791760 10-252 1 CNA 01 1990 10-252	LOG DATI 743-		74	3-01 06/07/85
PARAMETER	UNIT OF MEASURE	PARAMETER VALUF+/-UNCERTAINTY	VAI	PARAMETER UE+Z-UNCERTATNTY	PARAMETER VALUE+Z~UNCERTAINTY	VAL UF	PARAMETER +/UNCERTAINTY	VALU	PARAMETER E+/-UNCERTAINTY
TOX	MG/L	0.1		0.1			0.6	igit ais ret yan	0.15
U-234	PCE/L	2 .9		з.	2.	<	1.	<	1.
U-238	PC1/L	1.8		2.	1.	<	1.	<	1.
URANIUM	MG/L								
VANADIUM	MG/L	< 0.01		0.05	0.01	<	0.01		0.01
ZINC	MG/L	٥.05	<	0.005	0.014	<	0.05	<	0.005

Table F.3.12 GROUND WATER QUALITY DATA BY LOCATION SETE: BRAND JUNCTION 03/24/45 TO 07/25/86 (Continued)

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

UNIT OF PARAMETER MEASURE ALKALINITY MG/L CACC ALUMINUM MG/L AMMONJUM MG/L AMTONJUM MG/L ANTIMONY MG/L ARSENIC MG/L BALANCE Z HARIUM MG/L CALCIUM MG/L CALCIUM MG/L CALCIUM MG/L CALCIUM MG/L CALCIUM MG/L CHLORIDE MG/L CUBALT MG/L FLUORIDE MG/L FLUORIDE MG/L FLUORIDE MG/L FLUORIDE MG/L HYD. SULFIDE MG/L HANGANESE MG/L HANGANESE MG/L HANGANESE MG/L NICKEL MG/L NICKEL MG/L NICKEL MG/L PD-240 PCI/L PD-240 PCI/L PD-240 PCI/L PD-240 PCI/L SULENUM MG/L SULENUM MG/L SULICA MG/L SULICA MG/L SILICA MG/L		D A 3 A M 1 1 1 1 D					
ALKALINITYMG/LCACUALUMINUMMG/LAMMONIUMMG/LAMMONIUMMG/LARSENICMG/LARSENICMG/LMG/LBALANCEZBARIUMMG/LCADMIUMMG/LCALCIUMMG/LCALCIUMMG/LCALCIUMMG/LCALCIUMMG/LCALCIUMMG/LCONDUCTANCEUMHD/CMCOPPERMG/LCONDUCTANCEUMHD/CMCOPPERMG/LFLUORIDEMG/LFLUORIDEMG/LFLUORIDEMG/LHYD. SULFIDEMG/LIRONMG/LIRONMG/LMARGANESEMG/LMIRGESIUMMG/LNICKEIMG/LNICKEIMG/LPHOSPHATEMG/LPHOSPHATEMG/LPU-240PCI/LPU-240PCI/LPU-240PCI/LPU-240PCI/LSILTCAMG/LSILTCAMG/LSIRONITUMMG/LSULFATEMG/LSIRONITUMMG/LSULFATEMG/LSULFATEMG/L	v	PARAMETER ALUE+/-UNCERTAINTY	VAI	PARAME FER UE+ZUNCERTAINTY	PARAMETER VALUE+7-UNCERTAINTY	PARAMETER VALUE+/UNCERTAJNTY	PARAMETER VALUE+/~UNCERTAINT
ALUMINUMMG/LAMMONJUMMG/LANTIMONYMG/LANTIMONYMG/LARSENICMG/LBALANCEZBARIUMMG/LBARIUMMG/LCADMIUMMG/LCALCTUMMG/LCALCTUMMG/LCALCTUMMG/LCONDUCTANCEUMH0/CMCOPPERMG/LCONDUCTANCEUMH0/CMCOPPERMG/LFLUORIDEMG/LFLUORIDEMG/LFLUORIDEMG/LIRONMG/LIRONMG/LIRONMG/LIRONMG/LIRONMG/LNICKEIMG/LNICKEIMG/LNICKEIMG/LPHOSPHATEMG/LPOTASSIUMMG/LRA-228PCL/LPLICAPG/LSILCAMG/LSILCAMG/LSILONMG/LSIRONITUMMG/LSULFATEMG/LSULFATEMG/LSIRONITUMMG/LSULFATEMG/LSULFATEMG/L	 03	311.		298.			
AMMONIUMMG/LANTIMONYMG/LARSENICMG/LARSENICMG/LBALANCEZBARIUMMG/LCORDNMG/LCADMIUMMG/LCALCIUMMG/LCALCIUMMG/LCALCIUMMG/LCALCIUMMG/LCORDUCTANCEUMHD/CMCONDUCTANCEUMHD/CMCONDUCTANCEUMHD/CMCONDUCTANCEUMHD/CMCONDUCTANCEMG/LFIUORIDEMG/LFIUORIDEMG/LIRONMG/LIRONMG/LNICKEIMG/LNICKEIMG/LNICKEIMG/LPH-240PCI/LPHOSPHATEMG/LPHOSPHATEMG/LPHOSSIUMMG/LRA-228PCI/LSILICAMG/LSILVERMG/LSILVERMG/LSIRONITUMMG/LSULFATEMG/LSULFATEMG/L		0.1		0.3			
ANTIMONYMG/LARSENICMG/LARSENICMG/LBALANCEZBARIUMMG/LBORONMG/LCADMJUMMG/LCALCIUMMG/LCALCIUMMG/LCALCIUMMG/LCHLORIDEMG/LCHROMIUMMG/LCUBALTMG/LCONDUCTANCEUMHO/CMCOPPERMG/LGROSS ALPHAPCI/LGROSS ALPHAPCI/LGROSS ALPHAPCI/LIRONMG/LIRONMG/LIRONMG/LMARGANESEMG/LMICKEIMG/LNICKEIMG/LPH-240PCI/LPOTASSIUMMG/LPHASSIUMMG/LSILFAPCI/LSHLFAMG/LSILFAPCI/LSODIUMMG/LSIRONITUMMG/LSULFATEMG/LSULFATEMG/LSILFATEMG/LSULFATEMG/LSULFATEMG/L		2.		1.4			
AKSENICMG/LBALANCEZBALANCEZBARIUMMG/LBORONMG/LCADMJUMMG/LCADMJUMMG/LCALCTUMMG/LCHLORJDEMG/LCHLORJDEMG/LCONDUCTANCEUMH0/CMCOPPERMG/LCONDUCTANCEMH0/CCOPPERMG/LCONDUCTANCEMG/LCONDUCTANCEMG/LGROSS ALPHAPCI/LGROSS ALPHAPCI/LHYD. SULFIDEMG/LIRONMG/LIRONMG/LMANGANESEMG/LMICKEIMG/LNICKEIMG/LNICKEIMG/LPH-210PCI/LPD-230PCI/LPU-240PCI/LPU-228PCI/LSILTCAMG/LSILUMMG/LSILUMMG/LSILUMMG/LSILUMMG/LSULFATEMG/LSULFATEMG/LSULFATEMG/L		0.003		-			
BALANCEZBARIUMMG/LBURONMG/LBURONMG/LCADMJUMMG/LCALCIUMMG/LCALCIUMMG/LCHORIDEMG/LCONDUCTANCEUMHD/CMCOPPERMG/LCONDUCTANCEUMHD/CMCOPPERMG/LGROSS ALPHAPCI/LGROSS ALPHAPCI/LHYD. SULFIDEMG/LIRONMG/LIRONMG/LMANGANESEMG/LMICKEIMG/LNICKEIMG/LNICKEIMG/LPD-240PCI/LPO-240PCI/LPO-251UMMG/LRA-228PCI/LSILCAMG/LSILVERMG/LSILVERMG/LSILVERMG/LSILVERMG/LSIRONITUMMG/LSULFATEMG/LSULFATEMG/LSULFATEMG/LSULFATEMG/L		0.01	<	0.01			
BARIUMMG/LBURONMG/LBURONMG/LCALCIUMMG/LCALCIUMMG/LCALCIUMMG/LCHLORIDEMG/LCOBALTMG/LCONDUCTANCEUMH0/CMCOPPERMG/LCOPPERMG/LGROSS ALPHAPCI/LFLUORIDEMG/LGROSS ALPHAPCI/LMANGANESEMG/LIKONMG/LMANGANESEMG/LNICKEIMG/LNICKEIMG/LPH-240PCI/LPHOSPHATEMG/LPHOSPHATEMG/LPHOSSIUMMG/LSILFATEPCI/LSTRONIJUMMG/LSIRONIJUMMG/LSIRONIJUMMG/LSIRONIJUMMG/LSULFATEMG/LSULFATEMG/LSULFATEMG/LSULFATEMG/LSULFATEMG/LSULFATEMG/L		-1.51		··· . 02			
BURONMG/LCADMJUMMG/LCALCTUMMG/LCALCTUMMG/LCHLORIDEMG/LCHLORIDEMG/LCOBALTMG/LCONDUCTANCEUMH0/CMCOPPERMG/LCOPPERMG/LGROSS ALPHAPCI/LFLUORIDEMG/LGROSS ALPHAPCI/LHYD. SULFIDEMG/LIRONMG/LMARGANESEMG/LMARGANESEMG/LMARGANESEMG/LNICKEIMG/LNICKEIMG/LPHOSPHATEMG/LPHOSPHATEMG/LPHOSPHATEMG/LSILCAMG/LSILCAMG/LSILCAMG/LSILCAMG/LSILCAMG/LSILCAMG/LSIRONIJUMMG/LSUFATEMG/LSUFLENUMMG/LSUFATEMG/LSUFLENUMMG/LSUFATEMG/LSUFATEMG/LSUFATEMG/L		0.05					
CADMJUMMG/LCALCIUMMG/LCHLORJDEMG/LCHLORJDEMG/LCHROMIUMMG/LCOBALTMG/LCODDUCTANCEUMH0/CMCOPPERMG/LCYANIDEMG/LGROSS ALPHAPCI/LFLUORIDEMG/LHYD. SULFIDEMG/LIRONMG/LMANGANESEMG/LMANGANESEMG/LMANGANESEMG/LNICKELMG/LNICKELMG/LPH-210PCI/LPHOSPHATEMG/LPHOSPHATEMG/LRA-228PCI/LSILCAMG/LSILVERMG/LSILVAMG/LSILVAMG/LSILONMG/LSILONMG/LSILONMG/LSUPAREMG/L		0.52		-			
CALCIUM MG/L CHLORIDE MG/L CHLORIDE MG/L CHROMIUM MG/L COBALT MG/L CONDUCTANCE UMHO/CM COPPER MG/L CYANTDE MG/L CYANTDE MG/L CYANTDE MG/L CYANTDE MG/L GROSS ALPHA PCI/L GROSS ALPHA PCI/L GROSS ALPHA PCI/L MG/S PCI/L MG/S PCI/L MG/S PCI/L MG/L MG/L MG/L MG/L MANGANESE MG/L MANGANESE MG/L MARATE MG/L NICKEL MG/L NICKEL MG/L NICKEL MG/L PH-240 PCI/L PDTASSIUM MG/L RA-228 PCI/L POTASSIUM MG/L SILCA MG/L SITVER MG/L </td <td>(</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>	(-			
CHLORJDEMG/LCHROMIUMMG/LCORDITMG/LCOBALTMG/LCONDUCTANCEUMHO/CMCOOPPERMG/LCOPPERMG/LCYANTDEMG/LCYANTDEMG/LGROSS ALPHAPCI/LGROSS ALPHAPCI/LHYD. SULFIDEMG/LIRONMG/LIRONMG/LMARGANESEMG/LMARGANESEMG/LMARGANESEMG/LNICKEIMG/LNICKEIMG/LPD-240PCI/LPD-240PCI/LPOTASSIUMMG/LRA-228PCI/LSILICAMG/LSITIVERMG/LSITONITUMMG/LSURANTEMG/LSURANTUMMG/LSURANTUMMG/LSURANTUMMG/LSURANTUMMG/LSURANTUMMG/LSURANTUMMG/LSURANTUMMG/LSURANTUMMG/LSURANTUMMG/LSURANTUMMG/LSURANTUMMG/L	•	32.2		61.3			
CHROMIUMMG/LCOBALTMG/LCOBALTMG/LCODDUCTANCEUMH0/CMCOPPERMG/LCOPPERMG/LCOPPERMG/LCOPPERMG/LCORDIDEMG/LGROSS ALPHAPCI/LGROSS ALPHAPCI/LHYD. SULFIDEMG/LIRONMG/LIRONMG/LMARGNESEMG/LMARGANESEMG/LMICKELMG/LNICKELMG/LNICKELMG/LNICKELMG/LPD-240PCI/LPD-240PCI/LPOTASSIUMMG/LRA-228PCI/LSILCAMG/LSILVERMG/LSILVERMG/LSILVMMG/LSULFATEMG/LSULFATEMG/L		955.		9:30.			
COBALTMG/LCODAUCTANCEUMH0/CMCONDUCTANCEUMH0/CMCOPPERMG/LCOPPERMG/LCYANTDEMG/LFLUORIDEMG/LGROSS ALPHAPCI/LGROSS ALPHAPCI/LHYD. SULFIDEMG/LHRDNMG/LIEADMG/LMANGANESEMG/LMIRCURYMG/LMICKEIMG/LNICKEIMG/LPH-240PCI/LPHOSPHATEMG/LPOTASSIUMMG/LSILENUMMG/LSILCAMG/LSILVERMG/LSILVERMG/LSILVAMG/LSILONITUMMG/LSURASURSURAPCI/LSURAPCI/LSURAPCI/LSURAPCI/LSURAPCI/LSURAMG/LSURAMG/LSURAMG/LSURAMG/LSURAMG/LSURAMG/LSURAMG/LSURAMG/LSURAMG/LSURAMG/LSURAMG/LSURAMG/LSURAMG/LSURAMG/L		0.01		0.03			
CONDUCTANCEUMH0/CMCOPPERMG/LCOPPERMG/LCYANTDEMG/LFLUORIDEMG/LFLUORIDEMG/LGROSS ALPHAPCI/LGROSS ALPHAPCI/LHYD. SULFIDEMG/LIKONMG/LIKONMG/LMANGANESEMG/LMANGANESEMG/LNICKEIMG/LNICKEIMG/LPH-240PCI/LPHOSPHATEMG/LPOTASSIUMMG/LRA-228PCI/LSILCAMG/LSILVERMG/LSILVERMG/LSIRONITUMMG/LSURFATEMG/L	<			-			
COPPERMG/LCYANTDEMG/LCYANTDEMG/LFLUORIDEMG/LFLUORIDEMG/LGROSS ALPHAPCI/LGROSS BETAPCI/LHYD. SULFIDEMG/LIRONMG/LMARGANESEMG/LMARGANESEMG/LMARGANESEMG/LMARGANESEMG/LMARGANESEMG/LMARGANESEMG/LMARGANESEMG/LMARGANESEMG/LMOLYBDENUMMG/LNICKEIMG/LPH-210PCI/LPHOSPHATEMG/LPOTASSIUMMG/LSLENUMMG/LSILCAMG/LSILVERMG/LSUPTATEMG/LSUPTAMG/LSUPTAMG/LSUPTAMG/LSUPTAMG/LSUPTAMG/LSUPTAMG/LSUPTAMG/LSUPTAMG/LSUPTAMG/LSUPTAMG/LSUPTAMG/LSUPTAMG/LSUPTAMG/L	`	578.		4500.			
CYANTDE MG/L FLUORIDE MG/L FLUORIDE MG/L GROSS ALPHA PCI/L GROSS ALPHA PCI/L HYD. SULFIDE MG/L HYD. SULFIDE MG/L ILEAD MG/L MANGANESE MG/L MANGANESE MG/L MOLYBDENUM MG/L NICKEL MG/L NICKEL MG/L PH-240 PCI/L POTASSIUM MG/L SU $POTASSIUM$ RA-226 PCI/L SHLENUM MG/L SILVER MG/L SILVER MG/L SIRONITUM MG/L SURFATE MG/L		0.04					
FI UORIDE MG/L GROSS ALPHAPCI/LGROSS ALPHAPCI/LGROSS BETAPCI/LHYD. SULFIDE MG/L IRON MG/L IRON MG/L PIAGNESIUM MG/L PIAGNESIUM MG/L MIRCURY MG/L NICKEI MG/L NICKEI MG/L PB-240PCI/LPH-SSIUM MG/L POTASSIUM MG/L SUPOTASSIUMRA-228PCI/LSILCA MG/L SILVER MG/L SILVER MG/L SIRONITUM MG/L SULFATE MG/L		0.04					
GROSS ALPHA PCI/L GROSS BETA PCI/L HYD. SULFIDE MG/L HYD. SULFIDE MG/L IRON MG/L IRON MG/L MARGARESE MG/L MARGANESE MG/L MARGANESE MG/L MARGANESE MG/L MIRCURY MG/L MIRCURY MG/L NICKEI MG/L NITRATE MG/L VH SU PB-210 PCI/L PH SU PD-240 PCI/L PO-240 PCI/L POTASSIUM MG/L RA-228 PCI/L SLENIUM MG/L SULTCA MG/L SJIVER MG/L SJRONTUM MG/L SULFATE MG/L		0.56					
GROSS BETA PCI/L HYD. SULFIDE MG/L HYD. SULFIDE MG/L IRON MG/L ILEAD MG/L MAGANESE MG/L MARGANESE MG/L MBLYBDENUM MG/L MBLYBDENUM MG/L MICKEL MG/L NICKEL MG/L NICKEL MG/L PB-210 PCI/L PH SU PHOSPHATE MG/L POTASSIUM MG/L SLENUM MG/L SLENUM MG/L STICA MG/L SODTUM MG/L SUPFATE MG/L		0.56					
HYD. SULFIDE MG/L IRON MG/L IRON MG/L IEAD MG/L PIAGNESIUM MG/L MANGANESE MG/L MANGANESE MG/L MANGANESE MG/L MIRCURY MG/L MILREURY MG/L MILRENUM MG/L NICKEI MG/L NICKEI MG/L POLYADENUM MG/L POLYADENUM MG/L POSPHATE MG/L POTASSIUM MG/L STLENUM MG/L STLENUM MG/L STLICA MG/L STRONITUM MG/L SULFATE MG/L		-					
IRON MG/L LEAD MG/L ILEAD MG/L IMARGALSIUM MG/L MARGANESE MG/L MARGANESE MG/L MERCURY MG/L NICKEI MG/L NICKEI MG/L NICKEI MG/L PB-240 PCI/L PH-240 PCI/L PO-240 PCI/L POTASSIUM MG/L SLENJUM MG/L SILCA MG/L SILCA MG/L SU MG/L SULFATE MG/L	,						
LEAD MG/L MAGNESIUM MG/L MANGANESE MG/L MANGANESE MG/L MANGANESE MG/L MERCURY MG/L MDLYBDENUM MG/L MDLYBDENUM MG/L NICKEL MG/L NICKEL MG/L NICKEL MG/L PB-210 PCI/L PH SU PH-210 PCI/L PD-240 PCI/L PO-240 PCI/L POTASSIUM MG/L SLENUM MG/L SLENUM MG/L STICCA MG/L SODTUM MG/L SULFATE MG/L	< <u>`</u>			0.05			
PIAGNE SIUM MG/L PIANGANESE MG/L PIERCURY MG/L PIDLYBDENUM MG/L NICKEI MG/L NICKEI MG/L NICKEI MG/L NICKEI MG/L NICKEI MG/L PROLYBDENUM MG/L POLYBDENUM MG/L PORG. CARBON MG/L PB-210 PCI/L PH SU PO-240 PCI/L POTASSIUM MG/L RA-228 PCI/L SILICA MG/L SILICA MG/L SITOM MG/L SODIUM MG/L SULFATE MG/L		0.06		0.05			
MANGANESE MG/L MERCURY MG/L MDLYBDENUM MG/L NICKEI MG/L PH-210 PCI/L PHOSPHATE MG/L POTASSIUM MG/L RA-228 PCI/L SLENUM MG/L SULFA MG/L SODTUM MG/L SIRONITUM MG/L SULFATE MG/L		-					
MERCURY MG/L MDLYBDENUM MG/L NICKEI MG/L PB-210 PCI/L PH SU PHOSPHATE MG/L POTASSIUM MG/L RA-228 PCI/L SLICA MG/L SULFAR MG/L SODIUM MG/L SULFATE MG/L		13.6		19.4			
MBLYBDENUM MG/L NICKEL MG/L NICKEL MG/L NICKEL MG/L NICKEL MG/L NICKEL MG/L PB-210 PCI/L PH-210 PCI/L PH-210 PCI/L PH-210 PCI/L PO-210 PCI/L PO-210 PCI/L POTASSIUM MG/L SLENUM MG/L STICA MG/L SODTUM MG/L SUFFATE MG/L		0.0/		0.04			
NICKEI MG/L NICKEI MG/L NICRATE MG/L ORG. CARBON MG/L PB-240 PCI/L PH SU PHOSPHATE MG/L POTASSIUM MG/L RA-228 PCI/L SILENUM MG/L SILVER MG/L SODTUM MG/L SIRONITUM MG/L SULFATE MG/L				~			
NETRATE MG/L OKG. CARBON MG/L PB-210 PCI/L PH SU PHOSPHATE MG/L PO-240 PCI/L POTASSIUM MG/L RA-226 PCI/L SELENJUM MG/L SILICA MG/L SODIUM MG/L SIRONITUM MG/L SULFATE MG/L	<			0.1			
OKG. CARBON MG/L PB-240 PCI/L PH SU PHOSPHATE MG/L PO-240 PC1/L PO-240 PC1/L PO-35SIUM MG/L RA-226 PC1/L SELENUM MG/L STLICA MG/L SODTUM MG/L STRONTUM MG/L SULFATE MG/L		0.08		0.07			
PB-240 PCI/L PH SU PHOSPHATE MG/L PO-240 PC1/L POTASSIUM MG/L RA-226 PC1/L SELENIUM MG/L STLICA MG/L SODTUM MG/L SODTUM MG/L SULFATE MG/L			<	1.			
FH SU PHOSPHATE MG/L PO-240 PC1/L POTASSIUM MG/L RA-226 PC1/L RA-228 PC1/L SELENIUM MG/L SULFAR MG/L SODIUM MG/L SULFATE MG/L		79.2					
PHOSPHATE MG/L P(0-240 PC1/L POTASSIUM MG/L RA-228 PC1/L SELENIUM MG/L SILICA MG/L SODTUM MG/L STRONITUM MG/L SULFATE MG/L		-		-			
P0-240 PC1/L P0TASSIUM MG/L RA-226 PC1/L RA-228 PC1/L SELENIUM MG/L STLICA MG/L SODTUM MG/L SODTUM MG/L STRONTIUM MG/L SULFATE MG/L		10.2		8.52			
PO-240 PC1/L POTASSIUM MG/L RA-226 PC1/L RA-228 PC1/L SELENIUM MG/L STLICA MG/L SODTUM MG/L SODTUM MG/L SULFATE MG/L		-					
PDTASSIUM MG/L RA-228 PCT/L RA-228 PCT/L SELENIUM MG/L STLICA MG/L STIVER MG/L SODIUM MG/L STRONITUM MG/L SULFATE MG/L				-			
RA-226 PCT/L RA-228 PCL/L SELENIUM MG/L STLICA MG/L STLVER MG/L SODTUM MG/L STRONTIUM MG/L SULFATE MG/L		7.17		8.33			
RA-228 PCTZL SELENIUM MGZL STLTCA MGZL STLTCA MGZL STLTCA MGZL STLTCA MGZL STRONIIUM MGZL SULFATE MGZL	<	1.					
SELENIUM MGZL STLICA MGZL STIVER MGZL STDUM MGZL STRONITUM MGZL SULFATE MGZL		~~					
STLICA MGZL SJIVER MGZL SODTUM MGZL STRONITUM MGZL SULFATE MGZL		0.005	<	0.005			
STEVER MGZL SODTUM MGZL STRONITUM MGZL SULFATE MGZL		11.1		-			
SODTUM MG/L STRONETUM MG/L SULFATE MG/L		_					
STRONTTUM MGZL SULFATE MGZL		1490.		1530.			
SULFATE MG/L		3.16					
		1/60.		1900.			
CIDELINE MISZE				-			
SULFIDE MG/L TEMPERATURE C = DEGR	FF	16.5		14.			
	· . I.			· · · ·			
TEN MGZE TOTAL SOFIDS MGZE	<						

Table F.3.12 GROUPD WATER QUALITY DATA BY LOCATION SITE: GRAND JUNCTION 03774785 TO 07725786 (Concluded)

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

		743-01 09/10/85	LOCATIO 743-04 07/25/86	N 1D - SAMPLE 1D AND LOG DATE
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE+/-UNCFRTAINTY	PARAMETER VALUE+/-UNCERTAINTY	
τοχ	MG/L		_	
U-234	PC1/L	1.	-	
N~538	PC1/1	< 1.	-	
URANIUM	MG/L		0.002/	
VANADIUM	MG/L	0.03	0.31	
ZINC	MG/L	0.007	0.022	

MAPPER INPUT FILE: GRJ01*UDPGWD100378

-

Table F.3.13 GROUND WALL GUALITY DATA BY LUCATION STLF: GROUD JUNCTION 07/08/83 TO 09/11/05

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW RELATIONSDIP: ON-SITE

		Ļ.	82-04 02/08/83									
PARAMETER	UNIT OF MEASURE	VAI	PARAMETER UF+Z-INCERTAINTY	VAI	PARAPIETER UE+Z-UNCERTAINTY	VAI	PARAMETER UP+7-UNCERTAINTY		PARAMETER I DE +Z-UNCERTAINTY	PARAMETER		
ALKALDNITY	MGZI CACO3		412.		4/7.		542.		520.			
ALUMENUM	MGZL		-	<	0.1	<	0.1		0.2			
AMMUNIUM	MG71		-		181.		21.2		81.7			
ANT MUNY	MG71.		-	<	0.003		0.04/	<	0.003			
ARSENIC	MG/1	(0.001	<	0.01	<	0.01		0.01			
BALANCE	7.		-1./6		1.61		-2.89		-2.32			
BARTIM	MG/I		0.14	<	0.1	<	0.1	(0.05			
BURUN	MG/L		-		0.16		0.1		0./2			
CADMIUM	MG/L			<	0.002	<	0.001	(0.001			
CALCIUM	MGZE		106.		170.		14.3.		293.			
CHI ORIDE	MG/L		496.		590.		678.		723.			
LIROMEUM	MG/L	<	0.001		0.05	<	0.01	<	0.01			
CORAL I	MG/I	ć	0.001	<	0.01	(0.05	(0.05			
CONDUCTANCE	DAHOZCM	•			/300.		6 100 .		H/50.			
COPPER	MG/I	(0.0005		0.06	<	0.02	<	0.02			
CTANLDE	MGZL	•		<	0.01	(0.01					
FEUORIDE	MG/L		_		1.2		1.3		1.7			
URUSS ALPHA	PC171.		_		200.				-			
GROSS HETA	PCI/I		_	<	50.							
HYD. SULFEDE				ì	0.2			(0.1			
TRUN	MGZL		0.5	•	0.06		0.19	-	1.07			
1 E AÐ	MG/L		-	(0.01	<	0.01		-			
MAGNESTUM	MG/L		23.	•	59.	•	5.4		101.			
MANGANESE	MG/L		0.16		0.3		0.13		0.75			
			-	<	0.0007	1	0.0002	(0.0002			
MERCURY	MGZI		0.14	``	0.13	ì	0.01	`	0.17			
HOLYBDENUM	MGZL		· · · ·		0.06	`	0.1		0.11			
NJCKEL	MG/L	,		,			1.	<	1.			
NEIRATE	MGZL	(0.1	(1.	`	1.	`	1.			
NTTROGEN, KJL			10.						9./			
ORG. CARBON	MG/L		/1.8	,	8.9	,	20.4		-			
PR-210	PC1/1		-	(1.5	(1.5					
PH	50		7.5	,	1.3	,	/.3		7.1			
PHOSPHATE	MGZI		-	· ·	0.1	÷	0.1		-			
P0 - 2 10	PCLZL		-	(1-	•	1.					
PUTASSIUM	MGZL		13.2		14.		18.4	,	26.6			
RA-226	PC EZ L			<u> </u>	1.	(1.	C	1.			
RA - 228	PC171		unana di seconda di se	(1.	(1.	,				
SELENCOM	MGZL.		0.017	<	0.005		0.005	(0.005			
511 ICA	MGZL		-		6.2		5.3		15.2			
STEVER	PIGZE.			<	0.01	<	0.01					
SODIUM	MGZI		1090.		1590.		1450.		1480.			
51 KUALEUM	PIG71.		-		10.2		H.04		12.2			
SUEFAIL	MGZI		1665.		2700.		2440.		3190.			
SUFTADE	11G71					(0.1		-			
EE MIZERA LURE	C - DLGREE		-		11.		15.		14.			
111 - 2.30	PETA		-	<	1.	<	1.					
IIN	MUZI			(0.005	<	0.005	<	0.005			

Table F.3.13 GROUND WATER DUAL ELY DATA BY EDUCATION 511F: GRAND JUNCIION 02/08/83 10 02/14/85 (Concluded)

FORMATEUN OF COMPLET(ON: SHALE HYDRAGEIC FLOW RELATIONSHIP: ON-SITE

		582-01 02/08/83				
PARAMETER	UNTE OF MEASURF	PARAMETER VALUE+Z-UNCERTAINTY	PARAMETER VALUE+7-UNCERTAINTY	PARAMETER VALUE+7-UNLERTAINTY	PARAMETER VALUE #Z=UNCERTAINTY	
TOTAL SOLIDS	MG/L	3320.	55 10.	5480.	6170.	The sum of the set of the set of the sum of the set of the
TUTAL U	PPM	0.0/2	-			
10x	MGZL	-	0.4	0.14		
0-234	PCIZE	-	-	3.	22.	
ป23ย	PC171	-	-	2.	21.	
URANTUM	MGZL	-	0.036	-	-	
VANADIUM	MGZL	0.032	0.0(4	0.05	0.05	
/ INC	1167L	0.05	0.2	0.01	0.042	

MAPPER INPUT FILE: GRJ01#UDPGW0100380

F-116

Table F.3.14 GROUND WALLE WUALTLY DATA BY LUCATION SILE: GRAND JUNCTION 0.3776705 10 07725706

LORMATION OF COMPLETION: SHALE HYDRADEDC FLOW RELATIONSHIP: CROSS GRADIENT

PARAMETER	UN EF OF MEASURE	VA	PARAMETER EUE+∕~UNCERTAINTY		PARAPH TER LUE+Z-UNCERTAINTY	VA	PARAMETER LUE+ZUNCERTAINTY	VAI	PARAMETER HE+Z-UNCERTAINTY	PARAMETER VALUE+Z-TINCERTAINTY	
	MG/L CACU3	.= .=.	177.		375.		265.		281.		
AL DIFENSIM	MG/L	<	0.1	(0.1		0.2		0.3		
AMMONIUM	MG/L		3.2		1.9		1.9		0.9		
ANTIMONY	1967L	<	0.003	(0.003	(0.003				
AKSENIC	MGZI		0.01	<	0.01	<	0.01	(0.01		
BAL ANCE	X		1.2		-4.81		0.61		0.27		
BARTIM	MGZL		0.2		0.26		0.36				
HURDN	MG/L		0./?		0.63		0.66		-		
CADELLUM	MGZI	<	0.002	(0.001	<	0.001				
CALCIUM	MG/L		42.3		41.4		30.B		36.4		
CHEORIDE	MGZI		1900.		2020.		2060.		1900.		
CUROPLUM	MG/L	<	0.01	(0.01		0.01		0.03		
LUGAL	MG/I	ć	0.01	(0.05	(0.05				
CUNDUCTANCE	OMH0/CM		6200.		5000.		/0/20.		5000.		
COPPER	MG/1	<	0.01	(0.02		0.03				
CYANTDE	MG/L	è	0.01	i	0.01		-				
FLUORIDE	MG/1	•	0.9	·	0.9		0.9				
GROSS ALPHA	PC1ZL	<	50.		_						
GROSS BETA	PC1/1	è	50.				-				
HYD. SULF OF		ì	0.2		-	ć	0.1		-		
1KUN	MG/1	è	0.05	(0.03	ć	0.0(1		0.05		
LLAD	PIGZL	ì	0.01	è	0.01	•	_				
PIAGNE STILM	MG/L	`	7.5	•	1.94		6.4		6.72		
MANUANESE	MG/L	(0.05	(0.01		0.06		0.04		
PIEKCURY	MGZL	ì	0.0007	ì	0.0002	(0.0002		-		
PIOLYBDENUM	MG/L	è	0.01	`	0.02	•	0.01		0.12		
NACKEL	MGZI	ì	0.04	<	0.04		0.06	<	0.04		
NEIRATE	MG/L	ì	1.	ì	1.	(1.	è	1.		
ORG. CARBON	MGZL	`	1.3	•	4.6	•	2.5				
199-210	PEIZE	(1.5	(1.5						
111	SU	•	9.2	•	8.7		Ð.4		8.21		
PHOSPHATE	MG/L		0.1	(0.1		_				
PU-210	PC1/1	(1.	ì	1.				-		
POTASSIUM	MGZL	`	9.	•	15.7		5.56		7.1/		
RA~226	PC1/L	(1.	1	1.	(1.				
RA-228	PCIZE	ì		ì	1.	•	-				
SELENJIM	MGZI	÷	1. 0.005	`	0.005	(0.005	(0.005		
SILICA	MGZL	`	9.9		5.8	``	8.6	•	_		
STUDER	MGZE	<	0.01	(0.01				-		
SODIUM	MGZL	`	1300.	`	1280.		142/.		1310.		
							2.36				
STRONTTOM	MG/1		1.6		1.84 25.9		4.		2.9		
SULFATE	MGZL.		46.	,			4.		L • 7		
SULL IDE	MGZI C DECIDER		14.5	(0.1 15.		1/.		16.5		
IEMPERATORE	- C DE GREE - PELZE			,			1/ :				
111-230 11N	PCTZI MGZU	(1. 0.005	Ż	1. 0.005	,	0.005		-*		
		`		``		`	3680.		3690.		
TOTAL SOLADS	1071		3308.		37.98.		(303377) -				

Table F.3.14 BROUND WALLER DUALLIY DATA BY LOCATION SITE: GRAND JUNCTION 03726785 10 07725786 (Concluded)

FORMATION OF COMPLETION: CHALE HYDRAULIC FLOW RELATIONSHIP: CROSS GRADIENT

		*** *** *** ***			10CALI	IN 1D	- SAMPLE 10 AND I	LOG DATE	
		14	1-01 03/26/85	74	1-01 06/07/85	14	1-01 09/13/85	/41-01 0//25/Bó	
PARAMETER	UNTE OF MEASURE	VALU	PARAMETER E+7UNCERTAINTY	VALI	PARAMETER JE+Z-UNCERTAINTY	VALI	PARAMETER H+7-UNCERTAINTY	PARAMETER VALUE+/UNCERTAINTY	
The mercule can be mer mer and has been seen									want tank bara akan baka anan cana ang pana ang akan akan akan bara pana bara bara bara baka akan
10X	MGZL		0.1		0.65			181	
U-234	PC1/L	<	1.		1.	<	1.	-	
U-238	PCI/I	<	1.	(1.	<	1.		
URANIUM	MG/L		-				-	0.0027	
VANADIUM	MG/1		0.05	(0.01		0.07	0.3	
ZINC	MG/L	<	0.05	<	0.005		0.006	0.025	

MAPPER INPUT FILE: GRJ04*UDPGW0400377

Table F.3.15 GROUND WATER QUALITY DATA BY LOCATION SLIF: GRAND JUNCTION 03725785 10 09/16785

FORMATION OF COMPLETION: SHALE HYDRAOLIC FLOW RELATIONSHIP: DOWN GRADIENT

				UN 10 - SAMPLE 10 AND		
		728-01 03/25/85	728-04-06/07/85		728-03 06/07/85	
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE+/-UNCERTAINIY	PARAMETER VALUE+/~UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINT)
ALKAL JNJ TY	MG/F CACOG	441.	558.	558.	558.	558.
ALUMENUM	MG/L	< 0.1	< 0 .1	< 0.1	< 0.1	< 0.1
AMMONIUM	MG/I	12 - 1	1.97	7.81	7.23	7.44
ANTEMONY	17G/L	0.003	< 0.003	E00.0	(0.003	(0.003
ARSENJC	MG/L	< 0.01	(0.51	(0.01	< 0.01	< 0.01
BALANCE	z	/8	2.41	1.52	3.07	2.08
BARLUM	MG/L	< 0.1	< 0 .1	(0.1	< 0.1	(0.1
HORDN	PIG/L	0.51		0.47	0.49	0.48
CADITION	MG/I	(0.002	(0.001	(0.001	(0.001	(0.001
CALCTUM	116/L	548.	328.	J2H.	324.	320.
CHUURIDE	MG/L	800.	436.	436 .	422.	432.
CHROMIUM	M6/L	0.02	(0.01	(0.01	(0.01	(0.01
COBALT	MG/L	(0.01	(0.05	(0.05	(0.05	(0.05
CONDUCTANCE	UMH0/CM	6300.	2320.	2820.	2820.	2820.
	MG/L	0.01	(0.02	(0.07	(0.02	(0.02
COPPER	MG/L	(0.01	< 0.01	(0.01	(0.01	(0.01
CYANIDE		0.4	0.5	0.5	0.5	0.5
ET UURD DE	MG/L	120.	0.5	0.5	0.5	0.5
GROSS ALPHA	PC1/L		-	241	-	-
GROSS BETA	PC1/I	90.		-	-	-
HYD. SULFIDE		(0.2		-	-	-
IRUN	MG/L	2.5	1.58	1-58	1.45	1.53
LEAD	1467L	(0.01	(0.01	(0.01	(0.01	(0.01
MAGNESTUM	MG/L	368.	186.	182.	190.	188.
MANUANESE	1967L	1.7	0.75	0.9	0.95	0.94
MERCHRY	MG/L	(0.0002	(0.0002	(0.0002	(0.0007	(0.0002
MOLYBDENOM	NGZL	0.03	(0.01	(0.01	< 0.01	0.01
NICKEL	MG/L	< 0.04	(0.04	0.04	< 0.04	0.04
NLIRATE	2671.	18.	< 1.	< 1.	< 1.	< 1.
ORG. CARBON	MG/L	110.	12.2	12.	12.	11.2
PB-210	PC1/L	(1.5	(1.5		-	
PH	50	8.	7.2	1.2	7.2	7.2
PHOSPHATE	MG/L	(0.1	< 0.1	(0.1	(0.1	(0.1
PU-210	PC1/L	< 1.	< 1.	-	_	
POTASSIUM	MG/L	21.2	16.9	16.8	1/.	16./
RA-226	PC1/I	< 1.	< 1 .		-	
RA-228	PCI/L	(1.	< 1. < 1.	_	_	
	MG/L	< 0.005	< 0.00%	< 0.005	(0.005	(0.005
SELENJUM			0.008	0.003	(0.003	(0.000
STECON	PIGZE.				8.9	8.7
SILICA	PIG/1	8-9	8.2	8.3		
SUPER	PG7L Mil A	(0.01	< 0.01	(0.01	(0.01	(0.01
SUDTUM	MGZL	960.	5:16.	501-	526.	531.
STRONTIN	1967 L.	6.3	3.19		3.2	3.14
SULLAIL	M671	3400.	1430.	1450.	1400-	1430.
SDELEDE	PRIZE.		< 0 .1	(۱) ـ ۱	< 0.1	< 0.1
TERPERATOR	C - DEGREE	11.	12.	17.	12.	12-
111-230	PC LZ L	< 1.	< 1.		-	w -
18-230	PC176	-				-

F-119

Table F.3.15 GROWND WATER WHATTLY DATA BY FURATION STIF: GRAND JUNCTION 03725/85 10 09/16/05 (Continued)

		728-04 03725785	728-04 06707/85	N 10 - SAMPLE 10 AND 1 728-06 - So-265	06 DATE /28-03 06/0//85	728-04 06/0//d5
PARAME LER	UNTE OF MEASURE	PARAMETER VALUE+/~INCERTATNIY	PARAPETER VALUE +7-UNCERTAINTY	PARAMETER VALUE+Z UNCERTAINTY	PARAMETER VALUE+Z-UNCERTAINTY	PARAMETER VALUE +/-UNCERTAINTY
TIN	MG/1	(0.005	(0.00%	(0.005	< 0.005	< 0.005
TOTAL SOLODS	MG/L	A600.	3638.	36114 .	3668.	3638.
10X	MGZI	-	0.24	0.29	< 0 .1	0.13
U-234	PCI/L	61.	33.	-	-	
0~238	PC171	47.	26.			-
VEINAD EUM	MGZL	< 0.01	50.05	(0.01	< 0.01	< 0.01
ZINC	MGZL.	(0.05	(0.005	(0.005	< 0.005	(0.005

Table F.3.15 - GROUND WATER QUALTY DATA BY FULATION SITE: GROUD JUNCIUM 04725785 IU 09746705 - (Continued)

			28-05 04/07/85				123 02 09/09/185		DATE 728-03 09709785		/28=04 09/09/85
PAKAMETER	UNLT OF MEASURE		PARAMETER	VA	PARAPETER LUE+Z UNCERTAINTY	VA	PARAME FER	VA	PARAME LER		PARAMETER FUL+Z-UNCERTAINTY
ALKALINITY	MG/L CACG3		550.	•	512.		512.		512.		512.
AL LIM ENUM	MG/1.	(0.1	(9.1	<	0.1	(0.1	<	0.1
AMMONIUM	MG/L		7.50		16.		1/.4		17.5		17.3
AND LEIDNY	MG/L	<	0.003	(0.003	<	0.003	<	0.003	(0.003
ARSENTC	MG/1	(0.01	(0.01	<	0.01	<	0.01	<	0.01
BALANCE	z		-2.8		0.51		-1.2/		-1.82		0.31
BARLINN	MG/L	(0.1	(0.05	<	0.05	<	0.05	<	0.05
BURDN	MG/L		0.5		0.59		0.6		0.6		0.58
CADMIUM	MGZI	<	0.001	(0.001	<	0.001	(0.001	<	0.001
CALCLUM	MG/L		311.		466.		480.		489.		466.
CHI OKLIDE	MGZE		463.		746.		730.		801.		697.
CHROPLUM	1167 L	<	0.01	(0.01	<	0.01	<	0.01	<	0.01
CURALT	MG/L	(0.05	(0.05	<	0.05	<	0.05	<	0.05
CONDUCTANCE	OMHO/CM		2420.		4900.		A900.		6900.		6Y00.
COPPER	MGZL	(0.07	(0.02	<	0.07	<	0.02	<	0.02
CYANTDE	1167L	<	0.01								
FEHORIDE	M671		0.5		0.63		0.64		0.62		0.63
GRUSS ALPHA	PC1/L		-		-						-
GROSS NETA	PC1/I		-				-		-		
HYD. SULFIDE	MG/L			<	0.1	(0.1	<	0.1	<	0.1
1 KON	MG/1		1.51		0.1/		0.19	•	0.16		0.1/
LEAD	MG/L	<	0.01						-		-
MAGNEST UM	MGZL	•	179.		2449.		292.		269.		288.
MANGANE SE	PIGZL		0.9		1.61		1.56		1.59		1.61
MERCHRY	MGZL	<	0.0002	(0.0007	<	0.0002	(0.0002		0.0002
MOLYBDENUM	M671	ì	0.01	`	0.03	`	0.04	``	0.03		0.04
NICKEL	MG/I	ì	0.04		0.04		0.04		0.05		0.04
NETRATE	MG /L	ì	1.		6./		6./		6.7		6.8
ORG. CARBON	MGZL	`	11.8		15.7		14.3		13.6		13.7
PB-210	PCIZE		-		-				-		
PH	su		7.7		7.4		7.4		7.4		7.4
PHUSPHALE	19671.	<	0.1		· · ·		· · ·		-		-
P0-210	PC1 /1	•	-		-		-				-
POTASSIUM	1167L		16.9		22.8		22.1		22.6		22.8
RA-226	PC1/L		-	(1.	<	1.	(1.	(1.
RA-228	PCEZL			`	••	``		•		•	
SELENIUM	MGZL	(0.005	<	0.005	(0.005		0.005	(0.005
SHECON	116/L	`	-	``	0.000	``	0.000	``	0.005	``	-
STECOR	MGZL		8.1		19.3		19.3		19.		18.4
STIVER	MGZI.	(0.01		17. 3						-
		`									870.
SODIUM GIRDALLIM	MGZI		522.		856.9		870.		8/0.		5.64
STRONTIUM	MGZL MGZL		3.16 1520.		5.9 2850.		2870.		2/80.		2680.
SULLADE		,			1000.		4 U/ V.		2780.		7,000.
	PIGZE C = DECIME	`	0.1		4.4		A1/		18.		18.
TEMPERATURE	C = bEGREF		12.		18.		18.		10.		
1H-230	PCIA		-								
111-230	-PC126				- * **				-		

Table F.3.15 GROUND WATER UNAFELY DATA BY LOCATION SITE: GROUD JUNCTION 0.1775785 III.09746735 (Continued)

FURMATION OF COMPLETION: SHALE HYDRAULIC FEOW RELATIONSHIP: DOWN GRADIENT

			728-0	5 06/07/85	/?!	E-01 09709785		- SAMPEE ID AND 1-02 - 09709785		11 3- 03 09/09/85			04704785
PAKAMET	IFK	UNIT OF MEASURE	-	ARAME TER UNCERTAINTY	VAL U	PARAMETER E+Z-ONCERTATNEY	VAL U	PARAMETER ++Z+UNCERTAINTY	VAL.U	PARAMETER +/-UNCERTAINTY	VAI		AMETER NCFRTAINTY
TIN		MG/L	-	.005	(0.005	(0.005	(0.005	(0.0	05
	501. LDS		36/2	-	5	430.	5	750.	51	350.		5870.	
10X		MGZL	0	. 14				-		-		-	
11-2:14		PCTA.		-		55.		52.		56.		58.	
0-230		PC I ZL		-		49.		44.		54.		53.	
VANADI	JM	MG/L	0	.02	(0.01	(0.01	(0.01		0.0	2
ZINC		M671	< 0	.005		0.01/		0.016		0.016		0.0	16

٠

Table F.3.15 BROUND WALLR BURLILLY DATA BY EDEALION SITE: GRAND JUNCTION 03725785 DD 09746785 (Continued)

									DATI /29-01 09/16/85		731-01 03/26/05
PARAMETEN	UN EE OF MEASURE	** - **			PARAMETER LIE+Z-DRUERTAINTY '		PARAME FER		PARAMETER		PARAME ELR
ALKALINITY	MG/L CACO3		512.		400.		435.		245.		1900.
AL UM ENUM	1967L	<	0.1		0.2	(0.1	(0.1		0.2
AMMUNBUM	MGZI		17.2		11-5		4.45		3.2		3.68
ANTIMONY	Mij/L	(0.003		0.003	<	0.004	(0.003	(0.003
ARSENIC	MG/L	<	0.01		0.013		0.01		0.01	<	0.01
BALANCE	z		-1.54		2.56		-3.56		-2.6		3.58
DARTUM	MG/L	<	0.05		0.2		0.34		0.34		0.8
BORON	1167L		0.58		0.32		0.53		0.54		0.02
CADMIUM	MUZL	<	0.001	(0.002	<	0.001	<	0.001	<	0-002
CALC EUM	MG/L		467.		110.		37.6		215 . B		320.
CHEOREDE	MG/L		765.		2000.		3480.		4010.		300.
CHROMEUM	MGZL		0.01		0.03	<	0.01	<	0.01	<	0.01
COBALT	MGZL	<	0.05	<	0.01	<	0.05	<	0.05	<	0.01
CONDUCTANCE	DMHOZCM		6900.		9000.		8000.		11590.		9900.
COPPER	MGZL	<	0.07		0.04	<	0.02	(0.02		0.03
CYANTDE	PIG/L			(0.01	(0.01			(0.01
FLUORIDE	MG/1		0.6%		2.6		1.3		1.2		0.8
	PC17L		-		/0.					<	40.
GROSS BETA	PCJ/L		_	<	50.				-		160.
HYD. SULF UM.		<	0.1	•	3.2				0.1		5.
IKUN	MG/L	•	0.18	<	0.05	(0.03	(0.03	<	0.05
LEAD	MG/L		-	ì	0.01	ì	0.01		_	ć	0.01
MAGNESTUM	MG/L		277.	•	0.2	•	4.12		7.64	ć	0.01
MANDANESE	MGZL		1.6	1	0.05	(0.01		0.05	i	0.05
MERCURY	MG/L	(0.0002	`	0.0002	ì	0.0002		0.0007	i	0.0002
	M0/L	`	0.04		0.12	ì	0.01		0.02	•	0.06
MOLYBDENUM	MGZL		0.07	(0.04	ì	0.04	(0.04	(0.04
NICKEL	11671 11671		6.8	ì	1.	Ż	1.	ì	1.	``	1.
NLIRATE			14.8	`	-	`	3.6	`	2.0		20.6
DRG. CARBON	MGZI		14.8	(1.5		1.5			(1.5
PH~210	PCTZL			(11.5	`	9.2		9.1	``	12.6
PH	SU		7.4	,	0.1	,	0.1		7.1		0.1
PHOSPHATE	MG/L		-)		ì					1.
P0-210	PC171			<	1.	(1.		15.1	``	169.
PUTASSEUM	MGZL.		22.7		22.		15.4	,		,	1.
RA226	PC1/I	<	1.	(1.	C	1.	(1.	· ·	1.
RA-228	PC EZ L			(1.	(1.		0.001	Ś	0.005
SELENIUM	MGZI.	<	0.005		0.011		0.008	(0.005	(
SILEON	PIG/L										1.6
511 1 CA	MGZL		19.5		12.3		5.4		11.6		
STEVER	PRIZE.		-	(0.01	(0.01			(0.01
SODTOM	MG71		870.		1780.		2780.		25.50.		790.
STROATEDM	料豆ノL		5.5		2.4		2.64		3.27		48.7
SULFAIE	14671		2/00.		330.		99.		59.4		240.
SULFIDE	Phi/1		-			(0.1				-
TEMPL KATURI	- C DI 684 E		18.		14.		15.		15-		13.
1H-2-30	PC171					<	1.		-	(1.
TH~230	PCFZG			(1.				- ~		

Table F.3.15 GROUND WALLER UNALLIY DATA BY LOCATION SJIF: GRAND JUNCTION 632-25735 10 09246785 (Continued)

		728-05 09709785	729-01 04/01/BS	UN 10 - SAMPLE 10 AND 729:04 06/07/85	LUG DATE	/31-01 03/26/85
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE+Z~UNCERTAINTY	PERAMITER VALUE+/~UNCERTAINTY	PARAMETER VALUE+Z-UNCERTAINTY	PARAPH TER VALUE + 7 - UNCERTAINTY	PARAMETER VALUE + Z UNCERTAINTY
אנו	MGZL	(0.005	(0.005	(0.005	(0.005	< 0.005
TOTAL SOLIDS	MG/L	5820.	4842.	6260.	A650.	2794.
10x	MG/I			0.54	-	0.2
U-234	PCTZ	51.	(1.	1.	13.	< 1.
U-238	PC]/I	47.	< 1.	2.	4.	< 1.
VANADIUM	MGZL	(0.01	0.11	0.01	0.03	0.01
ZINC	MG/L	0.01/	2.9	< 0.005	0.005	٥_05

Table F.3.15 GROWND WALLER DUBLIET DATA BY FUCATION STIL: GRAND JUNCTION 01725785 10 09746785 (Continued)

							/35=04==03729785==		/ 35-01 06/0//85		/35-01 09/16/85
PARAMETER	UNTE OF MEASURE		PARAMETER LUE+/-UNCERTAINIY	VA	PARAMETER EUF+Z=UNCERTAINTY		PARAMETER LUE+Z-UNCERTAINTY		PARAITE LER LIIE +7UNCER TAIN LY		PARAMETER HE+Z-DNCERTAINT
	MG/L CACOJ		1505.		1595.		350.		393.		335.
AL HHLINUM	MG/L		0.23		0.2		0./	(0.1		0.3
APPENDUM	MGZL		5.39		4.7		18. 1		9.04		1.5
ANT LMONY	MG7L	<	0,003	(0.003	<	0.003		0.008		0.042
ARSENTC	MGZŁ	<	0.01	(0.01		0.011		0.07		0.03
HALANCE.	X		0.61		-3.87						-3.59
BARIUM	MG/I		0.49		0.5	<	0.1	<	0.1	<	0.05
HURON	MG71.	<	0.01		0.05		0.19		0.63		0.72
CADM JUM	MGZL	<	0.001	(0.001	<	0.002	(0.001	<	0.001
CALCIUM	MGZL		194.		257.		44.		16.3		4-52
CHI ORT DE	MG/L		554.		7 18.		2/0.		500.		690.
CHROMIUM	MG/L	(0.01	(0.01		0.03	(0.01	<	0.01
CINNAL T	rig/l	ċ	0.05	ć	0.05	<	0.01	<	0.05	<	0.05
CUNDUCTANCE	UMHO/CM		/000.		H449.		2400.		2415.		2928.
COPPER	11671		0.03		0.06		0.22	(0.02		0.02
CYANDE	PIG/L	(0.01		_	<	0.01		-		-
FLOORIDE	MGZI	•	0.5		0.56		2.1		3.4		4.7
GRUSS ALPHA	PCTZ		_		-						
GROSS BETA	PCI/I						-		-		
HYD. SULF LDE			-		0.23	4	0.2			<	0.1
IKON	MGZI	(0.0(1	(0.03	•	0.1	(0.03		0.22
(FIND	rig/L	è	0.01	`		(0.01	ć	0.01		
HAGNES DM	MGZL	ì	0.01	(0.03	•	0.2	(0.01		0.36
MANGANESE	MG/L	ì	0.01	`	0.05	(0.05	č	0.01		0.06
MERCURY	MGZL	ì	0.0002	1	0.0002	•	0.0009	ć	5000.0	<	0.0002
MOLYBDENUM	MG/L	`	0.02	`	0.05		0.12	•	0.06		0.04
NICKEI	MGZL	(0.04		0.11	<	0.04		0.05	<	0.04
NURATE	MGZL	`	1.		1.	`	1.	(1.	ċ	1.
ORG. CARBON	MGZI		20.8		17.3		-	•			24.4
PB-210	PCIZE	(1.5		-		- 46 %	(1.5		-
PH	50	`	12.5		12.4		11.8	•	10.8		9.6
PHOSPHATE	MG/L	<	0.1		-	(0.1	(0.1		
20-240	PC1/L	ì	1.		_	``	-	ì	1.		
		`	96.8		- 		6.5	``	5.58		3.26
POTASSLIM	MGZL	,		,			-		_		1.
RA226	PCI/I	Ś	1.	(1.					•	~
RA-228	PCTZL	(1.	,	0.005		0.074		0.016		0.007
SELENIUM	MGZE		0.00/	(0.074		0.010		-
STUCON	MGZŁ				· ·		20.4		21.6		25.5
SILICA	MGZI	,	1.2		2.6	,	0.01		0.01		
STEVER	MGZL	(0.01			(370.	`	525.		640.
SODIUM	MGZI		874.		847.		0./		0.3		0.13
SHOWERDM	MGZL		10.9		42.				312.		184.
SULFAT	MGZI		107.		176.		210.		312.		-
SULFADE	MG/L		0.3								1 5.
LEMPERATURE	C - DEGREE		18.		16.		1:4-	,	1/.		-
LH 230	PETZE	<	1.					(1.		**
14-230	PC1Z6										

Table F.3.15 GROUND DATER DURILLY DATA BY LOCATION STIF: GRAND JUNCTION 03725285 10 09736785 (Concluded)

FORMATION OF COMPLETION: SHALE HYDRANDIC FLOW RELATIONSHIP: DOWN GRADIENT

			1-01 06/0//85				- SANPLE ID AND 1 35=04 - 03729785		ATE	/35-01 09/16/85
	UNLE OF		PARAMETER		PARAPLE FER		PARAMETER		PARAMETER	PARAMETER
PAKAMETER	MEASURE	VALI	E+/UNCERTAINTY	VAL	UF+Z-UNCERTAINTY	VAI I	IF + / - UNCE KIAJNIY	VAI	UE+/-UNCERTAINTY	VALUE + Z-UNCERTAIN
TIN	M G/I	(0.005	<	0.005	(0.005	<	0.005	(0.005
TOTAL SOLIDS	MG71_	7	/40.		2330.		•		-	1810.
16X	MGZI		0.15				••		~	-
U~234	PC171.	(1.	(1.		-	(1.	11.
U-238	PC171.	(1.	(1.		-	<	1.	З.
VANAD EUM	MG71.	(0.01	<	0.01		6.53		0.15	0.21
ZINC	MG/1		0.005		0.01/	(5.3	<	0.005	0.015

MAPPER INPUT FILE: GRJ01*UDPGW0100379

Table F.3.16 GROUND WATER QUALITY DATA BY LOCATION STIF: GRAND JUNCTION 03/29/85 TO 07/27/86

FORMATION OF COMPLETION: SANDSTONE HYDRAUTIC FLOW RELATIONSHIP: UP GRADIENT

			724~01 03/30/85		724-01 06/07/85		724-02 04/07/85		/24-03 06/07/85		724-04 06/07/85
PARAME TER	UNTE OF MEASURF	VA	PARAMETER NUE+/-UNCERTAINTY	`	PARAMETER FUE+7-UNCERTAINTY		PARAMETER I UF +/~UNCERTAINTY		PARAMETER NUF+/~UNCERTAINTY		PARAMETER LUE+Z-UNCERTAININ
ALKALINITY	MG/L CACOB		2014.		4785.		1/85.		1785.		1785.
ALUMINUM	MG7L	<	0.1	(U.1	<	0.1	(0.1	<	0.1
AMMONIUM	MG/L		1.2		1.		1./		1.7		1.7
ANTLINUNY	MG/L	<	0.003	<	0.003	<	0.003	<	0.003	<	0.003
ARSENIC	MG7L	•	0.01	(0.01	<	0.01	<	0.01		0.01
BALANCE	z		-3.59		-1.58		-2.1		~2.52		-1.54
HAK I UM	MG/L		5.1		5.54		5.29		5.32		5.49
BORON	MG/L		0./6		0.91		0.85		0.85		0.86
CADMD.UM	MG/L	(0.002	(0.001	<	0.001	(0.001	<	0.001
CALCIUM	MG/L		26.		22.4		20.8		21.1		21.8
CHLOKIDE	MG/L		1600.		1520.		1510.		1560.		1500.
CHROMLUM	MG/L	<	0.01	(0.01	(0.01	(0.01	<	0.01
COBALT	MGZL	ć	0.01	ć	0.05	ć	0.05	ć	0.05	(0.05
CUNDUCTANCE	UNHO/CM		6900.	•	5300.	•	5300.		5,300.		5300.
COPPER	MG/L		0.07	(0.02		0.02		0.02	(0.02
CYANLDE	MG/L	(0.01	ì	0.01	ì	0.01	ì	0.01	i	0.01
FLUORODE	MG/L		2.6		2.1	•	2.1	•	2.2		2.1
GROSS ALPHA	PCT/L	<	60.						_		
GRUSS HETA	PCI/L	è	50.				-		-		
HYD. SUNFIDE		ì	0.2		-		_		-		-
1RON	MGZL	`	0.2		0.152		0.161		0.152		0.148
LEAD	MG/L	<	0.01	(0.01	(0.01	(0.01	(0.01
PLAGNE STUM	MG/L	`	7.8	`	/ 33	``	7.34	`	7.1	`	7.3/
MANDANESE	MG/L	<	0.05	1	0.01		0.01		0.01	(0.01
FIF RCURY	MGZL	`	0.0003	ì	0.0002		0.0002		0.0002	ì	0.0002
MOLYBDENUM	MG/L	(0.01	ì	0.01		0.01		0.01	ì	0.01
NJCKEI	MG/L	ì	0.04)	0.04	ì	0.04		0.04	ì	0.04
NEIRAIE	MG/L	ì	1.	ì	1.		1.		1.		1.
ORG. CARBON	MG/L	`	38.2	``		``		``		``	17.
		,		,	16.6		17.		17.2		1/.
рө-210 Рн	PCT/L	(1.5	(1.5						7.7
	58 MC //	,	7.5	,	7.7	,	7.1	,	7.7	,	0.1
PHOSPHATE	MG/L	Ś	0.1	Ś	0.1	(0.1	(0.1	(0.1
P0-240	PC1/I	(1.	<	1.		-				
POTASSLUM	MG/L		1.		31.1		18.2		30.		21.6
RA-226	PC3 /4		1-6		э.						-
RA228	PCT/L .		1.2	(1.						
SELENTUM	MG/L	(0.00%		0.006		0.006		0.005		0.00/
SULCON	MGZL		·								
SH ICA	MGZL		4.5		4./		4.4		4 - 4		4.6
SILVER	MG/L	(0.01	(0.01	<	0.01	<	0.01	(0.01
S0D1404	MGZI		1780.		1700.		1660.		1690.		1690.
STRUNTLUM	MG/L		3./		3.54		3.49		.1.46		3.54
SULFAIL	MGZI		6.		20.3		10.4		10.2		9.6
501 F 107	MUZL.		-	(0.1	(0.1	(0.1	(0.1
LEMPT RATURE	U = DE GIO F		14.		15.		15.		15.		15.
111-230	PCTZL	<	1.	<	1.						-
118	MG71	<	0.005	<	0.005	(0.005	(0.005	(0.005

Table F.3.16 GROUND WATER WHALLIY DATA BY LOCATION STIF: GRAND JUNCTION 03/29/85 10 0//2//86(Continued)

FORMATION OF COMPLETION: SANDSTONE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

		724-01	03730785	/24-			- SAMPLE ED AND 4-02 05/07/85		F	15	4-04 06/07/85
PARAMETER	UNIT OF MEASURE		AMETER JNCERTAINTY		PARAME LER (UNCERTA) NTY	VALU	PARAME LER E+7UNCERTAINTY	VALUE	PARAMETER +/UNCERTAJNTY	VAI U	PARAMETER E+ZUNCERTAINTY
TOTAL SOLIDS	MG/4	4576.		443		4	450.	44	28.	4	430.
TUX	MG/L	υ.	1	().1		0.18		0.2	<	0.1
U-234	PCIZ	5.		(1.				-		
0~238	PCI/L	4.		<	1.		-				-
URANJUM	MG/L	-									-
VANADIUM	MG/L	(0.0	01		.01	(0.01		0.01	(0.01
23 NG	MG/L	0.0	DH .	(0.005	<	0.005	<	0.005	<	0.005

F-128

Table F.3.16 околор илтек видентерата встосатари 5111: около лимстром 63729785 по 67727786 (Continued)

FORMATION OF COMPLETION: SANDSTONE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

			/24-05 06/0//85		24~01 09/13/85	/	24-02 09/13/85		24-03 09/13/85	13	24-04 09/13/85
	UNIT OF FASURE	VA	PARAMETER LUE+7UNCERTAINTY	VAI	PARAMETER UE+Z~UNCERTAINTY		PARAMETER UE+Z~UNCERTAINTY		PARAMETER UE+7-UNCERTAINTY		PARAMETER DE+Z-UNCERTAINT
ALKALINITY M	G/L CACO3		1785.		1385.		1385.		1385.		1385.
ALUMENUM MO	G/L	<	0.1	<	0.1	<	0.1	(0.1	<	0.1
AMMON IUM MO	671		1.4		0./6		0./3		0.73		0.76
ANT EMDNY 11	67L - '	<	0.003	<	0,003	<	0.003	(0.003	(0.003
	67L	(0.01	<	0.01	<	0.01	<	0.01	(0.01
			-3.1/		14		44		~.37		0.15
	GZL.		5.93		0.22		0.27		0.22		0.23
	G/L		0.86		0./2		0./4		0./4		0./4
	67	<	0.001	<	0.001	<	0.001	(0.001	<	0.001
	G/L		22.9		10.9		10.9		10.6		11.1
	G/L		1600.		893.		914.		903.		922.
	67L	(0.01	<	0.01	<	0.01	<	0.01	<	0.01
	676	è	0.05	ć	0.05	<	0.05	(0.05	(0.05
	MBO/CM	•	5:300.		\$312.		5312.		5312.		5312.
	671	<	0.07		0.04		0.04		0.04		0.04
	67L	ì	0.01		-		_				-
	67L	`	2.		2.1		2.1		2.1		2.1
	C1/L		-		~		_		_		_
					-		-		-		
			-				8.5		N.6		8.7
HYD. SULFIDE MU		,			B. 1		0.03		0.04		0.04
	67L	\$	0.0(1		0.03		U.U.				
	67L	<	0.01						3.48		3.64
	67L.		6.4		3.58		3.56		0.06		0.07
	67L	<	0.01		0.0/	,	0.0/	,		(0.0002
	67L	<	0.0007	(0.0002	ç	0.0002	Ś	0.0002	~	0.01
	67L	<	0.01	<	0.01	(0.01	Ś	0.01	``	0.07
	GZL	<	0.04		0.06		0.06	(0.04		
NCTRATE MI	ijЛ.	<	1.	<	1_	(1.	(1.	(1.
	67L		16.5		6.0		6 - 1		6.6		۵. ۵
'8-2 1 0 Pi	C (7L		-		-		-		-		
°H SI	U		7.7		7.0		7.8		2.8		7.8
PHOSPHATE MU	67L	<	0.1		-				-		
P0~240 P0	сіл		-		n						-
POTASSLUM MU	G/L		31.1		4.3/		4.38		4.38		4.3/
RA226 PI	CIZL		-	<	1.	<	1.	(1.	(1.
RA-228 PI	C [/L		-		-				-		
	671		0.007	<	0.005	(0.005	(0.005	(0.005
	G/L		_		_						-
	6/1		4.4		9.4		9.4		9.6		10.3
	GZL	<	0.04		-		_				-
	671	•	1670.		1300.		1300.		1300.		1320.
	67L		3.72		1.4		1.44		1.42		1.4
	67L 671		10.		229.		21/.		227.		216.
	67L	<	0.1								-
	- DEGREE	`			13.		13.		43.		13.
	CIZE		15 -		1		1.1.		-		
		,		,	0.003	(0.005	(0.005	(0.005
IIN M	ь/I	<	0.005	<	0.005	(0.005	•	v. vo.		•••

Table F.3.16 GROUND WATER BUALITY DATA BY LOCATION SITE GRAND JUNCTION 03729785 TO 07727786 (Continued)

FORMATION OF CUMPLETION: SANDSTONE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

		724-05 0	06/0//85		4-04 09/13/85		- SAMPLE JD AND 4-02 09713785		F -03 09/13/85	724	1~04 09/13/85
PARAMETER	UNIT OF MEASURE	PARAM VAL LIE +/UNL		VALU	PARAME FER E+Z=UNCERTAINTY	VALU	PARAMETER E+Z-UNCERTAINTY	VALUE	PARAMETER +/-UNCERTAINTY	VAL UI	PARAMETER +/-UNCERTAINIY
101AL SOL 105	MG/L	4468.		2	950.	2	980.	34	10.	30)70.
TOX	MG/L	0.14			-		-		-		-
U-234	PC171			<	1.	(1.	<	1.	<	1.
U-238	PCI/L			<	1.	<	1.	<	1.	<	1.
URANJUM	MG/L	-					-		-		-
VANAD (UM	MG/L	0.01		<	0.01		0.01	(0.01	<	0.01
ZINC	MG/L	(0.005	Ċ		0.009		0.008		0.01		0.009
Table F.3.16 GROUND WATER QUALITY DATA BY LUCATION 511F: GRAND JUNCTION 03/29/H5 DD 07/27/06 (Continued)

FORMATION OF COMPLETION: SANDSTUNE HYDRAULIC FLOW RELATIONSHIP: UP GRADIEN

			724-05 09/13/85		/24-01 0//25/86		24-02 07725786 24-02 07725786		ATE		24-04 07725786
PARAMETER	UNIT OF MEASURF	VA	PARAMETER I UE+/-UNCERTAINTY	VAI	PARAMETER UE+Z~UNCERTAINTY	VAL	PARAMETER LIE + / UNCERTATNTY	VAL	PARAMETER UE+/~UNCERTAINTY	VAL	PARAMETER UF+/-UNCERTAINTY
AI KALINITY	MG/L CACO3		1385.		1650.		1650.		1650.		1650.
ALUMINUM	MG/L		0.2		0.4		0.3		0.3		0.3
AMHONJUM	MG/L		1.		0.8		0.4		0.4		0.4
ANTIMONY	MG/L	<	0.003		-		-				-
ARSENIC	MG/L	è	0.01	<	0.01	<	0.01	(0.01	<	0.01
BALANCE	X	•	0.11	•	54		43		43		43
BARIUM	ÂG/L		0.23				-				
	MG/L		0./4						-		·
BORON		<	0.001		-		_		-		
CADHJUH	MG/L.	`	10.8		19.		19.2		19.2		19.2
CALCIUM	MG/L				1900.		1800.		1800.		1800.
CHLORIDE	MG/L	,	925.				0.03		0.03		0.03
CHROMIUM	MG/L	Ś	0.01		0.04		0.03		0.03		0.0.3
CUBAL T	MG/L	(0.05						4400		
CONDUCTANCE	UMHO/CM		5312.		4500.		4600.		4600.		4600.
COPPER	MGZL		0.04		-						
CYANIDE	MG/L		-		-				-		-
FT UORD DE	HG/L		2.2				-				
GROSS ALPHA	PCI/L		-								-
GROSS BETA	PCI/I		-		-		-		-		
HYD. SULFIN	E MG/L		8.9				-		-		
1 KON	MG/L		0.05		0.0/		0.06		0.08		0.08
LEAD	MG/L		÷		-		-		-		-
MAGNE'S JUM	MG/L		3.52		4.91		5.01		5.01		5.01
MANGANESE	MG/L		0.0/		0.03		0.03		0.03		0.03
ME KOUKY	MG/L	(0.0002		-		-		-		-
HOL YBDE NUM	11G/L	è	0.01		0.00		0.1		0.1		0.1
NICKEI	MG/L	è	0.04	<	0.04	(0.04	(0.04	(0.04
NETRATE	MG/L	ì	1.	i	1.	i	1.	i	1.	i	1.
DRG. CARBON	MG/L	•	6.7	•	-	•	_	•	-	•	-
PB-210	PCT/L		-						-		-
PH	SU		7.8		7.67		7.67		7.62		7.62
							-		-		-
PHOSPHATE	MG/L						-				_
PO-240	PC 1/L										7.82
POTASSIUM	MG/L	,	4.4		/.36		1.82		/.82		/.0z
RA-226	PC1/I	<	1.		-		-		-		-
RA-228	PCI/L		-	-					-		
SELENIUM	MG/L.	<	0.005	(0.005	(0.005	<	0.005	(0.005
SILCON	MG/L		-		-				-		
SHICA	MGZL		10.1		-		-				
SILVER	MGZL		-						-		-
SODIUM	MGZL		1320.		1950.		1840.		1870.		1890.
STRONTION	1467L		1.33		-		-		-		-
SULFAIF	MGZL		243.		33.3		34.9		34.7		34.9
SULFIDE	MG/L		-								new (
TEMPERATURE	C – DEGREF		13.		15.		15.		15.		15.
TH-530	PCIZE		-		-		-		_		 .
1 J N	MG71	(0.005								Pees *

Table F.3.16 GROUND WATER QUALITY DATA BY LUCATION SITE: GRAND JUNCTION 03/29/85 10 07/27/86 (Continued)

FORMATION OF COMPLETION: SANDSTONE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

					LUCATION	10 - SAMPLE					
		724-05	09/43/85	724-01 077	25786	784-02 0//	25786	72403	07725786	/24-04	07725786
PARAMETER	UNIT OF MEASURE		RAMETER UNCERTAENTY	PARAMET VALUE+Z-UNCER		PARAME I AL UE +7UNCER			AMETER NCERTAINTY		RAMETER UNCERTAINLY
TOTAL SOLIDS	MG/L	3380.		3930.		3930.		3920.		3920.	
TOX	MG/L	-		-		-		-		-	
U-234	PC 1 / I	(1.		-				-		-	
0-238	PCI/L	(1.		-				-			
UKANTUM	MG/L	-		0.0027		0.003		0.0	033	0.0	003 E00
VANAD LUM	MG/L.	(0.	01	0.25		0.3		0.3		0.3	3
2.) NC	MGZL	0.	01	0.034		0.028		0.0	28	0.0	028

STIT: GRAND JUNCTION OF727786 (Continued)

FORMATION OF COMPLETION: SANDSTONE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

		724-05 07/25/86 725-04 03/29/85 725-02 03/29/85 725-04 06/07/85 725-04 09/12/85									
PARAMETER	UNIT OF MEASURE		PARAMETER Z-UNCERTAINTY		PARAMETER UE+/-UNCETCTAINTY		PARAMETER LUF+Z-UNCER FAJN TY		PARAMETER UE+/-UNCERTAINTY		PARAMETER JE+/-UNCERTAINTY
ALKAL JNJ TY	MG/L CACO3	165	0.		2000.		2000.		035.		360.
ALUMINUM	MG/L		0.3	<	0.1	<	0-1	<	0.1		0.2
AMMONIUM	MG/L		0.4		2.3		2.2		2.		1_8
ANTIMONY	MG/L			(0,003	(0.003	<	0.003	(0.003
ARSENIC	MG/L	<	0.01	<	0.01	<	0.01		0.01		0.02
BALANCE	z		~.43		3.72		1-13/		0.8/		-2.82
BARIUM	₩G/L		-		1.8		1.8		1.05		0.62
BURDN	MG/L		-		0.0/		0.08		0.36		0.56
CADILLUM	MG/L		-	(0.002	<	0.002	(0.001	<	0.001
CALCIUM	MG/L	4	9.2	`	540.	•	5/4.		210.		44.2
CHLORADE	MG/L	180			2400.		2300.		3/20.		4150.
CHROMIUM	MG/L		0.03	(0.01	(0.01	(0.01	<	0.01
			0.03	ì		ì	0.01	i	0.05	ć	0.05
COBAL 1 CONNECTANCE	MGZL.		-	-	0.01		1/000.	``	13250.	1	1000.
CONDUCTANCE	UMHO/CM	460		,	1/000.		0.01	(0.02		0.04
COPPER	MG/L		-	č	0.01	è	0.01	ì	0.01		-
CYANIDE	MG/L		-	(0.01	``		``	0.5		1.1
FLUORIDE	MG/L		-		0.8		0.8		0.8		-
GROSS ALPHA	PCT/L		-		220.		100.				
GRUSS BETA	PCI/E		-		90.	(50.		_		0.23
HYD. SULF (DE			-		4./		3.4		·	,	0.03
TRON	MG71.		0.0H	¢	0.05	(0.05		111.	(-
LEAD	MG/L			(0.01	٢	0.01	<u> </u>	0.01		
MAGNESSUM	MGZL.		5.01		0.04		4.2	(0.01		0.56
MANJANESE	MG7L.		0.03	(0.05	(0.05	(0.01		0.03
MERCURY	MG/L		-		0.0006		0.0007		0.0002		0.0002
HOLYBDENUM	MG/L		0.1		0.013		0.9		0.03		0.02
NICKEL	MGZI	<	0.04	(0.04	(0.04	(0.04		0.06
NTIRATE	MG/L	<	1.	(1.	•	1.	(1.	(1.
OKG. CARBON	MG/L		-		7.1		1.		4.4		3.7
PB210	PCTZI.		-	(1.5	(1.5	<	1.5		-
PH	SU		7.67		12.4		42.6		11.9		11.9
PHOSPHATE	MG/L		_	(0.1	<	0.1	<	0.1		
PB-240	PC1/1		-	(1.	(1.	(1.		-
POTASSTUM	MG/L		1.82		59.		51.2		37.4		22.2
RA-226	PCIZE		-		5.		4.		2.		1.1
RA-228	PCTZL		-	(1.		1.3	(1.		-
SELENIUM	MG/L	(0.005	ì	0.005	<	0.005		0.016	(0.005
STLCON	MG/L	•	-	`	-	•	1.8		-		-
	MG/L		_						5.5		36.4
SILICA SILVER	MG/L			<	1.8 0.01	<	0.01	(0.01		
		400	_	`		`		``	2530.		2700.
SUDIUM	MGZŁ	185	v.		2060.		1900. 10.6		4.47		2.27
STRONTIUM	NG/L				11.				79.2		140.
SULFAIF	MGZL	2	34_9		120.		190.		0.2		
SULF OE	HOZE C. DECOUR		-								12.
TEMPERATURE	C - DEGREE		15.		12.		17.	,	14-		
111-230	PUTZL		-	<	1.	(1.	Ì	1.	(0.005
110	MGZI		-	(0.005	<	0.005	`	0.005		V. UV.

Table F.3.16 BROUND WATER DUALITY DATA BY LOCATION STIF: GRAND JUNCTION 03729785 TO 07727786 (Continued)

FORMATION OF COMPLETION: SANDSTONE Hydraufic flow relationship: up gradient

				IUCALI	IN 10	- SAMPLE JD AND	LOG DA	1t		
		724-05 07/25/86	15	5-01 03/29/85	15	5-02 03729785	72	5-01 06/07/85	729	5-01 09/12/35
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE+/-UNCERTAINTY	VAL U	PARAMETER E+Z~UNCERTAINTY	VALU	PARAMETER H+Z-UNCERTAINTY	VAI U	PARAMETER E+/-UNCERTAINTY	VALUI	PARAMETER +/-UNCERTAINTY
TOTAL SOLIDS	MG/L	3920.	6	1/4.	6	1/8.	7	164.	6	730.
TOX	MG/L	-		5.0	<	0.1	<	0.1		-
U-234	PC1/L	-	<	1.	<	1.	(1.	(1.
U-238	PCT/L	-	<	1.	<	1.	<	1.	<	1.
UKANTUM	MG/L	0.0031		-		-				-
VANAD LUM	MG/L	0.3	<	0.01	<	0.01		6.03		0.05
ZINC	MG/L	0.058		0.1		0.04	<	0.005		0.008

ŀ

,

Table F.3.16 GROUND WATER DUALITY DATA BY LOCATION 511F: GROUD JUNCTION 03/29/85 10 07/27/86 (Continued)

FORMATION OF COMPLETION: SANDSTONE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

		LOCATION 3D - SAMPLE 1D AND LOG DATE										
		725-01 0//2//86 726-01 0//25/86										
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE+Z-LINCERTADNTY	PARAMETER VALUE+Z-UNCERTAINTY	PARAMETER VALUE + / - UNCERTADNTY	PARAMETER VALUE + / ~ UNCERTAINTY	PARAMETER VALUE+/UNCERTAINTY						
AL KAL INITY	MG/L CACU3	733.	1014.									
ALUMENUM	MG/L	0.3	0.3									
AMMONIUM	MG/L.	0.6	0./									
ANT (MONY	MG/L	_	~									
ARSEN1C	MG/L	(0.01	(0.01									
BALANCE	X	-1.46	~ . 4									
BARIUM	MG/L	_										
BORON	MG/L	-	-									
CADID UM	MG/L		_									
	MG/L	43.3	H2.6									
CALCIUM	MG/L	3400.	520.									
CHLORIDE		0.04	0.04									
CHROMIUM	MG/L	0.04	-									
COHAL T	MG/L	3500.	9000.									
CONDUCTANCE	UMHO/CM	3500.	,000.									
COPPER	MG/L	-	_									
CYANIDE	MG/L	-	-									
FLUORUDE	MG/L	-	-									
GROSS ALPHA	PCI/L											
GROSS BETA	PCI/L	-										
HYD. SULFIDE	MG/L	1481										
) KON	MGZL	0.61	1.68									
LEAD	MG/L	-	-									
MAGNESTUM	MG/L	13.3	20.5									
MANGANESE	MG/L	0.1B	0.46									
MERCORY	MGZE											
HOLYBDENUM	MG/L	0.1	0.1									
NICKEI	MGZL	0.06	0.05									
NURATE	MG/L	< 1.	< 1.									
ORG. CARBON	MG/L	_	-									
PB-210	PCT/L	-										
PH	SU	9.06	/.04									
PHOSPHATE	MG/L	-	- 100									
PO-210	PCI/L	_	-									
POTASSIUM	MG/L	17.	12.9									
RA-226	PC171		-									
RA-228	PCTZL	-	**									
SELENJUM	MG/L	(0.005	(0.005									
STLCON	MG/L											
		-										
SJELLA	MG/ł											
STEVER	MG/L	2400	41.4									
SUDTOM	MGZE	2400.	656.									
STRONLEUM	MG/L		•									
SULFAIL	MGZL	34.6	5.7									
SULFIDE	MG/L											
TEMPERATURE	C - DEGREE		14.									
111-530	PULZE	-										
11N	MGZL											

Table F.3.16 GROUND WATER DUALITY DATA BY EDUCATION SCIE: GRAND DUNCTION 03779785 TB 07727786 (Concluded)

FORMATION OF COMPLETION: SANDSTONE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

		LUCATION ID - SAMPLE ID AND LOG DATE								
		725-01 0//2//86	/26-01 0//25/86							
PARAMETER	UNIT OF	PARAMETER VALUE+Z-UNCERTADNTY	PARAMETER VALUE + Z-UNCERTAINTY			nn ang an				
TOTAL SOLIDS	MG/L.	7210.	7050.			nn anns anns anns anns anns anns anns a				
TOX	MG/L	-	- 							
U-234	PCI/L	-	_							
U-238	PCT/L	-	-							
UKAN) UM	MG/L	0.0054	0.00(11							
VANADIUM	MG/L	0.3	0.53							
ZINC	MG/L	0.036	0.05							

Table F.3.17 GROUND WATER QUALITY MEASUREMENTS EXCEEDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: GRAND JUNCTION 02/01/83 TO 09/05/85

PARAMETER	UNITS OF MFASURE	MAXIMUM VALUE	L00	CA110 (D	אר	SAMPLE (D	LUG DATE	PARAMETER VALUE+Z-UNCERTAINTY
ALKALINTTY ALUMINUM **** SAMPLES	MG/L CACO: MG/L EXCEEDING	3 1073.1329 .0500 MAXIMUM VALUE	=	- 745 4	z	- 01 ****	03/30/85	.3000
AMMON) UM	MG/L	15.7000		7 10 7 10 7 10		01 01 01	03/21/85 06/0//85 09/04/85	45.0000 24.9000 62.1000
**** SAMPLES	EXCEEDING	MAX (MUM VALUE	=		7,		07/04/83	62.1000
ANTIMONY ARSENIC	MG/L MG/L	.0080 .0050		- 588 588		- 01 01	- 06707785 09704785	- .0100 .0100
**** SAMPLES	EXCEEDING	MAX (MUM VALUE	=	R	7	***		
BALANCE **** SAMPLES	2 EXCFEDING	.4700 MAXIMUM VALUE	; =	588 710 714 744 744 744 744 744 744 745 746 746 746		01 01 01 02 03 04 05 04 05 04 01 01 01 01	07/01/83 06/07/85 09/04/85 06/07/85 06/07/85 06/07/85 06/07/85 06/07/85 06/07/85 03/30/85 03/30/85 03/27/85 03/27/85	5.6500 3.8100 3.8600 .6200 1.8600 2.2200 2.5700 1.5300 1.2600 5.1400 2.8800 5.0800 1.5700 5.3700
BAR(UM BURON CADMIUM CALCIUM	MG/L MG/L MG/L MG/l	.0675 1.0965 .0012 473.7839		- - 7 10 7 10 7 45 7 45 7 46 7 46 7 46		- - 01 01 01 01 01 01 01	- - - 03/21/85 04/0//85 04/04/85 03/30/85 03/22/85 03/22/85 04/07/85 09/05/85	- - - 590.0000 524.0000 503.0000 490.0000 490.0000 490.0000 595.0000 4/2.0000
**** SAMPLES	FXCEEDING	MAXIMUM VALUE	=	34	X	****		
CHI.OR TOE	MG/L	399.8380		7 10 7 10 7 10 7 44		0 1 0 1 0 1 0 1	03/21/85 06/07/85 09/04/85 03/21/85	//0.0000 607.0000 /83.0000 450.0000

Table F.3.17 GROUND WATER QUALITY MEASUREMENTS EXCEEDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: GRAND JUNCTION 02/01/83 TO 09/05/85 (Continued)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

	ETS OF MAX (MUM ASURE VAL UF		. –		PARAMETER VALUE+Z-UNCERTAINTY
CHLORIDE MG/	L 399.8380	746	01	03/72/85	460.0000
		745			
			01	09/05/85	656.0000
**** SAMPLES EXC	EEDING MAXIMUM VALU			••••	
CHROMJUM MG/ **** SAMPLES EXC	L .0200 EEDING MAX(MUM VAL)	744 F = 4%		03/21/85	.0700
COBALT MG/	L .0390	_	-	-	_
	0/CM 67 14 7250		01	09/05/85	7/35,0000
	EEDING MAXIMUM VALU			077.007.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
CUPPER MG/	L .0508	-	-	-	_
CYANEDE MG/			-		_
FI.UDRIDE MG/			U 1	09/04/85	1.2000
					1.5000
		746	01 01	09/05/85	1.6000
**** SAMPLES EXC	FEDING MAXIMUM VALU	F = 13 %	****		
GROSS ALPHA PCI	/L 126.5685	746	01	03/22/85	230.0000
	FEDING MAXIMUM VALU	-			
GRUSS BETA PCI	/L 25.0000	710	01	03/21/85	100.0000
		744	01	03/21/85	50.0000
**** SAMPLES EXC	EEDING MAXIMUM VALU	E = 50 %	****		
HYD. SULFIDE MG/	L 1.4802		-	-	-
TRON MG/	L 1.4835	588	01	02/01/83	2.3000
		710	01	09/04/85	3.0400
		/45	υí	03/30/85	2.2000
**** SAMPLES EXC	FEDING MAXIMUM VALU	E = 13 %	****		
LEAD MG/			-	-	_
MAGNESIUM MG/	L 547.8779	746	01	06/07/85	570.0000
**** SAMPLES EXU	EED (NG MAXIMUM VALU	E = 4%	****		
MANGANE'SE MG/	L 8.7400		-	-	_
MERCURY MG/	L .0003		-	-	-
MULYBDENUM MG/	L .0757	710	01	03/21/85	.0800
		740	01	09/04/85	. 1000
		746	01	03/22/85	. 1200
		746	01	06/0//85	- 1 i00
		746	01	04/05/85	. 15 00
**** SAMPLES EXC	EEDING MAX(MUM VALU	E = 21%	****		
NJ CKEL MGZ	L .0684	7 10	01	09/04/85	.0900
			01		

F-138

Table F.3.17 GROUND WATER QUALITY MEASUREMENTS EXCEEDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: GRAND JUNCTION 02/01/83 FO 09/05/85 (Continued)

PARAMETER	UNITS OF MEASURE		L.0(CATION TD	SAMPI E [D	LUG DATE	PARAMETER VALUE+Z-UNCERTA (NTY
**** SAMPLES	EXCEEDING	MAX [MUM_VALUE	=	9%	****		
NITRAIE ORG. CARBON	MG/L MG/L	8.4462 55.7267		- 588 746	- 01	- 02/01/83 03/22/85	- 64,5000 525,0000
**** SAMPLES	EXCEEDING	MAX (MUM VALUE	=		01 ****	03/22/85	575.0000
₽ ₭-2 10 РН	PCI/L Su	2.68/5 7.4450		- 588 588 /44	- 01 01	- 04/07/85 09/04/85 09/05/85	- 7.2000 7.2000 7.5000
**** SAMPLES	FXCFEDING	MAXIMUM VALUE	=			<i></i>	, 20000
PHOSPHATE PO-240 POTASSIUM	MG/L PCI/L MG/L	2.5375 .5000 15.6300		- 7 10 7 10	- 01 01	- 03/21/85 06/07/85	- 23.6000
**** SAMPLES	EXCFEDING		=	710 13 %	01 ****	09/04/85	8 9.1 000
RA-226 RA-228	PCI/L PCI/I	.5000 .5000		- 710 /44 746	- 01 04 01	- 03/21/85 09/04/85 09/05/85	- 1.0000 1.1000 1.1000
**** SAMPLES	EXCEED (NG	MAX (MUM VALUE	=				
SELENJUM SULICA SJIVER SODIUM STRONTJUM	MG/L MG/L MG/L MG/L MG/L	.0152 21.2545 .0050 951.9060 4.5156	_	- - 7 10 7 10 7 45 7 45 7 46 7 46 7 46	- - - - 01 01 01 01 01 01 01 01	- 03/21/85 04/0//85 09/04/85 03/30/85 03/30/85 06/07/85 06/07/85 06/07/85	- - - - - - - - - - - - - - - - - - -
**** SAMPIES	EXCEFDING	MAXIMUM VALUE	=	36 %	****		
SULFATE SULFIDE TEMPERATURE	MG/L MG/L C - DEGREN	3833.8504 .0500 E 18./488		- - 588 744 744 744 744	- 01 01 02 03 04	- 09/04/85 09/04/85 09/04/85 09/04/85	- 19.5000 19.5000 19.5000 19.5000 19.5000

Table F.3.17 GROUND WATER QUALITY MEASUREMENTS EXCEPTING STATISTICAL MAX(MUM VALUE BY PARAMETER SITE: GRAND JUNCTION 02/01/83 TD 09/05/85 (Concluded)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

PARAMETER								PARAMETER VALUE+ZUNCERTAINTY
		E 18.7488 MAXIMUM VALUE					09/04/85	19.5000
TH-230	PCI/L MG/L	.5000 .0025 7221.0938		-		-	-	-
TOTAL SOLIDS	MG/L	/221.0938		_		~	-	_
TOX	MG/L	.2466		744		01	03/24/85	8.2000
				744		01	06/0//85	.3100
				744		02	06/07/85	.2900
				144		0 3	06/0//85	* 5800
				745		01	09730785	.3000
**** SAMPLES	EXCEEDING	MAX (MUM VALUE	=	:38	%	****		
U-234	PCI/L	35.1621		7 10		01	06/07/85	36.0000
**** SAMPLES	EXCEEDING	MAX EMUM VALUE	=	5	7.	****		
U-238	PCI/I	23.0995		7 10		01	06/07/85	30.7000
							09705785	27.0000
**** SAMPLES	EXCFEDING	MAXIMUM VALUE	=	11	%	****		
VANADIUM	MG/L	.0200		-		-	-	
ZINC							03/21/85	.0900
						01		
**** SAMPLES	EXCEFDING	MAX1MUM VALUE	=	8	z	****		

MAPPER DATA FILE: GRJ01*UDPGW0100373

Table F.3.18 GROUND WATER QUALITY MEASUREMENTS EXCEEDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: GRAND JUNCTION 01/31/83 TD 09/11/85

PARAMETER	UNITS OF MEASU RE	MAXIMUM VALUE	LOCATION (D	SAMPLE ID	LUG DATE	PARAMETER Value+/-Uncerta (NTY
ALKALINITY	MG/L CACOS	3 1073.1329	581	01	09/11/85	1375.0000
			581	02	04/11/85	1375.0000
			581	0.3	09/11/85	1375.0000
			581	04	09/11/85	1375.0000
			581	05	09/11/85	13/5.0000
**** SAMPLES	EXCFEDING	MAXIMUM VALUF		****		
ALUM (NUM	MG/L	.0500	58 3	01	09/21/83	. 1700
			584	01	09/24/83	.5100
			147	01	09/05/85	.2000
**** SAMPLES	EXCEEDING	MAXIMUM VALUE	= 12 %	****		
AMMONIUM	MG/L	15.7000	581	01	09/22/83	SB5*0000
			581	01	03/28/85	166.0000
			581	01	06/07/85	205,0000
			581	02	06/07/85	206.0000
			581	0.3	06/07/85	199. 0000
			581	04	06/07/85	202.0000
			581	05	06/0//85	201.0000
			581	01	09/11/85	204.0000
			581	02	09/11/85	210.0000
			581	03	09/11/85	204.0000
			581	04	09/11/85	504.0000
			581	05	09/11/85	210.0000
			58:3	01	09/21/83	335.0000
			583	01	03/26/85	357.0000
			583	01	06/07/85	274.0000
			583	01	07/11/85	456.0000
			584	01	09/21/83	3/4.0000
			584	01	03/26/85	439.0000
			584	01	04/0//85	440.0000
			584	01	09/11/85	521.0000
			587	01	09/21/83	32.3000
			747	01	03/22/85	95.9000
			747 747	01	06/0//85	128.0000
**** SAMPLES	EXCEEDING	MAXIMUM VALUE			09/05/85	129.0000
ANTIMONY	MG/L	.0080	-	_	_	_
	MG/L	.0050	581	0 1	09/22/83	.0080
			581		03/26/85	.0160
			581		06/0//85	.0100
			581		06/07/85	.0100
			581		06/07/85	.0100
			581		06/07/85	.0100
			581		06/07/85	.0100
			58 1		09/11/85	.0100

Table F.3.18 GROUND WATER QUALITY MEASUREMENTS EXCLEDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: GRAND JUNCTION 01/31/83 TO 09/11/85 (Continued)

PARAMETER	UNITS OF MEASURE	MAXIMUM VALUF	LOCATION ID	SAMPLE ID	LOG DATE	PARAMETER VALUE+/-UNCERTAINTY
AKSENIC	MG/L	.0050	581	02	09/11/85	.0100
		• • • • •	581	03	09/11/85	.0100
			581	04	09/11/85	.0100
			581	05	09/11/85	.0100
			583	01	02/07/83	.0060
			583	01	06/0//83	-0110
			583	01	04/24/83	.0770
			583	Οſ	03/26/85	<u>-0190</u>
			583	01	06/07/85	.0200
			583	01	09/11/85	.0300
			58 4	01	02708783	.0070
			584	01	04/08/83	.0450
			584	01	09/21/83	.0700
			584	01	03/26/85	. 1800
			584	01	06/07/85	.0900
			584	01	09/11/85	- 1400
			587	01	06/08/83	.0070
**** SAMPLES	EXCEEDING	MAX (MUM VALUE	= /3 %	****		
BALANCE	x	.4700	581	01	03/26/85	.5300
			583	01	03/26/85	.5400
			583	01	06/07/85	1.8400
			583	01	09/11/85	1.2200
			584	01	04/11/85	.8000
			587	0 1	09/21/83	8.8500
			747	01	03/22/85	1.2000
			/ 47	01	06/0//85	3.9500
			747	01	09705785	1.8500
**** SAMPLES	EXCEEDING	MAX (MUM VALUE	= 28 %	****		
BARIUM	MG/L	,0675	583	01	09/21/83	. 1700
			SH4	01	0 9 /21/83	• 08:30
			747	01	03/22/85	. 1000
**** SAMPLES	EXCEEDING	MAX (MUM VALUE	= 9%	****		
BURON	MG/L	1.0965	-	-	-	-
CADMIUM	MG/L	.0012	583	01	07/21/83	.0720
			583	01	03/26/85	.0100
			583	01	06/0//85	- 00B0
			583	01	09/11/85	.0140
			584	01	09/21/83	. 4200
			58 4	01	03/28/85	.0970
			584	01	04/0//85	.0730
			584	01	09/11/85	. 1470
			S87	01	07/21/83	.0040
**** SAMPLES	EXCEEDING	MAXIMUM VALUE	= 37 %	***		

Table F.3.18 GROUND WATER QUALITY MEASUREMENTS EXCEPDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: BRAND JUNCTION 01/31/83 TO 09/11/85 (Continued)

PARAMETER	UNITS OF MEASURE	MAX (MUM VALUF	LOCAT (ON ID	SAMPLE ID	LOG DAIE	PARAMETER VALUE+/-UN(ERTA)NTY
CALCIUM	MG/L	423.2839	581	01	06/09/83	654.0000
			581	01	0:3/26/85	550.0000
			581	01	06/07/85	483.0000
			581	02	04/0//85	481.0000
			581	03	06/07/85	474.0000
			581	04	05/0//85	477.0000
			581	05	06/07/85	474.0000
			581	01	09/11/85	535.0000
			581	02	09/11/85	541.0000
			581	03	09/11/85	548.0000
		581	04	09/11/85	546.0000	
			581	05	09/11/85	540.0000
			583	01	02/07/83	555.0000
			583	01	06/0//83	475.0000
			583	01	09/21/83	520.0000
			583	01	03/26/85	520.0000
			583	01	06/07/85	492.0000
			583	01	09/11/85	545.0000
			584	01	02/08/83	556.0000
			584	01	06/08/83	585.0000
			584	01	09/21/83	470.0000
			584	01	03/26/85	530.0000
			584	01	06/0//85	605.0000
			584	01	09/11/85	523.0000
			58/	01	01/31/83	454.0000
			587	01	06/08/83	505.0000
			747	01	03/27/85	580.0000
			747	01	04/0//85	645.0000
			747	01	04/05/85	502.0000
**** SAMPLES	EXCEEDING	MAXIMUM VALUE			07703703	302.0000
CHLORIDE	MG/L	399.8380	581	01	02/07/83	515.0000
			581	01	06/09/83	640.0000
			581	01	09/22/83	530.0000
			58 f	01	03/26/85	490.0000
			581	01	06/07/85	563.0000
			581	02	04/0//85	5/3.0000
			581	03	06/07/85	564.0000
			581	04	04/07/85	5/6.0000
			581	05	06/07/85	579.0000
			581	01	09/11/85	5/9.0000
			581	02	09/11/85	598.0000
			581	03	09/11/85	580.0000
			581	04	09/11/85	537.0000
			581	05	09/11/85	56/.0000
			583	01	02101183	760.0000
			583	01	04/0//83	7/0.0000

Table F.3.18 GROUND WATER QUALITY MEASUREMENTS EXCLEDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: GRAND JUNCTION 01/31/83 0 09/11/85 (Continued)

PARAMETER	UNITS OF MEASURE	MAXIMUM VALUE	LOCATION	SAMFLE [D	LUG DATE	PARAMETER VALUE+7-UNCERTAINTY
CHLORIDE	MG/L	399.8380	583	01	09/21/83	/90.0000
			583	01	03/26/85	660.0000
			583	01	04/07/85	/87.0000
			583	01	09/11/85	862.0000
			584	01	02/08/83	822.0000
			584	01	06/08/83	970.0000
			584	01	09/21/83	/90.0000
			584	01	03/26/85	720.0000
			584	01	06/07/85	/91.0000
			584	01	09/11/85	869.0000
			587	01	04/08/83	520.0000
			587	01	09/21/83	400.0000
			747	01	03/22/85	740.0000
			747	01	06/07/85	1030.0000
			747	01	09/05/85	1000.0000
**** SAMPLES	EXCEEDING	MAXIMUM VALU			0,, 0,, 0,	
CHROMIUM	MG/L	.0200	584	01	03/26/85	.0300
**** SAMPLES	EXCEEDING	MAXIMUM VALUE	= 3%	****		
COBALT	MG/L	.0390	581	01	04/09/83	.05:30
			583	01	06/07/83	.0490
			583	01	09/21/83	.5300
			583	01	05/07/85	.0500
			584	01	02/08/83	. 1600
			584	01	06/08/83	. 1500
			584	01	09/21/83	. 5600
			584	01	03/26/85	.0500
			584	01	04/0//85	.0700
			584	01	09/11/85	. 1 300
**** SAMPLES	EXCEED ING	MAX EMUM VALUE	E = 31 %	****		
CUNDUCTANCE	UMHO/CM	6714.7250	581	01	09/11/85	6765.0000
			581	02	09/11/85	6/65.0000
			581	03	09/11/85	6765.0000
			58 1	04	09/11/85	6765.0000
			581	05	09/11/85	6765.0000
			583	01	0:1/26/85	8600.0000
			583	01	06/07/85	7320.0000
			583	01	09/11/85	9516.0000
			584	01	03/26/85	7600.0000
			584	01	06/07/85	/564.0000
			584	01	09/11/85	10004.0000
			747	01	03/22/85	/000.0000
			747	01	09/05/85	9200.0000
**** SAMPLES	EXCEEDING	MAX (MUM VALUE	= 64%	****		

Table F.3.18 GROUND WATER QUALITY MEASUREMENTS EXCEPTING STATISTICAL MAX(MUM VALUE BY PARAMETER SITE: GRAND JUNCTION 01/31/83 TO 09/11/85 (Continued)

PARAMETER	UNITS OF MFASURE	MAX) MUM VALUE	L 00	A 0110 N 10	SAMPLE (D	LUG DATE	PAKAMETER VALUE+Z-UNCER TATNEY
COPPER	MG/L	.0508		583	01	09/21/83	.06/0
				583	01	03/26/85	. 1100
				583	01	09/11/85	.0/00
				584	01	02/08/83	. 1200
				584	01	09/21/83	. 2000
				584	01	03/26/85	.1500
				584	01	04/0//85	.0760
				584	01	09/11/85	. 1400
**** SAMPLES	EXCEEDING	MAXIMUM VALUE	=	25 %	***		
CYANIDE	MG/L	.0050		-	-	-	-
FEDURIDE	MG/L	1.1459		584	01	09/22/83	4.4000
				581	01	03/26/85	4.2000
				581	01	06/0//85	4.3000
				581	02	03/07/85	4.2000
				581	03	06/0//85	4.3000
				581	04	06/07/85	4.3000
				581	05	06/07/85	4.1000
				581	01	05/11/85	4.8000
				581	02	07/11/85	4./000
				581	6Э	04/11/85	4.9000
				581	04	07/11/85	4.9000
				581	05	09/11/85	4.7000
				583	01	09/21/83	4.4000
				583	01	03/26/85	4.2000
				583	01	06/0//85	3.0000
				583	01	09/11/85	4.2000
				584	01	0.4/51/83	4.3000
				584	01	03/26/85	3.7000
				584	01	06707785	3./000
				5H4	01	09/11/85	3.9000
**** SAMPLES	EXCEEDING	MAX EMUM VALUE	=	83 %	***		
GROSS ALPHA	PCI/L	176.5685		581	01	03/28/85	160.0000
				583	01	03/26/65	255.0000
				584	01	03/26/85	230.0000
**** SAMPLES	EXCEEDING	MAX (MUM VALUE	=	15 %	****		
GROSS BETA	PCI/I	25.0000		581	01	03/26/85	70.0000
				583	01	03/26/85	140.0000
				584	Ŏİ	03/26/85	155.0000
				747	01	03/22/85	90.0000
**** SAMPLES	EXCEEDING	MAXIMUM VALUE	=	100 X	****		
HYD. SULFIDE	MG/L	1.4802		-	-		-
IKON	MG/L	1.4835		581	01	02/07/83	3.2400
				581	01	09/22/83	3.7200

Table F.3.18 GROUND WATER QUALITY MEASUREMENTS EXCEEDING STATISTICAL MAX(MUM VALUE BY PARAMETER SITE: GRAND JUNCTION 01/31/83 TO 09/11/85 (Continued)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: ON-SITE

PARAMETER	UNITS OF MEASURE	MAXIMUM VALUE	LOCATION [D	SAMPIE [D	LUG DATE	PARAMETER VALUE+/-UNCERTAINTY
IRON	867L	1.4835	581	01	03/26/85	0000.51
			581	01	06/07/85	11.2000
			581	02	06/07/85	11.1000
			581	03	06/07/85	11.5000
			581	04	06/0//85	11.1000
			581	05	06/07/85	11.4000
			581	01	09/11/85	9.H800
			581	02	09/11/85	9. 9100
			58 1	0:3	07/11/85	9.8500
			581	04	09/11/85	10.0000
			584	05	09/11/85	7 . BBOO
			ទទទ	01	03/26/85	1.8000
			583	01	09/11/85	1.9100
			747	01	03/22/85	3.4000
			747	01	06/0//85	2.0100
**** SAMPLES	EXCEEDING	MAXIMUM VALUE	= 53 %	****		
LEAD	MG/L	.0050	581	01	07/22/83	.0100
**** SAMPLES		MAX1MUM VALUE		****		
MAGNESIUM	MG/L	547.8729	-	-	-	-
MANGANESE	MG/L	8.7400	583	01	09/21/83	10.0000
***** SAMPLES	EXCEEDING	MAX (MUM VALUE	= 3%	****		
MERCURY	MG/L	.0003	583	01	03726785	.0004
**** SAMPLES	EXCEEDING	MAXEMUM VALUE	= 4 %	****		
MULYBDENUM	MG/L	.0757	581	01	02/07/83	.3400
			581	01	06/09/83	.2500
			581	01	09722783	.0/80
			581	01	03726785	. 1300
			581	01	06/07/85	. 1200
			581	02	05707785	.0800
			581	εu	06/0//85	-0800
			581	04	04/07/85	. 1000
			581	05	06/07/85	.0900
			581	01	09/11/85	. 1300
			581	02	09/11/85	. 14 00
			581	6.0	09/11/85	. 1:300
			581	04	07/11/85	. 1200
			581	05	09/11/85	. 1400
			583	01	02/07/83	.5300
			583	01	06/07/83	- 4000
			583	01	09/21/83	- 1900
			583		03/26/85	. 3000
			583	01	06/07/85	. 1 300
			583	01	09/11/85	.2600

F**-**146

Table F.3.18 GROUND WATER QUALITY MEASUREMENTS EXCEEDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: GRAND JUNCTION 01/31/83 TO 09/11/85 (Continued)

PARAMETER	UNITS OF MEASURE	MAX1MUM VALUE	LOCATION (D	SAMP{ E (D	LUG DATE	PARAMETER VALUE+7-UNCERTAINTY
MOLYBOENUM	MG/L	.0757	 5ช4	01	02/08/83	. 4200
		•••	584	01	06/08/83	.3800
			584	01	09/21/83	. 1700
			584	01	03/26/85	.2800
			584	01	06/0//85	.2200
			584	01	09/11/85	.3500
			587	01	01/31/83	. 1400
			587	01	03/08/83	- 1280
			587	01	09/21/83	.0760
**** SAMPLES	EXCEEDING	MAXIMUM VALU	F = 90 %	****		
NICKEL	MGZL	.0684	581	01	06/07/85	.0800
			581	02	06/07/85	.0900
			581	0.3	04/0//85	.0800
			581	05	06/07/85	.0800
			581	01	09/11/85	.0400
			581	07	09/11/85	. 1100
			581	03	09/11/85	.0900
			5)(1	(14	09/11/85	.0700
			581	05	09/11/85	. 1200
			ទទម	01	03/26/85	. 1800
			583	01	06/0//85	. 1800
			583	01	09/11/85	.2300
			5 H4	01	03/26/85	.2900
			584	01	06/07/85	.2800
			584	01	09/11/35	.3300
			747	01	03772785	.0800
			/47	01	09/05/85	.0400
**** SAMPLES	EXCEEDING	MAXIMUM VALU	F = 84 %	****		
NITRATE	MG/L	8.4452	583	01	09/21/83	50.0000
			584	· 0.1	09/21/83	41.0000
			584	01	09/11/85	S3.0000
**** SAMPLES	EXCEEDING	MAXIMUM VALU	E = 10 %	****		
ORG. CARBUN	MG/L	55./247	581	01	02/07/83	96.3000
			581	01	06/09/83	88.2000
			581	01	09/35/83	113.0000
			583	01	02/07/83	111_0000
			583	01	04/0//83	H4.2000
			583	01	09/21/83	129.0000
			584	Q1	05/08/83	120.0000
			584	01	06/08/83	84.6000
			584	01	09/21/83	139,0000
			587	01	01/31/84	9 9.9000
			587	01	06/08/83	63.5000
			587	01	09724783	87.4000

Table F.3.18 GROUND WATER QUALITY MEASUREMENTS EXCEEDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: GRAND JUNCTION 01/31/83 TO 09/11/85 (Continued)

PARAMETER	UNITS OF MEASURE	MAX (MUM VALUE	1.00	CATI) ID	IN S	SAMPLE ID	LUG DATE	PARAMETER VALUE+7UNCERTAINTY
**** SAMPLES	EXCEEDING	MAXIMUM VALU	=	38	× *	+***		
PB-210	PCI/L	2.68/5		584 584		01 01	03/26/85 06/07/85	2.8000
**** SAMPLES	EXCEEDING	MAX EMUM VALUE	=		% *		08/0//83	2.7000
РН	SU	7.4450		-		-		-
PHOSPHATE	MG/L	2.5375		-		-	-	-
P(1-210	PCI/I	.5000		584		01	03/26/85	1.1000
**** SAMPLES	EXCEEDING	MAX (MUM VALUE	Ξ =	12	% ×	***		
POTASSIUM	MG/L	15.6300		581		01	02/07/83	66.4000
				581		01	06/09/83	56.0000
				581		01	09/22/83	52.0000
				581		01	03/26/85	57.0000
				581		01	06/07/85	61.2000
				581		02	06/0//85	61.2000
				581		0Э	06/07/85	60.8 000
				584		04	06/07/85	60.0000
				581		05	06/07/85	60.4000
				581		01	09/11/85	58.9000
				581		07	09/11/85	59.6000
				581		03	09/11/85	59.6000
				581		04	09/11/85	59.8000
				581		05	09/11/85	58.5000
				283		01	02/07/83	104.0000
				583		01	06/0//83	49.0000
				583		01	09/21/83	96.0000
				583		01	03/26/85	96.0000
				583		01	06/07/85	69.2000
				583		01	09/11/85	9:3. 1000
				584		01	02/08/83	113.0000
				584		01	06/08/83	97.0000
				584		01	09/21/83	99.0000
				584 584		01 01	03/26/85 06/07/85	106.0000 99.6000
				584		01	09/11/85	101.0000
				747		01	03/22/85	
				/4/		01	06/07/85	36.0000 39.7000
				747		01	09/05/85	41.8000
**** SAMPLES	EXCEEDING	MAX (MUM VALU	E =	-	% *		V77 V07 00	41.0000
RA-226	PCI/L	.500●		591		01	03/26/85	1.4000
				581		01	04/07/85	1.0000
				581		01	09/11/85	1.4000
				581		02	09/11/85	1.2000
				581		03	09/11/85	1.3000

Table F.3.18 GROUND WATER QUALITY MEASUREMENTS EXCEEDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: GRAND JUNCTION 01/31/83 TO 09/11/85 (Continued)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: ON-SITE

PAKAMETER	UNITS OF MEASURF	MAX (MUM VAL UF	LOCATION ID	SAMPLE ID	LOG DATE	PARAMETER VALUE+/~UNCERTADNTY
RA-226	PCI/L	.5000	581	04	09/11/85	1.4000
			581	05	07/11/85	1.3000
			583	01	09/21/83	29.0000
			583	01	03/26/85	4.5000
			583	01	06/0//85	5.0000
			583	01	09/11/85	6.9000
			584	01	09/21/83	15.0000
			5:14	01	01/26/85	7.5000
			584	01	06/07/85	6.0000
			584	01	09/11/85	7.0000
**** SAMPLES	EXCEFDING	MAX) MUM VALU	E = 83 %	****		
RA-228	PCI/L	.5000	583	01	03/26/85	1.6000
			583	01	06/07/85	2.2000
			584	01	06/0//85	1.9000
			747	01	09/05/85	1.1000
**** SAMPLES	EXCEEDING	MAX (MUM_VALU	E = 44 %	****		
SELENJUM	MG/L	.0152	581	01	02107/83	.0200
			583	01	02/0//83	.0920
			583	01	09/21/83	. 1200
			584	01	02/08/83	.0510
			584	01	06/08/83	.0270
			584	01	09/21/83	2200
			584	01	03/26/85	.2400
			584	01	06/01/85	. 1/:30
			584	01	09/11/85	. 1990
**** SAMPLES	EXCEEDING	MAXEMUM VALU	E = 28%	****		
SILICA	MG/L	21.2545	581	01	04/22/83	22.0000
			581	01	09/11/85	26.7000
			581	02	09/11/85	24.6000
			581	03	09/11/85	26.1000
			581	04	09/11/85	26.3000
			581	05	09/11/85	25.2000
			583	01	09/21/83	23.0000
			584	01	09/21/83	29.0000
			584	01	09/11/85	24.8000
			587	01	09/21/83	22.0000
**** SAMPLES	EXCFEDING	MAX) MUM VALU	-	****		
SILVER	MG/L	.0050	_	-	-	-
SODIUM	MG/L	951.9060	583	01	06/07/83	1090.0000
0.010/1		,	583	01	09/21/83	980.0000
			583	01	06/07/85	1130.0000
			584	01	02/08/83	1210.0000
			584	01	03/26/85	970.0000
				• •		.,

.

Table F.3.18 GROUND WATER DUALITY MEASUREMENTS EXCEEDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: BRAND JUNCTION 01/31/83 TO 09/11/85 (Continued)

PARAMETER	UNITS OF MEASURE	MAXIMUM VALUE	LOCATION ID	SAMPLE ID	LING DATE	PARAMETER VALUE+/-UNCERTAINTY
SODIUM	MG/L	951.9060	747	01	06/07/85	1000.0000
			747	01	09/05/85	1050.0000
**** SAMPLES	EXCEFDING	MAXIMUM VALUE	= 21 %	****		
STRONTIUM	MG/L	4.5156	581	01	03/26/85	6.7000
			581	01	06/07/85	6.4900
			581	02	06/07/85	6.5000
			581	6Э	06/07/85	6.0300
			581	04	04/0//85	5.5/00
			581	05	06/07/85	5.7400
			581	01	09/11/85	<u>አ</u> .4ዓ00
			581	02	09/11/85	6.4800
			581	03	09/11/85	5.4000
			581	04	04/11/85	6.5000
			58.1	05	04/11/85	A.3H00
			583	01	09/11/85	4.7000
			584	01	03/26/85	4.6000
			584	01	09/11/85	4.7000
			147	01	03/22/85	6.0000
			747	01	06/07/85	5.8100
			147	01	09/05/8 5	5.8800
**** SAMPLES	EXCEEDING	MAXIMUM VALUE	= 84 X	****		
SULFATE	MG/L	3833.8504	583	01	02/01/83	4200,0000
			583	01	09/24/83	4900.0000
			584	01	05/08/83	4440.0000
			584	01	06/08/83	4700.0000
			584	01	09/21/83	4900.0000
			584	0 f	03/76/85	4100.0000
			584	01	06/07/85	3740.0000
			584	01	09/11/85	4100.0000
**** SAMPLHS	EXCEEDING	MAXIMUM VALUE	= 25 %	****		
SULFIDE **** SAMPLES	MG7L Exceeding	.0500 MAX (MUM VALUE	584 = 12 %	01 ****	06/07/85	. 1000
TEMPERATURE	C - DEGREE	18.7488	-	_	_	_
TH-230	PCI/L	.5000	583	01	07/21/83	.5500
111 200			584	01	09/21/83	.9500
**** SAMPLES	EXCEEDING	MAX (MUM VALUE			07721703	.7300
NLT	MG/L	.0025	58 1	01	03/26/85	.0080
			584	,01	03/26/85	.0050
**** SAMPLES	EXCEEDING	MAXIMUM VALUE	- · ·			• • • • • •
TOTAL SOLIDS		7221.0938	583	01	09/21/83	2000.0000
TOTHE SHELING		/ 2/4 1 . 0 / 30	584	01	09/21/83	8400.0000
			504	v ,	07721700	0100.0000

Table F.3.18 GROUND WATER BUALITY MEASUREMENTS EXCEEDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: BRAND JUNCTION 01/31/83 TO 09/11/85 (Continued)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSH(P: ON-S) TE

PAKAMETER	UNITS OF MEASURE	MAXIMUM VALUE		CATTUN ID	SAMPLE ID	LOG DATE	PARAMETER VALUF+/-UNCERTAINTY
TOTAL SOLIDS **** SAMPLES		7221.0938 MAX (MUM VALU		584 9 %	01 ****	09/11/85	7440.0000
τοχ	MG∕L	-2466		581 583 583 584 747	01 01 01 01 01	03/26/85 03/26/85 06/07/85 03/26/85 03/22/85	- 3000 - 3000 - 33€0 - 600 - 7000
**** SAMPLES	EXCEEDING	MAXIMUM VALU	f =	747	01	04/0//85	.6500
U-234	PCI/L	35.1621		583 583 584 584 747 747	01 01 01 01 01 01	06/07/85 09/11/85 06/07/85 09/11/85 06/07/85 06/07/85	41.0000 64.0000 47.0000 47.0000 36.0000 36.0000
**** SAMPLES	EXCEEDING	MAX (MUM VALU	F. =	-		07703703	30.000
U-238	PCI/l	23.0495		581 583 583 583 584 584 584 747 747	01 02 01 01 01 01 01 01	09/11/85 09/11/85 09/11/85 09/11/85 06/07/85 09/11/85 06/07/85 06/07/85	25.0000 24.0000 47.0000 46.0000 49.0000 50.0000 24.0000 25.0000
**** SAMPLES	EXCEEDING	MAXIMUM VALU	E =	61 %	****		
ÚANAD LUM	MG∕L	.0200		581 581 581 583 583 583 583 583 583 584 584 584 584 584 584 584 584 584 587 587 587	01 02 05 01 01 01 01 01 01 01 01 01 01 01 01	02/07/83 06/09/83 06/07/85 02/07/83 06/07/83 09/21/83 03/26/85 02/08/83 06/08/83 09/21/83 03/26/85 06/07/85 09/21/83 03/26/85 06/07/85 09/11/85	.0740 .0780 .0300 .0300 4.4000 4.7000 7.4000 .2800 4.4400 4.0000 5.2000 9.0000 7.4800 6.7500 13.8000 .0490 .0620

Table F.3.18 GROUND WATER QUALITY MEASUREMENTS EXCEEDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: BRAND JUNCTION 01/31/83 TO 09/11/85 (Concluded)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: ON-SITE

PARAMETER	UNITS OF MEASURE	MAX (MUM VAL UF	LUCATION ID	SAMPLE ID	LOG DATE	PARAMETER VALUE+/-UNCERTAINTY
VANADIUM **** SAMPLES	MG/L Exceeding	.0200 MAX (MUM VALUE	587 587 59%	01 ***	09/21/83	.0300
ZJNC	MGZL	.0626	581	01	03/26/85	. 1000
			583	0 1	05/0//83	_8700
			583	01	08/07/83	.5100
			583	01	09/21/83	53.0000
			583	01	03/26/85	. 6000
			583	01	06/0//85	.26/0
			583	01	09/11/85	.7200
			584	01	02/08/83	6./000
			584	01	06108183	4.9000
			584	01	09/21/83	37.0000
			584	01	03/26/85	4.1000
			584	01	06/0//85	2.5600
			584	01	09/11/85	4.1400
			587	01	09/21/83	.1100
			747	01	03/22/85	. 1000
**** SAMPLES	EXCEED ING	MAX (MUM VALUE				

MAPPER DATA FILF: GRJ01*U0PGW0100371

Table F.3.19 GROUND WATER QUALITY MEASUREMENTS EXCEEDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: GRAND JUNCTION 03/22/85 TO 09/10/85

UNITS PARAMETER MEASUR		LOCATION	SAMPL F	LUG DATE	PARAMETER VALUE+Z-UNICERTAINTY
ALKALINITY MG/L CA	003 10/3.1329	-	-	-	-
ALUMINUM MG/L	.0500	739	01	0%/0%/85	.2000
**** SAMPLES EXCEEDI	NG MAXIMUM VALU	E = 11 %	****		
	15.7000	_	_	_	_
AMMONJUM MG/L ANTIMONY MG/L	.0080	_	_		-
ARSENIC MG/L	.0050	_	_	_	-
BALANCE %	.4700	/ 37	01	03/22/85	4.4700
	• 17 00	737	01	06/07/85	4.8600
		739	01	03/22/85	1.8200
		739	01	06/07/85	5.0900
		742	01	03/22/85	1.0100
		742	01	05/0//85	5.5400
**** SAMPLES EXCEED 0	NG MAX (MUM VALU		****		
BARIUM MG/L	.0675	_	-	_	_
BAKIUM MG/L BURON MG/L	1.0965	_	_	-	_
CADMIUM MG/L	.0012	_	-	_	_
CALCIUM MGZE	423,2839	737	01	03/22/85	550,0000
CHILDION NOZL	463.3037	737	01	06/07/85	640.0000
		737	01	07/06/85	489.0000
		739	01	03/22/85	540.0000
		/39	01	06/07/85	630.0000
		739	01	09/05/85	506.0000
		142	01	03/22/85	5/0.0000
		742	01	06/07785	655.0000
		/42	01	09/10/85	479.0000
**** SAMPLES EXCEEDI	NG MAXIMUM VALU		• •		
CHLORIDE MGZL	399.8380	737	01	03/22/85	880.0000
CHROKTEE HOVE		737	01	06/07/85	1080.0000
		/37	01	09/06/85	1100.0000
		739	01	03/22/85	970.0000
		/39	01	06/0//85	11:30.0000
		739	01	09/05/85	1250.0000
		742	01	03/22/85	590.0000
		742	01	06/07/85	673.0000
		742	01	09/10/85	705.0000
**** SAMPLES EXCEEDI	NG MAXIMUM VALUE				
CHROMIUM MG/L	.0200	737	01	03/22/85	.0300
	.0200	739	01	03/22/85	.0300
		742	· 01	03/22/85	.0300
**** SAMPLFS EXCEEDJ	NG MAXIMUM VALUE		****		
COBALT MG/L	.0390	_		-	_
CUNDUCTANCE UMHO/CM		737	01	03/22/85	8900.0000

Table F.3.19 GROUND WATER NUALITY MEASUREMENTS EXCREDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: GRAND JUNCTION 03/22/85 TO 09/10/85 (Continued)

PARAMETER	UNITS OF MEASURE	MAX (MUM VALUE	LOCATION ID	SAMPLE ID	LOG DATE	PARAMETER VALUE+/-UNCERTAINTY
CUNDUCTANCE		6714.7250	737	01	06/07/85	7800.0000
			7:37	01	09/06/85	9000.0000
			739	01	03/22/85	8300.0000
			739		06/07/85	8024.0000
			739	01	09/05/85	9360.0000
			742	01	03/22/85	6900.0000
			742	01	09/10/85	7605.0000
**** SAMPLES	EXCEEDING	MAX (MUM VALUE			077 107 00	/ 00010000
COPPER	MG/L	.0508	-	_	_	_
CYANIDE	MG/L	.0050	-	-	-	
FLUURIDE	MG/L	1.1459	737	01	09/06/85	1.2000
**** SAMPLES	EXCREDING	MAX LAUM VALUE	= 11 %	****		
GROSS ALPHA	PCI/l	126.5685	737	01	03/22/85	185.0000
		MAX EMUM VALUE	,		00/27/00	103.0000
GROSS BETA	PCI/L	25.0000	737	01	03/22/85	60.0000
			142	01	03/22/85	80.0000
**** SAMPLES	EXCEED3 NG	MAX1MUM VALUE	= 66%	****		
HYD. SULFIDE	MG/L	1.4802	-	-	-	<u> </u>
IKON	MG/L	1.4835	737	01	03/22/85	1.7000
			239	01	03/22/85	3.4000
			742	01	03/27/85	5.7000
**** SAMPLES	EXCEEDING	MAX LIMUM VALUE				
LFAD	MG∕l	.0050	-	-	-	_
MAGNESTUM	MG/L	54/.8/29	7:37	01	04/0//85	625.0000
		G (/ • // E/	739	01	06/07/85	600.0000
			742	01	06/0//85	550.0000
**** SAMPLES	EXCEEDING	MAXIMUM VALUE				
MANGANESE	MG/L	8./400	-	-	-	_
MERCURY	MG/L	.0003	_		-	_
MOLYBUENUM	MG/L	.0757	7:37	01	03/22/85	- 1100
			73/	01	06/07/85	.0800
			737	01	09/06/85	- 1400
			739	01	03/22/85	. 1 100
			7:39	• •	04/0//85	. 1400
			739	01	09/05/85	. 1100
**** SAMPLES	EXCEEDING	MAX (MUM VALUE	= 66 %		0.700700	• 1100
N) CKEI	MG/L	.0684	-	-	_	_
NUTRATE	MG/L	8.4462			-	-
ORG. CARBON	MG/L	55.7267	742	01	03/22/85	562.0000
			/42	01	09/10/85	508.0000

Table F.3.19 GROUND WATER QUALITY MEASUREMENTS EXCLEDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: GRAND JUNCTION 03/22/85 TD 09/10/85 (Continued)

PARAMETER	UNITS OF MEASURE	MAXIMUM VALUE	LOCATION (D		LUG DATE	PARAMETER VALUE+Z-UNCERTAINTY
**** SAMPLES	EXCREDING	MAXIMUM VALU	E = .55 %	****		
PH-210	PCI/I	2.68/5	-	-	-	_
РН	รบ	/.4450		-	-	-
PHOSPHATE	MG/L	2.53/5	-		-	-
PD-210	PCI/L	.5000		-	-	
POLASSIUM	MG/L	15.6300	-	-	-	-
RA226	PCI/L	.5000	-		-	-
RA-228	PCI/L	.5000	-	_	-	
SELENTUM	MG/L	.0152	-	-	-	-
SILICA	MG/L	21.2545	-	-	-	-
SILVER	MG/L	.0050	-	-	-	-
SODIUM	MG/L	951.9060	737	01	03/22/85	1190.000
			737	Ú Í	06/07785	1070.0000
			737	01	04/06/85	1140.0000
			739	01	03/22/85	1260.0000
			73 9	01	06/0//85	1150.0000
			7:39	01	09/05/85	1200.0000
**** SAMPLES	EXCEPDING	MAXIMUM VALU	F = 66 %	****		
STRONTIUM	MG/L	4.5156	737	01	03/22/85	7.3000
	1107 2		737	01	06/07/85	7.1900
			7 37	01	09/06/85	7.3200
			739	• 1	03/22/85	7.4000
			739	01	06/07/85	6.9300
			73 9	● 1	09705785	7.2400
			742	01	03/22/85	6.5000
			742	01	06/07/85	5.8200
			142	01	09/10/85	5.4400
**** SAMPLES	EXCEFDING	MAXIMUM VALU	E = 10● %	****		
SULFATE	MG/L	3833.8504	739	01	03/22/85	4000.0000
SOLL IT L	1107 2		739	01	09/05/85	3960.0000
**** SAMPLES	EXCEEDING	MAX (MUM VALU		****		
SULFIDE	MG/l	.0500	_	_	_	-
TEMPERATURE	C - DEGRE			-	-	-
TH-230	PCI/L	.500		_	-	
TIN	MG/L	.0025		01	03/22/85	,0050
1 1 14		• / / / 0	742	01	03/22/85	.0050
**** SAMPLES	EXCEEDING	MAX (MUM VALU				
TOTAL SOLIDS	MGA	7221.0938	737	ے	03/22/85	8134.0000
ICIAL BULINS	10/1	/ L.L (L ¥ / 30	7:37	01	06/07/85	8300.0000
			737	01	09/08/85	8340.0000
			739	01	03/22/85	8324.0000
			739	01	06/0//85	8444.0000
			7 3 7	V 1	00/0//00	

Table F.3.19 GROUND WATER QUALITY MEASUREMENTS EXCEPTING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: GRAND JUNCTION 03/22/05 TO 09/10/85 (Concluded)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: CROSS GRADIENT

PARAMETER	UNITS OF MEASURF	MAX [MUM VAL UF	LOCATO ID	м		LOG DA'IE	PARAMETER VALUE+7-UNCERTAINTY
TOTAL SOLIDS	MG/L	7221.0938	739			09/05/85	8530.0000
**** SAMPLES	EXCEEDING	MAX (MUM VALUE	E = 66	7	****		
тох	MG/L	-2466	737		01	03/22/85	.6000
			739		01	03/22/85	.6000
			742			03/22/85	.5000
			142			06/0//85	
**** SAMPLES	EXCEEDING	MAXIMUM VALUE	= 66	%	****		
U-234	PCI/L	35.1421	7:37		01	03/22/85	36.0000
			73 7		01	06/07/85	40.0000
			/:37		01	09/06/85	39.0000
			739		01	06/07/85	36.0000
			739		01	09/05/85	
			742		01	03/22/85	41.0000
			742		01	09/10/85	45.0000
**** SAMPLES	FXCFEDING	MAXIMUM VALUE	= 77	z	****		
U-238	PCT/L	23.0995	737		01	03/22/85	24.0000
			737		01	06/07/85	26.0000
			7:37		01	09/06/85	
			739		01	03/22/85	24.0000
			7:39		01	06/0//85	24.0000
			739		01	09705785	
			742		01	03/22/85	31.0000
			742		01	06/07/85	31.0000
			742		01	09/10/85	33.0000
**** SAMPLES	FXCEEDING	MAXIMUM VALUE	= 100	7	****		
VANADIUM	MG/L	.0200	739		01	06/0//85	.0300
**** SAMPLES	EXCEEDING	MAXIMUM VALUE	= 11	7	****	-	
ZINC	MG/L	.0626	737		01	03/22/85	.0900
			747			03/22/85	.0800
**** SAMPLES	EXCEEDING	MAXEMUM VALUE					

MAPPER DATA FILE: GRJ01*UDPGW0100375

Table F.3.20 GROUND WATER QUALITY MEASUREMENTS EXCLEDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: GRAND JUNCTION 02/01/83 TO 09/10/85

PARAMETER	UNITS OF MEASURE	MAX1MUM VALUE	LDC	CAT)((D	NC	SAMPI E [D	LUG DATE	PARAMETER VALUE+7-UNCERTAINTY
ALKALINITY	MG/L CACOS	1073.1329		-		_	_	
AI UM I NUM	MG/L	.0500		589		01	09/22/83	. 1900
				733		01	09/06/85	. 1000
**** SAMPLES	EXCEEDING	MAXIMUM VALUE	=	6	X	****		
AMMONIUM	MGZL	15./000		585		01	09/20/83	335.0000
				585		01	03/25/85	383.0000
				585		01	04/07/85	369.0000
				585		01	09/10/85	411.0000
				586		01	09/20/83	310.0000
				586		01	03/25/85	393.0000
				586		01	06/0//85	3134.0000
				586		01	09/10/85	438.0000
				589		01	03/25/85	124.0000
				589		01	06/07/85	148.0000
				589		01	09/09/85	149.0000
				590		01	09/22/83	18.1000
				590		01	03/25/85	17.4000
				590		01	09/09/85	18.5000
				740		01	03/22/85	49.0000
				740		01	06/07/85	47.7000
				740		01	07/09/85	50.3000
**** SAMPLES	EXCEEDING	MAXIMUM VALUE	=	54	X	***		
ANTEMONY	MG∕L	.0080		586		01	03/25/85	.0120
**** SAMPLES	EXCFEDING	MAXIMUM VALUE	=	З	X	****		
ARSENIC	MG/L	.0050		585		01	02/03/83	.0080
				585		01	09/20/83	.0180
				585		01	03/25/85	.0150
				585		01	09/10/85	.0200
				586		01	06/09/83	.02/0
				586		01	09/20/83	. 1100
				586		01	03/25/85	-01H0
				586		01	06/07/85	.0400
				586		01	07/10/85	.0200
				589		01	09/22/83	.0220
**** SAMPLES	EXCEED (NG	MAXIMUM VALUE	=	25	7.	****		
BALANCE	z	.4 700		585		01	02/03/83	1.3100
				585		01	09/20/83	1.8700
				585		01	03725785	3.4900
				585		01	06/07/85	3.6300
				586		01	09/20/83	.70 00
				586		01	03/25/85	4.5500
				586		01	06/07/85	4 .6600
				586		01	07/10/85	.5000

Table F.3.20 GROUND WATER QUALITY MEASUREMENTS EXCEEDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: GRAND JUNCTION 02/01/83 TO 09/10/85 (Continued)

PARAMETER	UNITS OF MEASURE	MAXIMUM VALUE	LOCAT I (IN (D	SAMPLE (D	LUG DATE	PARAMETER VALUE+/-UNCERTAINTY
BALANCE	Z	.4700	589	01	09/22/83	8.3200
UNERNOL	A .	• • •	589	01	03/25/85	1.7200
			58 9	01	06/07/85	2.3200
			590	01	02/02/83	1.5100
			590	01	09/22/83	9.0500
			590	01	06/07/85	1.3700
			590	01	09/09/85	2.5400
			732	01	03/26/85	2.1300
			732	01	06/07/85	2./300
			733	01	03/25/85	1.3400
			/33	01	06/0//85	3.6100
			736	01	03/22/85	2.4900
			736	01	06/07/85	3.9400
			738	01	03/25/85	4.2000
			738	01	06/0//85	5.4000
			740	01	03/22/85	.8500
			740	01	06/07/85	5.3100
**** SAMPLES	EXCEEDING	MAXIMUM VALUE	= 64 %	****		
BARIUM	MG/L	.0675	586	01	05/05/83	.0/40
			586	01	06/09/83	.30 30
			586	01	07/20/83	.0990
			589	01	02/01/83	.0800
			58 7	01	04/22/83	- 130 0
			590	01	09/22/83	.0700
**** SAMPLES	EXCEEDING	MAX (MUM VALUE	<u> </u>	****		
BORON	MG/L	1.0965	-	-		-
CADMILUM	MG/L	.0012	589	01	07/22/83	.0030
**** SAMPLES	EXCFEDING	MAXIMUM VALUE	E = 3%	****		
CALCIUM	MG/L	423.28:39	585	01	02/03/83	554.0000
			565	01	06/09/83	584.0000
			585	01	09/20/83	540.0000
			585	01	03/25/85	540.0000
			585	01	06/07/85	625.0000
			585	01	09/10/85	484.0000
			586	01	05/05/83	487.0000
			586	01	06/09/83	589.0000
			586	01	07/50/83	570.0000
			586	01	03/25/85	550.0000
			586	01	06/0//85	600.0000
			586	'01	09/10/85	471.0000
			589	01	02/01/83	5/4.0000
			589	01	06/08/83	581.0000
			589	01	04/55/83	480.0000
			589	01	03/25/85	590.0000

Table F.3.20 GROUND WATER QUALITY MEASUREMENTS EXCEPTING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: GRAND JUNCTION 02/01/83 TO 09/10/85 (Continued)

PARAMETER	UNITS OF MEASURE	MAX (MUM VALUE	LOCATION ID	SAMPLE ID	LOG DATE	PARAMETER VALUE+/-UNCERTAINTY
CALCIUM	MG/L	423.2839	589	01	06/07/85	665.0000
			589	01	04/09/85	611.0000
			590	01	02/02/83	500.0000
			590	01	06/0//83	493.0000
			590	01	09/22/83	480.0000
			590	01	03/25/85	580.0000
			590	01	09/09/85	495.0000
			732	01	03/26/85	540.0000
			732	01	06/07/85	665.0000
			733	01	03/25/85	540.0000
			733	01	06/07/85	610.0000
			733	01	09/06/85	454.0000
			736	01	03/22/85	570.0000
			736	01	06/07/85	665.0000
			736	01	09/10/85	496.0000
			738	01	03/25/85	470.0000
			738	01	09/09/85	515.0000
			740	01	03/22/85	510.0000
			740	01	06/07/85	600.0000
			7 40	01	09/09/85	498.0000
**** SAMPLES	FXCEEDING	MAXIMUM VALU	F = 92%	****		
CHILOR (DE	MG/L	399.8380	585	υí	0510:3183	790.0000
			585	01	06/09/83	800.0000
			585	Ŭ Í	09/20/83	810.0000
			585	01	03/25/85	850.0000
			585	01	06/0//85	848.0000
			585	01	09/10/85	854.0000
			586	01	0%/02/83	805.0000
			586	01	06/09/83	860.0000
			586	01	07/50/83	850.0000
			586	01	03/25/85	740.0000
			586	01	05/07/85	840.0000
			586	01	09/10/85	898.0000
			589	01	02/01/83	/49.0000
			589	01	06/08/83	840.0000
			589	01	09/22/83	840.0000
			589	01	03/75/85	930.0000
			589	01	06/07/85	1100.0000
			589	01	09/09/85	1260.0000
			590	01	02/02/83	/36.0000
			590	01	06/07/83	990.0000
			590	01	09/22/83	6/0.0000
			590	01	03/25/85	830.0000
			590	01	06/07/85	459.0000
			590	01	09/09/85	759.0000
			732	01	0:3/26/85	930.0000

Table F.3.20 GROUND WATER QUALITY MEASUREMENTS EXCEEDING STATISTICAL MAX(MUM VALUE BY PARAMETER SITE: GRAND JUNCTION 02/01/83 TO 09/10/85 (Continued)

PARAMETER	UNITS OF MEASURE	MAX)MUM VALUE	1.00	CA1)01 TD	I SAMPIE (D	LI)G DATE	PARAMETER VALUE+7-UNCRTAINTY
CHLORIDE	MG/L	399.8380		732	01	06/0//85	11:30.0000
				732	01	04/06/85	872.0000
				733	01	03/25/85	1100.0000
				733	01	06/07/85	1250.0000
				733	01	09/06/85	12/0.0000
				736	01	03/22/85	890.0000
				736	01	06/0//85	1060.0000
				736	01	09/10/85	997.0 000
				738	01	03/25/85	6/0.0000
				738	01	06/07/85	944.0000
				738	01	07/07/85	1000.0000
				740	01	03/77/85	650.0000
				740	01	06/07/85	707.0000
				740	01	0%/0%/85	755.0000
**** SAMPLES	EXCEEDING	MAX (MUM VALU	E =	100 7	< ****		
CHROMIUM	MG/L	.0200		585	01	03/25/85	.0300
				733	01	03725785	.0300
				736	01	03722785	.0300
				738	01	03/25/85	.0300
**** SAMPLES	EXCEEDING	MAXIMUM VALU	E =	10 2	(****		
COBALT	MG/L	.0390		585	01	06/09/83	.0820
				589	01	06/08/83	.0710
				590	01	06/0//83	.0520
**** SAMPLES	EXCREDING	MAXIMUM VALU	+ =	7 7	*** *		
CONDUCTANCE	UMHO/CM	6714./250		ទទទ	01	06/07/85	H576.0000
				585	01	09/10/85	10080.0000
				586	01	03/25/85	8400.0000
				586	01	06/07/85	7320.0000
				586	01	09/ 1 0/85	10080.0000
				589	01	03/25/85	7200.0000
				589	01	06/07/85	7800.0000
				289	01	09/09/85	9512.0000
				590	01	09/09/85	<u>6960.0000</u>
				732	01	03/28/85	7600.0000
				732	01	07/06/85	Z140.0000
				733	01	06/07/85	4800.0000
				733	01	09/06/85	9:360.0000
				736	01	03/22/85	9300.0000
				736	01	06/0//85	7930.0000
				736	01	09/10/85	10780.0000
				738	01	03/25/85	7000.0000
				738	01	09/09/85	8424.0000
				740	01	03/22/85	7000.0000
				740	01	09/09/85	7080.0000

Table F.3.20	GROUND WATER QUALITY MEASUREMENTS EXCEEDING
	STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: GRAND JUNCTION
	02/01/83 TO 09/10/85 (Continued)

PARAMETER	UNITS OF MEASURE	MAX [MIJM VALUE	1.00	CAT () ID	N	SAMPLE ID	LOG DATE	PARAMETER VALUE+Z-UNCERTAINTY
**** SAMPLES	EXCFEDING	MAXIMUM VALUE	=	76	z	****		
COPPER	MG/L	.0508		586		01	03/25/85	.0/00
				589		01	02/01/83	- 1160
				589		01	07/09/85	.0600
**** SAMPLES	EXCEEDING	MAXIMUM VALUE	=	7	%	****		
CYANIDE	MG/L	.0050		-		-	-	-
FLUORIDE	MG/L	1.1459		585		01	09/20/83	3.2000
				585		01	03725785	3.1000
				585		01	06/07/85	3.2000
				585		01	09/10/85	3.7000
				586		01	09720783	3.4000
				586		01	03/25/85	3.1000
				586		01	06/07/85	3.3000
				586		01	09/10/85	3.7000
**** SAMPLES	EXCEFDING	MAXIMUM VALUE	=	25	7	***		
GRUSS ALPHA	PCI/L	126.5685		585		01	03/25/85	380.0000
oncoo nernin		11.010.000		586		01	03/25/85	490.0000
				589		01	03/25/85	260.0000
				590		01	03/25/85	240.0000
				733		01	03/25/85	195.0000
				736		01	03/27/85	345.0000
				738		01	03/25/85	1/0.0000
				740		01	03/22/85	245.0000
**** SAMPLES	EXCEEDING	MAX (MUM VALUE	=		7.		00010000	
GROSS BETA	PCI/L	25.0000		585		01	03725785	200.0000
				586		01	03/25/85	180,0000
				589		01	03/25/85	130.0000
				590		01	03/25/85	110.0000
				732		01	03/26/85	60.0000
				733		01	03/25/85	50.0000
				736		01	03/72/85	60.0000
				7:38		01	03/25/85	125.0000
				740		01	03/22/85	100.0000
**** SAMPLES	EXCEEDING	MAX (MUM VALUE	=	100	7	****		
HYD. SULFIDE	MG/L	1.4802		-		-	-	-
(RON	MG/L	1.48:35		585		01	05/03/83	4.0:300
				585		01	06/09/83	2.6400
				585		01	09/20/83	2.7100
				585		01	03/25/85	13.0000
				585		01	06/07/85	11.2000
				585		01	09/10/85	11.0000
				586		01	02/02/83	13.5000

Table F.3.20 GROUND WATER QUALITY MEASUREMENTS EXCLEDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: GRAND JUNCTION 02/01/83 FD 09/10/85 (Continued)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: DOWN BRADIENT

IRON MG/L 1.4835 586 01 04/09/93 4.0900 S86 01 09/20/83 4.7700 566 01 09/20/83 4.7700 S86 01 04/07/85 12.8000 586 01 02/20/83 4.0000 S86 01 02/20/83 1.6000 586 01 02/20/83 1.4000 S86 01 02/01/85 12.8000 586 01 02/20/83 1.4000 S86 01 02/20/85 10.8000 586 01 02/20/85 1.0000 S89 01 09/29/85 3.0500 733 01 04/07/85 7.900 733 01 04/07/85 7.900 733 01 04/07/85 7.900 733 01 04/07/85 10.0000 734 01 09/29/83 .0100 ***** SAMPLES EXCEEDING MAXIMUM VALUE 537 **** 10.3000 10 04/07/85 55.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE 547.9729 585 01 06/07/85 555.	PARAMETER	UNITS OF MEASURE	MAX)MUM VALUE	10	CAT) (D	0N	SAMPLE (D	LING DATE	PARAMETER VALUE+Z-UNCERTAINITY
\$84 04 09/20/85 1,2700 \$86 04 03/25/85 16,0000 \$86 04 03/25/85 16,0000 \$86 04 02/01/85 12,8000 \$86 04 02/01/85 12,8000 \$89 04 02/01/85 3,4200 \$89 04 02/01/85 3,0500 733 04 03/25/85 4,2000 733 04 04/07/85 2,0400 733 04 04/07/85 2,0400 738 04 04/07/85 2,0400 738 04 04/07/85 2,0400 738 04 04/07/85 2,0400 738 04 04/07/85 2,0400 **** SAMPLES EXCEEDING MAXIMIM VALUE \$32 ****** 9 2 ***** \$400 \$2000 ***** SAMPLES EXCEEDING MAXIMUM VALUE \$9 2 ***** MAGANESH MG/L \$2003 \$23 04 04/07/85 \$35,0000 ***** SAMPLES	TRON	MG/L	1.4835		586		01	06/09/83	6.0900
***** SAMPLES EXCEEDING MAXIMUM VALUE 586 01 02/07/85 12.6000 ***** SAMPLES EXCEEDING MAXIMUM VALUE 589 01 02/01/43 3.4200 ***** SAMPLES EXCEEDING MAXIMUM VALUE 589 01 03/25/85 10.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE 589 01 03/25/85 10.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE 537 ***** 10.3000 ***** SAMPLES EXCEEDING MAXIMUM VALUE 733 01 04/07/85 .0100 ***** SAMPLES EXCEEDING MAXIMUM VALUE 97 X **** 09/22/83 .0100 ***** SAMPLES EXCEEDING MAXIMUM VALUE 97 X **** 09/22/83 .0200 ***** SAMPLES EXCEEDING MAXIMUM VALUE 97 X **** 04/07/85 555.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE 547.8729 736 01 02/03/83 420.000 ***** SAMPLES EXCEEDING MAXIMUM VALUE 542 04 06/07/85 555.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE 542 04									
**** SAMPLES EXCEEDING MAXIMUM VALUE 586 01 02/03/83 0400 **** SAMPLES EXCEEDING MAXIMUM VALUE 587 01 04/07/85 0.000 **** SAMPLES EXCEEDING MAXIMUM VALUE 597 01 037/57/85 0.000 **** SAMPLES EXCEEDING MAXIMUM VALUE 597 01 037/57/85 0.000 **** SAMPLES EXCEEDING MAXIMUM VALUE 597 01 09/09/85 0.0100 **** SAMPLES EXCEEDING MAXIMUM VALUE 597 01 02/03/83 620.0000 **** SAMPLES EXCEEDING MAXIMUM VALUE 597 01 02/03/83 620.0000 **** SAMPLES EXCEEDING MAXIMUM VALUE 597 01 02/03/83 620.0000 **** SAMPLES EXCEEDING MAXIMUM VALUE 597 01 02/03/83 620.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE 575.0000 738 01 06/07/85 555.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE 585 01									
***** SAMPLES EXCEEDING MAXIMUM VALUE 586 01 02/201/85 2.7200 ***** SAMPLES EXCEEDING MAXIMUM VALUE 589 01 02/201/85 2.7200 ***** SAMPLES EXCEEDING MAXIMUM VALUE 537 01 03/25/85 10.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE 537 ***** 01 09/22/83 .0400 ***** SAMPLES EXCEEDING MAXIMUM VALUE 537 ***** 01 09/22/83 .0400 ***** SAMPLES EXCEEDING MAXIMUM VALUE 537 ***** 01 09/22/83 .0400 ***** SAMPLES EXCEEDING MAXIMUM VALUE 575 01 09/22/83 .0400 ***** SAMPLES EXCEEDING MAXIMUM VALUE 585 01 02/03/83 620.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE 545 01 02/03/83 620.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE 545 01 04/07/85 555.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE 542 04 03/22/85 .0004									
S66 01 02/01/03 2.7200 S99 01 09/22/83 3.4200 S69 01 04/07/85 3.7700 S19 01 09/09/85 3.0500 733 01 04/07/85 2.0400 738 01 03/25/45 4.2000 738 01 03/25/45 10.0000 738 01 03/25/45 10.0000 738 01 04/07/85 9.9700 738 01 04/07/85 9.9700 738 01 04/07/85 9.9700 738 01 04/07/85 9.9700 738 01 04/07/85 9.9700 **** SAMPLES EXCEEDING MAXIMUM VALUE 9 X ***** MAGNESH M6/L 547.8729 585 01 02/03/83 620.0000 **** SAMPLES EXCEEDING MAXIMUM VALUE 585.0000 732 01 06/07/85 555.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE 586 01 02/03/83 .4000									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					589				
***** SAMPLES EXCEEDING MAXIMUM VALUE 589 01 09/09/85 3.0500 ***** SAMPLES EXCEEDING MAXIMUM VALUE 53 2.0400 ***** SAMPLES EXCEEDING MAXIMUM VALUE 53 2.0400 ***** SAMPLES EXCEEDING MAXIMUM VALUE 53 2.**** LEAD MG/L .0050 589 01 09/22/83 .0100 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 9 2.**** .0100 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 9 2.**** .0100 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 9 2.**** .0200 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 585 01 02/03/83 620.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 586 01 03/27/85 .0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 586 01 03/27/85 .0004 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 586 01 03/27/85 .0004 ***** SAMPLES EXCEEDING MAXIMUM VALUE					589				
***** SAMPLES EXCEEDING MAXIMUM VALUE 589 04 03/25/45 4.2000 ***** SAMPLES EXCEEDING MAXIMUM VALUE 04/07/45 2.0400 ***** SAMPLES EXCEEDING MAXIMUM VALUE 53 X ***** MAGNESIUM MG/L .0050 589 01 09/22/83 .0100 ***** SAMPLES EXCEEDING MAXIMUM VALUE 59 2 .0100 ***** SAMPLES EXCEEDING MAXIMUM VALUE 590 01 09/22/83 .0200 ***** SAMPLES EXCEEDING MAXIMUM VALUE 597 01 02/03/83 620.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE 585 01 02/03/83 620.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE 585 01 02/03/83 620.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE 586 01 04/07/45 555.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE 586 01 03/25/45 .0004 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 585 01 03/25/45 .0004 *****					589				
**** SAMPLES EXCEEDING MAXIMUM VALUE 733 04 03/25/85 4.2000 **** SAMPLES EXCEEDING MAXIMUM VALUE 53 2.0400 **** SAMPLES EXCEEDING MAXIMUM VALUE 53 2.0400 **** SAMPLES EXCEEDING MAXIMUM VALUE 53 2.**** MAGNESIM MG/L .0050 589 01 09/22/83 .0100 **** SAMPLES EXCEEDING MAXIMUM VALUE 590 01 09/22/83 .0200 **** SAMPLES EXCEEDING MAXIMUM VALUE 585 01 02/03/83 620.0000 **** SAMPLES EXCEEDING MAXIMUM VALUE 585 01 06/07/85 555.0000 **** SAMPLES EXCEEDING MAXIMUM VALUE 586 01 06/07/85 555.0000 **** SAMPLES EXCEEDING MAXIMUM VALUE 585 01 03/27/85 .0004 **** SAMPLES EXCEEDING MAXIMUM VALUE 585 01 03/28/83 .4400 MOLYHDENUM MG/L .0757 585 01 02/03/83 .4400 S85 01 03/26/83 .2100 585 01 <t< td=""><td></td><td></td><td></td><td></td><td>589</td><td></td><td>01</td><td>09/09/85</td><td></td></t<>					589		01	09/09/85	
***** SAMPLES EXCEEDING MAXIMUM VALUE 738 04 03/25/85 10.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE 738 04 09/07/85 7.9700 ***** SAMPLES EXCEEDING MAXIMUM VALUE 53 X **** MAGNESIUM MG/L .0050 ***** SAMPLES EXCEEDING MAXIMUM VALUE 589 04 09/22/83 .0200 ***** SAMPLES EXCEEDING MAXIMUM VALUE 9 X **** **** SAMPLES EXCEEDING MAXIMUM VALUE 585 01 02/03/83 620.0000 **** SAMPLES EXCEEDING MAXIMUM VALUE 585 04 06/07/85 585.0000 **** SAMPLES EXCEEDING MAXIMUM VALUE 10 X **** MANGANESE MG/L 8.7400 **** SAMPLES EXCEEDING MAXIMUM VALUE 586 04 06/09/83 334.0000 **** SAMPLES EXCEEDING MAXIMUM VALUE 586 04 06/09/83 334.0000 **** SAMPLES EXCEEDING MAXIMUM VALUE 585 01 03/22/85 .0004 **** SAMPLES EXCEEDING MAXIMUM VALUE 585 01 03/22/85 .0009 ***** SAMPLES EXCEEDING MAXIMUM VALUE 6 X **** MOLTHDENUM MG/L .0757 SH5 01 02/03/83 .4400 585 04 03/25/85 .2700 SH5 01 06/07/85 .3200 586 04 06/07/85 .3400 SH5 01 06/07/85 .2200 586 04 06/07/85 .2200 SH5 01 06/07/85 .2200 586 04 06/07/85 .2200 SH5 01 06/0					733		01	03725785	
**** SAMPLES EXCEEDING MAXIMUM VALUE $738 \\ 01 \\ 738 \\ 01 \\ 0738 \\ 01 \\ 0738 \\ 01 \\ 0778 \\ 01 \\ 04/0778 \\ 055 \\ 0000 \\ 738 \\ 01 \\ 04/0778 \\ 055 \\ 01 \\ 04/0778 \\ 055 \\ 01 \\ 04/0778 \\ 057 \\ 0000 \\ 738 \\ 01 \\ 03/2778 \\ 0000 \\ 738 \\ 01 \\ 03/2778 \\ 0000 \\ 738 \\ 0000 \\ 738 \\ 0000 \\ 738 \\ 0000 \\ 738 \\ 01 \\ 03/2778 \\ 0000 \\ 738 \\ 0000 \\ 738 \\ 0000 \\ 738 \\ 0000 \\ 738 \\ 0000 \\ 738 \\ 01 \\ 03/2778 \\ 0000 \\ 738 \\ 0000 \\ 738 \\ 0000 \\ 738 \\ 0000 \\ 738 \\ 01 \\ 03/2778 \\ 0000 \\ 738 \\ 0000 \\ 738 \\ 0000 \\ 738 \\ 0000 \\ 738 \\ 0000 \\ 738 \\ 0000 \\ 738 \\ 01 \\ 03/2778 \\ 0000 \\ 738 \\ 0000 \\ 738 \\ 0000 \\ 738 \\ 0000 \\ 738 \\ 0000 \\ 738 \\ 0000 \\ 738 \\ 0000 \\ 738 \\ 01 \\ 03/2778 \\ 0000 \\ 738 \\ 0000 \\ 0$					733		01		
$\frac{1}{328} \begin{array}{c} 0.4 \\ 0.4/07/85 \\ 738 \\ 0.4 \\ 0.9/09785 \end{array} \begin{array}{c} 9.9/00 \\ 10.3000 \end{array}$					738		01	03/75/85	10.0000
**** SAMPLESEXCEEDING MAX (MUM VALUE $738 \\ 53 \\ x *** $ $09/09/85 $ 40.3000 LEADMG/L.0050 $589 \\ 92 \\ x *** $ $09/22/83 \\ 09/22/83 \\ 0200 \\ 92 \\ x *** $ $0200 \\ 972 \\ x *** $ MAGNESIUMMG/L $547.8729 \\ 23 \\ 23 \\ 01 \\ 04/07/85 \\ 555.0000 \\ 732 \\ 01 \\ 04/07/85 \\ 555.0000 \\ 733 \\ 01 \\ 04/07/85 \\ 555.0000 \\ 734 \\ 01 \\ 04/07/85 \\ 555.0000 \\ 736 \\ 01 \\ 04/07/85 \\ 555.0000 \\ 736 \\ 01 \\ 04/07/85 \\ 555.0000 \\ 736 \\ 01 \\ 04/07/85 \\ 555.0000 \\ 736 \\ 01 \\ 04/07/85 \\ 555.0000 \\ 736 \\ 01 \\ 04/07/85 \\ 555.0000 \\ 738 \\ 01 \\ 03/25/85 \\ $					738		01	06/0//85	
***** SAMPLES EXCEEDING MAX (MUM VALUE = \$3 % **** LFAD MG/L .0050 589 01 09/22/83 .0100 **** SAMPLES EXCEEDING MAX1MUM VALUE = 9 % **** .0100 .0200 **** SAMPLES EXCEEDING MAX1MUM VALUE = 9 % **** .02/03/83 620.0000 **** SAMPLES EXCEEDING MAX1MUM VALUE = 585 01 02/03/83 620.0000 **** SAMPLES EXCEEDING MAX1MUM VALUE = 586 01 06/07/85 555.0000 **** SAMPLES EXCEEDING MAX1MUM VALUE = 586 01 06/09/83 334.0000 ***** SAMPLES EXCEEDING MAX1MUM VALUE = 586 01 03/22/85 .0004 **** SAMPLES EXCEEDING MAX1MUM VALUE = 6 X **** .0009 .0009 **** SAMPLES EXCEEDING MAX1MUM VALUE = 6 X **** .0004 .03/25/85 .0004 MOLYHDENUM MG/L .0757 595 01 02/03/83 .4400 S85 01 02/22/83 .4/00 585									
***** SAMPLES EXCEEDING MAXIMUM VALUE = 9 % **** .0200 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 9 % **** .0200 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 9 % **** .0200 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 9 % **** .0200 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 10 % **** .0200 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 10 % **** .02000 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 586 01 .06/07/85 .5/5.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 586 01 .03/22/85 .0004 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 6 % **** .0203 .4400 **** SAMPLES EXCEEDING MAXIMUM VALUE = 6 % **** .0003 .4400 S85 01 .02/03/83 .4400 .2400 .585 .2000 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 6 % **** .2000 .2400 .2400 ***** SAMPLES EXCEEDING MAXIMUM VALUE = .02/03/83 .4400 .2400 .2400 .2400 .2400 .2400	**** SAMPLES	EXCEEDING	MAX (MUM VALU	E =	53	7.	****		
***** SAMPLES EXCEEDING MAXIMUM VALUE = 590 01 09/22/83 .0200 MAGNESIUM MG/L 547.8729 585 01 02/03/83 620.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 585 01 06/07/85 585.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 10 % **** 586 01 06/07/85 555.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 10 % **** 586 01 06/07/85 555.0000 **** SAMPLES EXCEEDING MAXIMUM VALUE = 586 01 06/07/85 334.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 6 % **** 585 0004 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 6 % **** 00009 2900 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 6 % **** 01 02/03/83 .4400 S85 01 02/03/83 .4400 585 01 02/03/83 .2900 585 01 02/03/83 .4400 586 01 02/03/83 <t< td=""><td>LEAD</td><td>MG/L</td><td>.0050</td><td></td><td>589</td><td></td><td>01</td><td>09/22/83</td><td>-0100</td></t<>	LEAD	MG/L	.0050		589		01	09/22/83	-0100
***** SAMPLES EXCEEDING MAXIMUM VALUE = 9 % **** MAGNESIUM MG/L 547.8729 585 01 02/03/83 620.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 10 2/33 01 06/07/85 555.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 10 % **** **** 586 01 06/07/85 555.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 10 % **** **** 04/07/85 555.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 2 % **** 06/09/83 334.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 736 01 03/25/85 .0004 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 6 % **** 03/25/85 .0004 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 6 % **** 03/25/85 .2000 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 6 % **** 04/09/83 .4400 S85 01 02/03/83 .4400 585 01 04/07/85 .2900 S85 01 06/09/83 .2400 585 01 04/07/85 .20									
***** SAMPLES EXCEEDING MAXIMUM VALUE = 732 04 06/07/85 555.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 10 2 **** MANGANESH MG/L 8.7400 586 04 06/07/85 555.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 10 2 **** 334.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 586 04 06/09/83 334.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 6 2 **** 0009 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 6 2 **** 0009 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 6 2 **** 0009 ***** 0003 736 01 03/25/85 0009 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 6 2 ***** 0009 ***** 001290/83 .4400 585 01 06/09/83 .2400 585 01 06/09/83 .2400 585 01 06/09/83 .2400 586 01 02/02/83 .4400 586 04 06/09/83 .2400	**** SAMPLES	EXCEEDING	MAX1MUM VALU	E =		%			
***** SAMPLES EXCEEDING MAXIMUM VALUE = 732 04 06/07/85 555.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 10 2 **** MANGANESH MG/L 8.7400 586 04 06/07/85 555.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 10 2 **** 334.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 586 04 06/09/83 334.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 6 2 **** 0009 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 6 2 **** 0009 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 6 2 **** 0009 ***** 0003 736 01 03/25/85 0009 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 6 2 ***** 0009 ***** 001290/83 .4400 585 01 06/09/83 .2400 585 01 06/09/83 .2400 585 01 06/09/83 .2400 586 01 02/02/83 .4400 586 04 06/09/83 .2400	MAGNESIUM	MG/L	547.8729		585		01	02/03/83	620 0000
***** SAMPLES EXCEEDING MAXIMUM VALUE 733 04 06/07/85 555.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE 0736 04 06/07/85 575.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE 586 04 06/07/83 334.0000 MERCURY MG/L .0003 736 04 03/22/85 .0004 **** SAMPLES EXCEEDING MAXIMUM VALUE 585 04 03/25/85 .0009 **** SAMPLES EXCEEDING MAXIMUM VALUE 6 X **** **** **** MOLYHDENUM MG/L .0757 585 04 03/25/85 .2900 S85 04 03/25/85 .2/00 585 109/20/83 .4400 S85 04 06/07/85 .4400 585 .400 585 .2900 S85 04 06/07/85 .2900 585 .400 585 .2900 S85 04 06/07/85 .2900 586 .00/283 .3600 586 .2900 586 .2900 586 .2900 586 .400 586 .2000 586 .2900 586									
****SAMPLESEXCEEDINGMAXIMUMVALUE= $736 \\ 10 \\ \chi$ 04/07/85575.0000MANGANESF ****MG/L8.7400 EXCEEDING8.7400 MAXIMUM=586 04 2 χ 06/09/83334.0000MERCURYMG/L.0003 ****736 04 6 χ 03/25/85 ****.0004 .0009MERCURYMG/L.0003 ****736 04 6 χ 03/25/85 ****.0004 .0009MOLYHDENUMMG/L.0757595 04 .0585 04 .06/09/83 .585 04 									
**** SAMPLES EXCEEDING MAXIMUM VALUE = 10 % **** S86 01 06/09/83 334.0000 ***** SAMPLES EXCEEDING MAXIMUM VALUE = 2 % **** S86 01 06/09/83 334.0000 MERCURY MG/L .0003 736 01 03/22/85 .0004 **** SAMPLES EXCEEDING MAXIMUM VALUE = 6 % **** 6 % **** 0009 MOLYBDENUM MG/L .0757 585 01 02/03/83 .4400 S85 01 03/25/85 .2000 585 1 04/09/83 .2900 S85 01 06/09/83 .2900 585 1 06/09/83 .2900 S85 01 06/09/83 .2900 585 1 06/09/83 .2900 S86 01 02/02/83 .4400 585 1 06/09/83 .2900 S85 01 06/09/83 .2900 .2900 .2900 .2900 .2900 .2900 .2900 .2900 .2900 .2900 .2900 .2900 .2900 .2900 .2900 .2900 .2900									
**** SAMPLES EXCEEDING MAXIMUM VALUE 2 % **** MERCURY MG/L .0003 **** SAMPLES EXCEEDING MAXIMUM VALUE 736 04 03/22/85 .0004 **** SAMPLES EXCEEDING MAXIMUM VALUE 6 % **** 6 % **** .0009 MOLYHDENUM MG/L .0757 595 04 02/03/83 .4400 S85 01 02/03/83 .2400 .2900 .585 01 09/20/83 .2100 S85 01 03/25/85 .2/00 .585 01 06/0/185 .1800 S85 01 06/0/185 .1800 .586 .0609/83 .2900 S86 01 02/02/83 .4400 .586 .06/07/85 .2900 S86 01 06/07/85 .2900 .586 .01 .09/20/83 .3600 S86 01 09/20/83 .3600 .586 .01 .09/20/83 .3600 S86 01 09/20/83 .2000 .2000 .2000 .2000 .2000 S86 01 09/20/83 .2000 .2000	**** SAMPLES	EXCEEDING	MAXIMUM VALU	E =		7.		007700	3/3:0000
***** SAMPLES EXCEEDING MAXIMUM VALUE = 738 04 03/25/85 0009 ***** MOLYHDENUM MG/L .0757 595 01 02/03/83 .4400 S85 01 06/09/83 .2900 .855 1 09/20/83 .2900 585 01 03/25/85 .2700 .855 .2900 585 01 06/09/83 .2900 .855 .1800 585 01 06/09/83 .2900 .855 .1800 585 01 06/09/83 .2900 .856 .1800 585 01 06/09/83 .2900 .856 .1800 586 01 09/20/83 .4400 .8600 .866 .866 .8600 .866 .8600 .8600 .866 .8600 .866 .8600 .866 .8600 .8600 .866 .8600 .8600 .866 .8600 .8600 .866 .8600 .8600 .866 .8600 .8600 .8600 .8600 .866 .8600 .8600 .8600 .8600 .8600 .8600 <td></td> <td></td> <td></td> <td>E =</td> <td></td> <td>7.</td> <td></td> <td>06/09/83</td> <td>334.0000</td>				E =		7.		06/09/83	334.0000
***** SAMPLES EXCEEDING MAXIMUM VALUE = 738 04 03/25/85 0009 ***** MOLYHDENUM MG/L .0757 595 01 02/03/83 .4400 S85 01 06/09/83 .2900 .855 1 09/20/83 .2900 585 01 03/25/85 .2700 .855 .2900 585 01 06/09/83 .2900 .855 .1800 585 01 06/09/83 .2900 .855 .1800 585 01 06/09/83 .2900 .856 .1800 585 01 06/09/83 .2900 .856 .1800 586 01 09/20/83 .4400 .8600 .866 .866 .8600 .866 .8600 .8600 .866 .8600 .866 .8600 .866 .8600 .8600 .866 .8600 .8600 .866 .8600 .8600 .866 .8600 .8600 .866 .8600 .8600 .8600 .8600 .866 .8600 .8600 .8600 .8600 .8600 .8600 <td></td> <td></td> <td>0002</td> <td></td> <td>707</td> <td></td> <td>04</td> <td>00/00/00</td> <td>0004</td>			0002		707		04	00/00/00	0004
**** SAMPLES EXCEEDING MAXIMUM VALUE = 6 % **** MOLYHDENUM MG/L .0757 SH5 01 02/03/H3 .4400 SH5 01 06/09/H3 .2900 SH5 01 06/09/H3 .2400 SH5 01 06/07/H5 .4H00 SH5 01 06/07/H5 .4H00 SH5 01 06/07/H5 .2900 SH6 01 02/02/H3 .4400 SH6 01 02/02/H3 .3600 SH6 01 03/25/H5 .2900 SH6 01 03/25/H5 .2300 SH6 01 09/10/H5 .2200 SH6 01 09/10/H5 .2200 SH6 01 09/10/H5 .2200		HU/L	.0003						
585 04 06/09/83 2900 585 04 09/20/83 2400 585 04 09/20/83 2400 585 04 03/25/85 2/00 585 04 06/07/85 4800 585 04 06/07/85 1800 585 04 06/07/85 2900 586 04 02/02/83 4400 586 04 06/09/83 3600 586 04 06/09/83 3600 586 04 03/25/85 2300 586 04 06/07/85 2300 586 04 06/07/85 2200 586 04 06/07/85 2200 586 04 06/07/85 2200 586 04 06/07/85 2200 586 04 06/07/83 2000 586 04 06/07/83 2000 586 04 06/07/83 2000 586 04 06/07/83 2000 589	**** SAMPLES	EXCEEDING	MAXIMUM VALU	=		X		V-17 7.37 93	.0007
585 04 06/09/83 2900 585 04 09/20/83 2400 585 04 09/20/83 2400 585 04 03/25/85 2/00 585 04 06/07/85 4800 585 04 06/07/85 400 585 04 06/07/85 2900 586 04 02/02/83 4400 586 04 06/09/83 3600 586 04 09/20/83 3600 586 04 03/25/85 2300 586 04 06/07/85 2300 586 04 06/07/85 2200 586 04 06/07/85 2200 586 04 06/07/85 2200 586 04 06/07/85 2200 586 04 06/07/85 2200 586 04 06/07/85 2200 586 04 06/07/83 2000 589 04 06/07/83 2000	MOLYHDENUM	MG/L	.0757		585		01	02/03/83	4400
585 01 09/20/83 .2100 585 01 03/25/85 .2/00 585 01 06/0/85 .1800 585 01 06/0/85 .2900 585 01 06/0/85 .2900 586 01 02/02/83 .4/00 586 01 02/283 .3600 586 01 09/20/83 .3600 586 01 09/20/83 .2000 586 01 09/20/83 .2000 586 01 09/20/83 .2000 586 01 09/20/83 .2000 586 01 09/20/83 .2000 586 01 06/07/85 .2200 586 01 09/10/85 .2200 586 01 09/10/85 .2200 589 01 02/01/83 .2000									
585 04 03/25/85 2/00 585 04 06/0//85 4800 585 04 06/0//85 2900 586 04 02/02/83 44/00 586 04 06/09/83 3600 586 04 06/09/83 3600 586 04 09/20/83 3600 586 04 09/20/83 3600 586 04 09/20/83 2000 586 04 06/07/85 2300 586 04 06/07/85 2200 586 04 06/07/85 2200 586 04 06/07/85 2200 586 04 06/07/85 2200 586 04 06/07/85 2200 589 04 06/07/83 2000									
585 01 06/0//85 1800 585 01 09/10/85 2900 586 01 02/02/83 4/00 586 01 06/09/83 3600 586 01 09/20/83 3600 586 01 09/20/83 3600 586 01 03/25/85 2300 586 01 06/07/85 22000 586 01 09/10/85 2200 586 01 09/10/85 2200 589 01 02/01/83 2000									
585 01 09/10/85 2900 586 01 02/02/83 4/00 586 01 06/09/83 3600 586 01 09/20/83 3600 586 01 03/25/85 2300 586 01 06/07/85 2000 586 01 06/07/85 2200 586 01 09/10/85 2200 586 01 09/10/85 2200 589 01 02/01/83 2000									
586 01 02/02/83 .4/00 586 01 06/09/83 .3600 586 01 09/20/83 .3600 586 01 03/25/85 .2300 586 01 06/07/85 .2000 586 01 06/07/85 .2000 586 01 09/10/85 .2000 589 01 02/01/83 .2000									
584 04 06/09/83 3600 584 04 09/20/83 3600 586 04 03/25/85 2300 586 04 03/25/85 2300 586 04 06/07/85 2000 586 04 09/10/85 2200 586 04 09/10/85 2200 589 04 02/01/83 2000									
586 01 09/20/83 3600 586 01 03/25/85 2300 586 01 06/07/85 2000 586 01 09/10/85 2000 586 01 09/10/85 2000 589 01 02/01/83 2000									
586 01 03/25/85 2300 586 01 06/07/85 2000 586 01 09/10/85 2200 589 01 02/01/83 2000									-
586 04 06/07/85 2000 586 04 09/40/85 2200 589 04 02/04/83 2000									
586 01 09/10/85 2200 589 01 02/01/83 2000									
589 01 02/01/83 .2000									
									.0930

Table F.3.20 GROUND WATER BUALITY MEASUREMENTS EXCHEDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: GRAND JUNCTION 02/01/83 TO 09/10/85 (Continued)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: DOWN GRADIENT

PARAMETER	UNITS OF MEASURE	MAX (MIJM VALUE	1.00	CAT () ID	N	SAMPLE ID	LOG DATE	PARAMETER VALUE+Z-UNCERTAINTY
MOLYRDENUM	MG/L	.0757		590	_	01	02/02/83	. 1300
				590		01	06/0//83	. 10 10
				740		01	03/22/85	. 1100
				/40		01	09/09/85	. 1200
**** SAMPLES	EXCEED3 NG	MAXIMUM VALUE			%			
NICKEL	MG/L	.0684		585		01	03/25/85	. 1500
				585		01	09/10/85	. 1400
				586		01	03/25/85	. 1200
				586		01	06/07/85	. 1400
				586		01	09/10/85	. 1/00
				589		01	06/0//85	. 1 100
				589		01	09/09/85	. 1:300
				590		01	09/09/85	.0700
				736		01	0:1/22/85	. 1000
				736		01	09/10/85	.0900
				/40		01	09/09/85	.0/00
**** SAMPLES	EXCEEDING	MAX) MUM VALUE	=		x	****		
NITRATE	MG/L	8.4452		589		01	03/25/85	39.0000
				590		01	03/25/85	12.0000
				7:36		01	03/22/85	25.0000
				736		01	06/07/85	34.0000
				7:36		01	09/10/85	19.0000
**** SAMPLES	EXCELDING	MAXIMUM VALUE	. .		X	****		
ORG. CARBON	MG/L	55.7247		585		01	02/03/83	64.7000
				585		01	05/09/83	103.0000
				585		01	09/20/83	99.1000
				586		01	02/02/83	118.0000
				586		01	06/09/83	96.9000
				586		01	09/20/83	78.6000
				589		01	02/01/83	116.0000
				589		01	06/08/83	92.0000
				589		01	09/22/83	148.0000
				590		01	02/02/83	81.9000
				590		01	06/0//83	/9./000
				590		01	09/22/83	98.1000
				733		01	03/25/85	522.0000
**** SAMPLES	EXCEEDING	MAXIMUM VALU			X	****		
PB-210	PCI/L	2,6875		586		01	06/07/85	2.7000
		MAXIMUM VALUE	= =		X	****		
РН	SIJ	7.4450		585		01	02/03/83	7.6000
**** SAMPLES	EXCEEDING	MAXIMUM VALUE	- =	2	z	****		

F-163

Table F.3.20 GROUND WATER UNALITY MEASUREMENTS EXCEEDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: GRAND JUNCTION 02/01/83 TO 09/10/85 (Continued)

PARAMETER	UNITS OF MEASURF	MAX (MI)M VAL UF	LOCAT(D) ID	SAMPLE ID	LOG DATE	PARAMETER VALUE+/-UNCERTAINTY
PHOSPHATE	MG/L	2.53/5				
PD-210	PCT/L	.5000	_	_	-	-
POTASSIUM	MG/L	15.6300	585	01	02/03/83	99.5000
1011001011	1107 2	1010000	585	01	05/09/83	97.0000
			585	01	09/20/83	100.0000
			585	01	03/25/85	95.0000
			585	01	06/07/85	98.4000
			585	01	09/10/85	98.0000
			586	01	02/02/83	110.0000
			586	01	06/09/83	94.0000
			586	01	09/20/83	120.0000
			586	Ŏ1	03/25/85	94.0000
			586	01	06/07/85	101.0000
			586	01	09/10/85	100.0000
			589	01	02/01/83	52.5000
			589	01	06/08/83	53.0000
			589	01	09/22/83	53.0000
			589	01	03/25/85	52.0000
			589	01	06/07/85	66.4000
			589	01	09/09/85	63./000
			590	01	02/02/83	22.2000
			590	01	06/0//83	17.2000
			590	01	09/22/83	19.1000
			590	01	03/25/85	20.0000
			590	01	06/07/85	15.7000
			590	01	09/09/85	23.1000
			738	01	03/25/85	18.0000
			738	01	06/0//85	21.6000
			738	01	09/09/85	21.8000
			740	01	03/22/85	27.0000
			740	01	06/0//85	29.4000
			740	01	09/09/85	31.0000
**** SAMPLES	EXCREDING	MAX1 MUM VALUE	= 76 %	××××		
RA-226	PCI/L	.5000	รหร	01	09/20/83	18.0000
			586	01	09/20/83	18.0000
			586	01	03/25/85	1.1000
			586	01	06/07/85	2.0000
			586	01	09/10/85	2.1000
**** SAMPLES	EXCEFDING	MAXIMUM VALUE	= 16 %	****		
RA-228	PCI/L	.5000	58 5	01	03/25/85	4.5000
			586	01	03/25/85	2.5000
**** SAMPLES	EXCEEDING	MAX (MUM VALUE		****		L. GOVY
SFLEN JUM	MG/L	.0152	_	-	_	_
SILICA	MG/L	21.2545	585	01	09/10/85	25.9000

Table F.3.20 GROUND WATER QUALITY MEASUREMENTS EXCEEDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: GRAND JUNCTION 02/01/83 TD 09/10/85 (Continued)

PARAMETER	UNITS OF MEASURE	MAX IMUM VALUE	LOCATION (D	SAMPLE (D	LUG DATE	PARAMETER VALUE+Z-UNCERTAIN LY
SILICA	MG/L	21.2545	586	01	09/20/83	23.0000
012100			586	01	09/10/85	27.8000
			736	01	09/10/85	22.5000
			738	01	09/09/85	25.2000
**** SAMPLES	EXCEED (NG	MAX (MUM VALUE	= 17 %	****		
SILVER	MG/L	.0050	-	-	-	-
SUDIUM	MG/L	Y51.Y060	585	01	05/03/83	1020.0000
			585	01	06/09/83	960.0000
			585	01	09/20/83	990.0000
			585	01	03/25/85	970.0000
			585	01	09/10/85	980.0000
			586	01	02/02/83	1020.0000
			586	01	09/50/83	1000.0000
			586	01	03725785	990.0 000
			586	01	09/10/85	9 90.0000
			589	01	02/01/83	1090.0000
			589	01	04/08/83	1000.0000
			589	01	09/22/83	1300.0000
			589	01	03/25/85	0000
			589	01	06/07/85	1060.0000
			589	01	09/09/85	1130.0000
			590	01	65/65/83	1030.0000
			732	01	03/26/85	980.0000
			732	01	06/07/85	1060.0000
			732	01	07/06/85	990.0000
			733	01	03/25/85	1230.0000
			733	01	06/07/85	1190.0000
			733	01	04/06/85	1220.0000
			/36	01	03/22/85	1370.0000
			736	01	06/0//85	1200.0000
			736	01	09/10/85	1350.0000
			738	0 4	03/25/85	1110.0000
			738	01	06/07/85	1200.0000
			738	01	09/09/85	1142.0000
**** SAMPLES	EXCEEDING	MAXIMUM VALU	740 = 74 %	01 ****	03/22/85	980.0000
STRONTIUM	MG/L	4.5156	585	01	03/25/85	4.7000
חוניב ואוניאו כי	107 L	7.31.70	585	01	06/0//85	5.2200
			585	01	03/0//85	4.9600
			586	01	03/25/85	4.7000
			586	01	04/07/85	4.6300
			586	01	09/10/85	4.6400
			589	01	0:3725785	6.1000
			58 9	01	06/0//85	5.9400

Table F.3.20 GROUND WATER QUALITY MEASUREMENTS EXCLEDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: GRAND JUNCTION 02/01/83 TO 09/10/85 (Continued)

PARAMETER	UNI'IS DE MEASURE	MAX) VAL		LU	CA'I J ((D	IN	SAMPIE TD	LUG DATE	PARAMETER VALUE+Z-UNCERTAINTY
STRONTIUM	MG/L	4	.5156		590		01	03/25/85	5.9000
					590		01	09/09/85	5.7200
					732		01	03/26/85	6.8000
					732		01	06/07/85	6.8/00
					732		01	09/06/85	5.2800
					733		01	03725785	7.9000
					733		01	06/0//85	Z. 1000
					733		01	09/06/85	7.2400
					7:36		01	03/22/85	6.5000
					736		01	06/07/85	7.4 900
					736		01	09/10/85	6.6400
					738		01	03775785	5.8000
					738		01	06/0//85	5.5600
					738		01	09/09/85	6-4200
					/40		01	03722785	5.4000
					740		01	05/07/85	5.3800
					/40		01	09/09/85	5.3400
**** SAMPLES	EXCFEDING	MAX) MUM	VAL UE	=	96	×	****		
SULFATE	MG/L	3833	.8504		585		01	02/03/83	4320.0000
					585		01	05/09/83	4500.0000
					586		01	02/02/83	4320.0000
					586		01	06/09/83	4400.0000
					736		01	03/22/85	4100.0000
					736		01	06/07/85	3890.0000
**** SAMPLES	EXCEED (NG	MAXIMUM	VALUE	=	15	7.	****		
SULFIDE	MG/L		.0500		586		01	06/07/85	.2000
					7:38		01	06/0//85	. 1000
**** SAMPLES	EXCEEDING	MAXIMUM	VAL UF	=		X	****		
TEMPERATURE	C - DEGREE	18	7488		585		01	09/10/85	19.0000
					586		01	04/10/85	19.0000
					736		01	09/10/85	20.000
**** SAMPLES	EXCEEDING	MAXIMUM	VALUE	=		۲			
TH-230	PCI/L	-	5000		585			09/20/83	5.4000
**** SAMPLES	EXCEED (NG	MAXIMUM	VALUE	=	586 9	7.	01 ****	09/20/83	4.2000
					-				
TJN	MG/L		0075		585		01	03/25/85	.0050
					589		01	03/25/85	.0100
**** SAMPLES	EXCEEDING	MAXIMUM	VAL UF	=	7	X	****		
TOTAL SOLIDS	MG/L	7221.	0938		585		01	06/07/85	7310.0000
					586		01	03725785	7276.0000
					589		01	03/25/85	7302.0000
Table F.3.20 GROUND WATER QUALITY MEASUREMENTS EXCEEDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: GRAND JUNCTION 02/01/83 TO 09/10/85 (Continued)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: DOWN GRADIENT

PARAMETER	UNITS OF MEASURE	MAXIMUM VALUE	LOCATION (D	SAMPI E (D	LUG DATE	PARAMETER VALUE+/-UNCERTAUNTY
TOTAL SOL (DS	MG/L	7221.0938	 ร.ช.9	01	09/09/85	/550.0000
			732	01	03/26/85	7504.0000
			732	01	06/0//85	/864.0000
			733	01	03/25/85	7922.0000
			733	01	06/0//85	8092.0000
			733	01	09706785	7850.0000
			/36	01	03/22/85	8/28.0000
			736	01	06/07/85	8792.0000
			7:36	01	09/10/85	HSS0-0000
			738	01	03/25/85	12134.0000
			7.38	0 1	09/09/85	/430.0000
**** SAMPLES	EXCEED3 NG	MAXIMUM VALUE	· = 35 %	****		
TOX	MG/L	. 2465	585	01	03/25/85	-9 000
			586	01	03725785	.5000
			589	01	03/25/85	.6000
			590	01	03/25/85	.5000
			590	01	04/0//85	. 2800
			733	01	06/07/85	.3900
			7.36	01	03/22/85	.5000
	CYSCOD DO		738	01	03725785	.4000
**** 5802115	FALELUING	MAXIMUM VALUE	= 537	****		
U-234	PCI/l	35.1621	585	01	06/07/85	84.0000
			585	01	09/10/85	/2.0000
			586	01	06/07/85	118.0000
			586	01	09/10/85	6/.0000
			589	01	06/07/85	99.0 000
			589	01	07/07/85	86.0000
			590	01	09/09/85	56.0000
			732	01	03/26/85	53.0000
			732	01	06/07/85	58.0000
			7:3:2	01	09/06/85	39.0000
			733	01	03/25/85	39.0000
			733	01	06/0//85	43.0000
			733	01	09/06/85	44.0000
			736	01	03/22/85	66.0000
			736	01	06/07/85	60.0000
			736	01	09/10/85	/1.0000
			738	01	03/25/85	54.0000
			7:38	01	06/0//85	52.0000
			738	01	09/09/85	69.0000
			740	01	03/22/85	/5.0000
			740	01	06/07/85	65.0000
			740	01	09/09/85	15.0000
**** SAMPLES	EXCEPDING	MAXIMUM VALUE	· = 95 %	****		

Table F.3.20 GROUND WATER QUALITY MEASUREMENTS EXCEEDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: BRAND JUNCTION 02/01/83 TO 09/10/85 (Continued)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP; DOWN GRADIENT

PARAMETER	UNITS OF MEASURE	MAX (MI)M VAL UE	LOCATION ID	SAMPLE ID	LOG DATE	PARAMETER VALUE+Z-UNCERTATINTY
U-238	PCI/I	23.0995	585	01	06/07/85	84.0000
			585	01	09/10/85	73.0000
			586	01	03/07/85	116.0000
			586	01	09/10/85	68.0000
			589	01	06/07/85	89.0000
			589	01	09/09/85	/9.0000
			590	01	06/07/85	28.0000
			590	01	09/09/85	51.0000
			732	01	03/26/85	36.0000
			2:3:5	01	06/0//85	38.0000
			732	01	09/03/85	28.0000
			7:3:3	01	03/25/85	25.0000
			733	01	06/07/85	29.0000
			733	01	09/06/85	29.0000
			736	01	03/22/85	49.0000
			/36	01	06/07/85	60.0000
			736	01	09/10/85	53.0000
			738	01	03/25/85	41.0000
			738	01	06/0//85	40.0 000
			7 3B	01	09/09/85	58.0000
			740	01	03722785	70.0000
			740	01	06/0//85	55.0000
			740	01	09/09/85	69.0000
**** SAMPLES	EXCEEDING	MAXEMUM VALU	E = 100 %	****		
VANADIUM	MG/L	.0700	585	01	02703783	.02/0
			585	01	05/09/83	. 14 10
			585	01	09/20/83	.0970
			585	01	03/25/85	- 1 100
			585	01	06/07/85	.0900
			585	01	09/10/85	. 1000
			586	01	02/02/83	. 1400
			586	01	06/09/83	.4000
			586	01	04/20/83	.2500
			586	01	0.1/25/85	. 1300
			586	01	05/07/85	.2700
			586	01	09/10/85	. 1300
			589	01	02/01/83	.0270
			589	01	06708783	.0580
			589	01	09/22/83	.1100
			590	01	06/07/83	.0550
			590	01	03/25/85	< .0500
**** SAMPLES	EXCEEDING	MAX (MUM VALUE	E = 43 %	****		
ZINC	MG/L	.0626	586	01	02/02/83	.3000
			589	01	06/08/83	.0800
			589	01	04/22/83	.3900

Table F.3.20 GROUND WATER QUALITY MEASUREMENTS EXCEEDING STATISTICAL MAXIMUM VALUE BY PARAMETER SITE: GRAND JUNCTION 02/01/83 TO 09/10/85 (Concluded)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: DOWN GRADIENT

PARAMETER	UNITS OF MEASURE	MAX (MUM VAL UF	LOCAT (I)N ID	SAMPLE ID		PARAMETER VALUE+/-UNCERTAINTY
ZINC	MG/L	.0626	589 590 738	01 01 01	03/25/85 09/22/83 03/25/85	. 1000 .0/00 .2000
**** SAMPLES	EXCEEDING	MAXIMUM VALU	740	01	03/22/85	.0/00

MAPPER DATA FILE: GRJ01*0D000372

Table F.3.21 GROUND WATER QUALITY MEASUREMENTS EXCEEDING EPA DRINKING WATER QUALITY STANDARDS SITE: GRAND JUNCTION 03/26/85 TO 09/10/85

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: BACKGROUND

PARAMETER	UNITS OF MEASURE	MAX) MUM VALUE	LOCATION ID	SAMFLE ID	LUB DATE	PAKAMETER VALUE+ZUNCERTAUNTY
ARSENIC	MG/L	0.05	-	_		
BARIUM	MG/L	1.0	-		-	-
CADMIUM	MG/L	0.01	-	-	-	_
CHEORIDE	MG/L	250.0	711	01	03/27/85	300.0000
			711	01	06/07/85	316.0000
			711	01	0%/10/85	328.0000
			7 12	01	03/26/85	350.0000
**** SAMPLES	EXCEFDING	MAXIMUM VALU	F = 667	{ ****		
CHROMIUM	MG/L	0.05	-	-		<u>_</u> .
COPPER	MG/L	1.0	-	-	-	-
FLUORIDE	MG/L	1.4	-	-	-	-
GROSS ALPHA	PCI/L	15.0	711	01	03727785	90.0 000
			7 12	01	03/26/85	50.0000
**** SAMPLES	EXCREDING	MAXIMUM VALU	F = 100 7	*** *		
IRON	MG/L	0.3	711	01	06/0//85	./600
			711	01	09/10/85	.3200
			712	01	03/26/85	1.2000
			7 12	01	06/07/85	.890 0
**** SAMPLES	EXCEEDING	MAXIMUM VALU	E = 66 %	****		
LFAD	MG/L	0.05	-	-	-	_
MANGANESE	MG∕L	0.05	711	01	03/2//85	1.4000
			711	01	06/07/85	1.5500
			711	01	09/10/85	1.3300
			7 12	01	03/26/85	1.1000
			712	01	06/0//85	8./400
			7 12	01	0%/08/85	- 2300
**** SAMPLES	EXCEEDING	MAX (MUM VALU	F = 100 %	****		
MERCLIRY	MG/L	0.002	-	-	-	_
NUTRATE	MG/L	44.0	-		_	-
PH	SU	6.5 T(8.5	-	-		-
RA226+RA228	PC[/L	5.0	711	01	06/07/85	6.0000
			712	01	06/0//85	6.0000
**** SAMPLES	EXCEEDING	MAXEMUM VALU	E≕ 19 %.	****		
SFLENJUM	MG∕L	0.01	711	01	08707785	. 0440
**** SAMPLES	EXCEEDING	MAXIMUM VALU	E ≕ 16 %	****		
SILVER	MG/i	0.05	-	-	-	-
SULFATE	MG/L	250.0	711	01	03/27/85	1500.0000
			711	01	06/07/85	2780.0000
			711	01	09/10/85	2840.0000
			7 12	01	03/28/85	2700.0000
			712	01	06/07/85	831.0000

Table F.3.21 GROUND WATER QUALITY MEASUREMENTS EXCEEDING EPA DRINKING WATER QUALITY STANDARDS SITE: GRAND JUNCTION 03/26/85 TD 09/10/85 (Concluded)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: BACKGROUND

PARAMETER	UNITS OF MEASURE	MAXIMUM VALUE	LOCATION ID	SAMPLE ID	LUG DATE	PARATETER VALUE+Z-UNDERTAINTY
SULFATE **** SAMPLES	MG/L FXCFFDING	250.0 Maximum Valu	712 E = 100 ;	01 3	09/06/85	980.0000
TOTAL SULIDS		500.0	711 711 711 712 712 712 712	01 01 01 01 01 01	03/2//85 06/07/85 09/10/85 03/76/85 06/07/85 09/06/85	3008.0000 5486.0000 5370.0000 5387.0000 2072.0000 2340.0000
**** SAMPLES	MG/L	MAXIMUM VALU	E = 100 3	~ ****	_	_

MAPPER DATA FILE: GRJ01*UDP0W0100374

Table F.3.22 GROUND WATER QUALITY MEASUREMENTS EXCEEDING EPA DRINKING WATER QUALITY STANDARDS SITF: GRAND JUNCTION 02/01/83 TO 09/05/85

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

PARAMETER	UNITS OF MEASURE	MAXIMUM L VALUE	OCA'I ION ID	SAMPI F	LOG DATE	PARAMETER VALUE+/-UNCERTAENTY
ARSENIC	MG/L	0.05	_	_		
BARIUM	MG/L	1.0	-	_		_
CADMIUM	MG/L	0.01	_			_
CHUORIDE	MG/L	250.0	7 10	01	03/21/85	770.0000
	1107 E	200.0	710	01	06/07/85	607.0000
			7 10	01	09/04/85	783.0000
			744	01	03/21/85	450.0000
			744	01	09/04/85	296.0000
			744	02	09/04/85	802.000
			744	03	09/04/85	306.0000
			744	04	09/04/85	283.0000
			744	05	09/04/85	323.0000
			745	01	03/30/85	344.0000
			745	01	06/07/85	390.0000
			745	01	09/05/85	352.0000
			746	01	03/22/85	460.0000
			746	01	06/0//85	637.0000
			746	01	09/05/85	656.0000
XXXX SAMPLES	EXCEEDING	MAX EMUM PALDE				
CHROMJUM **** SAMPLES	MG/L Exceeding	0.05 Maximum value	744	01 & ****	03/21/85	.0700
COPPER	MG/L	1.0	-	_	-	-
FLUORIDE	MG/L	1.4	746	01	06/07/85	1,5000
			746	01	09/05/85	1.6000
**** SAMPLES	EXCEEDING	MAXIMUM VALUE		****		
GROSS ALPHA	PCI/L	15.0	710	01	03/21/85	(70.0000
			744	01	0:3/21/85	80.0000
			745	01	03/30/85	80.0000
			746	01	0:3/22/85	230.0000
**** SAMPLES	EXCEEDING	MAX] MUM VALUE	= 100 7	<u>/</u> ****		
TRON	MG/L	0.3	588	01	02/01/83	2.3000
			588	01	06/07/85	.3300
			710	01	09/04/85	3.0400
			744	01	03/21/85	1.0000
			745	01	0:3/:30/85	2.2000
			745	01	06/07/85	1.2400
			745	01	09/05/85	.4900
			746	01	03/22/85	.8000
			146	01	06/0//85	1.1500
			746	01	09/05/85	. 4 100
**** SAMPLES	EXCEEDING	MAXIMUM VALUE	= 437	****		
LEAD	MG∕l	0.05	-	_	-	-

Table F.3.22 GROUND WATER QUALITY MEASUREMENTS EXCEPTING EPA DRINKING WATER QUALITY STANDARDS SITE: BRAND JUNCTION 02/01/03 TO 09/05/85 (Continued)

FORMATION OF COMPLETION: ALLOVIUM Hydraulic flow relationship: Up Gradient

PARAMETER	UNITS OF MEASURE	MAX (HIJH VALUE	LOCATION ID	SAMPLE JD	LOG DATE	PARAMETER VALUE + Z-UNCERTAINTY
MANGANESE	MG/L	0.05	588	01	02/01/83	. 1600
			588	01	06/0//85	. 1500
			588	01	09/04/85	. 1500
			7 10	01	03/21/85	2.7000
			7 10	01	06/07/85	2.9100
			/ 10	01	07/04/85	2.8600
			744	01	03/21/85	2.0000
			/44	01	06/0//85	1.1900
			744	07	06/07/85	1.1600
			744	03	06/07/85	1. 1500
			744	04	05/07/85	1. 1900
			744	05	06/0//85	1.2000
			744	01	09/04/85	1.3400
			-	01	09/04/85	
			744	• •		1.3500 1.3800
			744	03	09/04/85	1.3700
			744	04 05	09/04/85	
			744		09/04/85	1.3400
			/45	01	03/30/85	1.8000
			745	01	06/07/85	1. 4700
			745	01	09/05/85	1.2900
			746	01	03/22/85	2.3000
			746	01	06/07/85	1.7700
#### SAMPLES	EXCEEDING	HAX (HUH VAL)	746 UE = 100	01 % ****	04/05/85	1-4200
MERCURY	MG∕l	0.002	-	-	-	-
NUTRATE	MG/L	44.0	-	-	-	_
PH	SU	6.5 10 8.5	-	-	-	_
RA226+RA228	PCI/L	5.0	588	01	09/04/85	〈 6.0000
			7 10	01	06/07/85	
			744	01	03/21/85	
			744	01		6.0000
			744	03		< 6. 0000
			744	05		4 5.2000
			745	01	06/07/85	
			746	01		(6.0000
			746	01	09/05/85	
**** SAMPLES	EXCEEDING	MAXIMUM VAL				
SELENIUM	MG/L	0.01	-		-	-
SILVER	MG/L	0.05	-	-	-	-
SULFATE	MG/L	250.0	710	01	03/21/85	3000.0000
			7 10	01	06/07/85	2430.0000
			710	01	09/04/85	2890.0000
			744	01	03/21/85	1700.0000
			744	01	06/07/85	1150.0000
			744	02	06/07/85	1120.0000
			/	UL.	vu/ v/ / 63	112010000

Table F.3.22 GROUND WATER QUALITY MEASUREMENTS EXCEPTING EPA DRINKING WATER QUALITY STANDARDS SITE: GRAND JUNCTION 02/01/83 TD 09/05/85 (Concluded)

FURMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

PARAMETER	UNITS OF MEASURE	MAX [MIJM VAL UF	LUCATION ID	SAMPLE ID	LOG DATE	PARAMETER VALUE+7-UNCERTAINTY
SUL FAIF	MG/L	250.0	744	03	06/07/85	1110.0000
			744	04	06/07/85	1150.0000
			744	05	06/0//85	1140.0000
			744	01	09/04/85	1300.0000
			744	07	09/04/85	1380.0000
			744	03	09/04/85	1340.0000
			744	04	09/04/85	1240.0000
			744	05	09/04/85	1410.0000
			745	01	03/30/85	2700.0000
			745	01	06/07/85	2620.0000
			745	01	09/05/85	2450.0000
			746	01	03/22/85	2900.0000
			746	01	06/07/85	3410.0000
			746	01	09/05/85	33/0.0000
**** SAMPLES	EXCEEDING	MAXIMUM VAL	UF = 86 %	****		
TOTAL SOL (DS	MG/L	500.0	588	01	02/04/83	8/8.0000
			588	01	06/07/85	656.0000
			710	01	03/21/85	6204.0000
			710	01	06/07/85	5658.0000
			710	01	09/04/85	6320.0000
			744	01	03/21/85	4462.0000
			744	01	06/07/85	2384.0000
			744	02	06/07/85	2410.0000
			744	03	06/07/85	2456.0000
			744	04	08/07/85	2438.0000
			744	05	06/0//85	2430.0000
			744	01	09/04/85	3080.0000
			744	02	09/04/85	3080.0000
			744	03	09/04/85	4000.0000
			744	04	09/04/85	4000.0000
			744	05	09/04/85	3090.0000
			745	01	03/30/85	5458.0000
			745	01	06/07/85	5376.0000
			745	01	09/05/85	4/40.0000
			746	01	03/22/85	6038.0000
			746	01	06/0//85	AH/H.0000
	EXCEEDING		746	01	09/05/85	6930.0000
**** SAMPLES	CAULEUINU	THATTUM VAL	JE ≕ 95 %	****		
ZINC	MG/L	5.0	-	-	-	-

MAPPER DATA FILE: GRU01*UDP0W0100373

Table F.3.23 GROUND WATER QUALITY MEASUREMENTS EXCEPTING EPA DRINKING WATER QUALITY STANDARDS SITE: GRAND JUNCTION 01/31/83 TO 09/11/85

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSH(P: UN-SITE

PARAMETER	UNITS OF MEASURE	MAXIMUM VALUE	LOCATION [D	SAMPL F ID	LUG DATE	PARAMETER VALUE+Z-UNCERTA (NTY
ARSENIC	MG/L	0.05	583	01	09/21/83	.0770
			584	01	09/21/83	.0200
			584	01	03/26/85	. 1800
			584	01	06/07/85	.0900
			584	01	09/ 11 /85	. 1400
**** SAMPLES	EXCEEDING	MAXIMUM VAL	UE = 157	£ ****		
BARTUM	MG/L	1.0	-	-	-	-
CADMJUM	MG/L	0.01	583	01	09/2 1/83	.0720
			583	01	09/11/35	. 0140
			584	01	09/21/83	.4200
			584	01	03/26/85	.09/0
			584	01	06/0//85	.0730
			584	01	09/11/85	- 1420
**** SAMPLES	FXCFFDING	MAXIMUM VAL	UE = 25 %	****		
CHLORIDE	MG/L	220.0	581	01	02/07/83	515.0000
			581	01	05/09/83	640.0000
			581	01	09/22/83	50.0000
			581	01	03/26/85	490.0000
			581	01	06/07/85	543.0000
			581	02	06/07/85	573.0000
			581	03	06/07/85	564.0000
			581	04	06/07/85	576.0000
			581	05	06/07/85	5/9.0000
			581	01	09/11/85	579.0000
			581	02	09/11/85	598.0000
			581	03	09/11/85	580.0000
			581	04	07/11/85	537.0000
			581	05	09/11/85	567.0000
			583	01	02/0//83	760.0000
			583	01	06/07/83	770.0000
			583	01	09/21/83	/90.0000
			583	01	03/26/85	660.0000
			583	01	06/07/85	787.0000
			583	01	09/11/85	862.0000
			584	01	05/08/83	825.0000
			584	01	06/08/83	970.0000
			584	01	09/21/83	790.0000
			584	01	03/26/85	720.0000
			584	01	06/07/85	791.0000
			584	01	09/11/85	B69.0000
			587	01	01/31/83	3/5.0000
			587	01	04/08/83	520.0000
			587	01	09/21/83	400.0000
			747	01	03/22/85	740.0000
			747	01	06/07/85	10:10.0000

Table F.3.23 GROUND WATER QUALITY MEASUREMENTS EXCEEDING EPA DRINKING WATER QUALITY STANDARDS SITE: GRAND JUNCTION 01/31/83 TO 09/11/85(Continued)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: ON-SITE

PARAMETER	UNITS OF MEASURE	MAX3MUM LO VALUE	CATION :	SAMPLE (1)	LOG DATE	PARAMETER VALUE+/-UNDERTAINTY
CHLORIDE **** SAMPLES	MG/L EXCEEDING	250.0 MAXIMUM VALUE	747 = 100 %	01 ****	09/05/85	1000.0000
CHROMIUM	MG/L	0.05	-	-	_	-
COPPER	MG/L	1.0	-	-	-	-
FLUORIDE	MG/L	1.4	581	01	09/22/83	4,4000
			581	01	03/26/85	4.7000
			581	01	04/01/85	4.3000
			581	07	06/07/85	4.2000
			581	03	06/07/85	4.3000
			581	04	06/07/85	4.3000
			58 1	05	06/0//85	4.1000
			581	01	09/11/85	4.8000
			581	02	09/11/85	4.7000
			58 1	60	09/11/85	4.9000
			581	04	09/11/85	4.9000
			581	05	09/11/85	4.7000
			583	01	09/21/83	4.4000
			583	01	03/26/85	4.2000
			583	01	05/07/85	3.0000
			583	01	09/11/85	4.2000
			584	01	09/21/83	4.3000
			584	01	03/26/85	3.7000
			584	01	04/01/85	3./000
**** SAMPLES	EXCEEDING	MAX (MUM VALUE	584 = 83 %	01 ****	09/11/85	3.9000
			504	01	03/26/85	160.0000
GROSS ALPHA	PCI/L	15.0	581 583	01	03/26/85	255.0000
			584	01	03/26/85	230.0000
			747	01	03/22/85	
**** SAMPLES	EXCEEDING	MAXIMUM VALUE			0.17.27.700	
IRON	MG/L	0.3	581	01	02/07/83	3.2400
111.014	1107 2	•••	581	01	06/09/83	1.3100
			581	01	09/22/83	3./200
			581	01	03/26/85	12.0000
			581	01	06/07/85	11.2000
			581	02	06/07/85	11.1000
			581	03	06/07/85	11.5000
			581	04	06/07/85	11.1000
			581	05	06/07/85	11.4000
			581	01	09/11/85	4.8800
			581	02	09/11/85	9.9100
			581	03	09/11/85	9.8500
			581	04	09/11/85	10.0000
			581	05	09/11/85	9.8800

Table F.3.23 GROUND WATER QUALITY MEASUREMENTS EXCERDING EPA DRINKING WATER QUALITY STANDARDS SITE: GRAND JUNCTION 01/31/83 TO 09/11/85 (Continued)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: ON-SITE

PARAMETER	UNITS OF MEASURF	MAXIMUM VALUE	LOCATION ID	SAMPLE ID	LOG DA'IE	PARAMETER VALUE+/-UN(ERTA)NTY
IRON	MG/L	0.3	583	01	02/07/83	.4900
			583	01	03/26/85	1.8000
			583	01	06/07/85	1.0800
			583	01	09/11/85	1.9100
			587	01	01/31/83	.3/00
			747	01	0:37:55/85	3.4000
			747	01	06/07/85	2.0100
			747	01	09/05/85	.4400
**** SAMPLES	FXCFEDING	MAXIMUM VALU	JE = -68 7	****		
LEAD	MG/L	0.05	-	-	-	-
MANGANF SF	MG/L	0.05	581	01	07/07/83	2.7200
			581	01	05/09/83	2.8500
		<u>س</u> `	581	01	09/22/83	4.5000
			58 1	01	03/26/85	5.0000
			581	01	06/07/85	4. 5900
			581	02	06/0//85	4.5600
			581	03	06/07/85	4.6100
			581	04	06/0//85	4.5800
			581	05	06/07/85	4.5400
			581	01	09/11/85	4./200
			581	02	09/11/85	4.6400
			581	03	09/11/85	4.6500
			581	04	09/11/85	4.7500
			581	05	09/11/85	4.6100
			583	01	02/07/83	3.1000
			583	01	06/07/83	1.2500
			583	01	09/21/83	10.0000
			583	01	03/26/85	4.3000
			583	01	06/07/85	2.5600
			583	01	09/11/85	4.1500
			584 584	01	02/08/83	4.2200
			584	01 01	06708783 09721783	3.0400 8.1000
			584	01	03/26/85	4.0000
			584	01	06/07/85	3.4000
			584	01	09/11/85	3.4000
			587	01	01/31/83	.4600
			587	01	04/08/83	/. 1000
			582	01	09/21/83	1.9100
			747	01	03/22/85	4.0000
			747	01	06/07/85	3.1300
			747	01	09/05/85	2.5000
**** SAMPLES	EXCEEDING	MAX) MUM VALL				
MERCURY	MG/L	0.002	_	_		
N) TRA'I F	MG/L	44.0	- 583	01	- 09/21/83	50.0000

Table F.3.23 GROUND WATER QUALITY MEASUREMENTS EXCEPTING EPA DRINKING WATER QUALITY STANDARDS SITE: GRAND JUNCTION 01/31/83 TO 09/11/85 (Continued)

FORMATION OF COMPLETION: ALLUV(UM HYDRAULIC FLOW RELATIONSH)P: ON-SITE

PAKAMETER	UNITS OF MEASURE	MAX (MUM) VAL UF	IDCATION	SAMPLE ID	LŪG DATE	PARAMETER VALUE+/-UNCERTAINTY
**** SAMPLES	EXCEEDING	MAXIMUM VALU	= 3 X	****		
РН	รม	6.5 10 8.5	-	-	-	-
RA226+RA228	PCI/L	5.0	581	01	06/07/85	5.4000
			581	04	09/11/85	5.3000
			583	01	09/24/83	30.3000
			583	01	03/26/85	6.1000
			583	01	06/07/85	7.2000
			583	01	09/11/85	6.9000
			564	01	05/21/83	15.0000
			584	01	03/26/85	H.5000
			584	01	06/07/85	7.9000
			584	01	09/11/85	1.0000
			747	01	06/07/85	
**** SAMPLES	EXCEEDING	MAX LMUM VAL II				
SFLENJUM	MG/L	0.01	581	01	02/07/83	.0200
OF ELLIPOIT	10/6		583	01	02/0//83	- 0200
		583	01	06707783	• 0 4.30	
			583	01	07721783	. 1200
			583	01	09/11/85	-0110
			584	01	02/08/83	.0510
			584	01	06708783	.0270
			584	01	09/21/83	. 2200
			584	01	03/74/85	.2400
			584	01	05/0//85	. 1/80
			584	01	04/11/85	. 1990
**** SAMPLES	EXCEEDING	MAX LMUM VALUE			077 10700	• • • • • •
STI VER	MG/I	0.05	-	-	-	-
SULFATE	MG/L	250.0	581	01	02/01/83	3215,0000
			581	01	06/09/83	3800.0000
			581	01	04/22/43	2800.0000
			561	01	03/26/85	2900.0000
			581	01	06/0//85	2810.0000
			581	07	06/0//85	2840.0000
			581	03	06/0//85	2900.0000
			581	04	06/07/85	2460.0000
			581	05	06/0//85	2920.0000
			581	01	09/11/85	2860.0000
			581	02	09/11/85	2950.0000
			581	03	09/11/85	2870.0000
			581	04	09/11/85	2890.0000
			581	05	09/11/85	2800.0000
			583	01	02/0//83	4200.0000
			583	01	06/07/83	3100.0000

Table F.2.23 GROUND WATER QUALITY MEASUREMENTS EXCEEDING EPA DRINKING WATER QUALITY STANDARDS SITE: GRAND JUNCTION 04/34/83 TO 09/44/85 (Continued)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: ON-SITE

PARAMETER	UNITS OF MEASURE	MAX1MUM VALUE	LOCATION (D	SAMPLE ID	LUG DATE	PAKAMETEK VALUE+/-UNCERTA (NTY
SULFATE	MG/L	250.0	583	01	03/26/85	3/00.0000
			583	01	06/07/85	3390.0000
			583	01	09/11/85	3/50.0000
			584	01	02/08/83	4440.0000
			584	01	06/08/83	4200.0000
			584	01	09/21/83	4900.0000
			584	01	03/26/85	4100.0000
			584	01	06/07/85	3960.0000
			584	01	09/11/85	4400.0000
			567	01	01/31/83	2370.0000
			587	01	06108183	2700.0000
			587	01	09/21/83	2000.0000
			747	01	03/22/85	3400.0000
			747	01	06/07/85	3060.0000
			/4/	01	09/05/85	3260.0000
**** SAMPLES	FXCFEDING	HAXIMUH VAL	liE = 100	****		
TOTAL SULIDS	ĦG∕L	500.0	581	01	02/07/83	5240.0000
			581	01	06/09/83	5610.0000
			581	04	09122183	5200.0000
			581	01	03/26/85	5394.0000
			581	01	04/07/85	5464.0000
			581	07	06/07/85	5498.0000
			581	03	06/07/85	5432.0000
			581	04	06/07/85	5460.0000
			581	05	06/07/85	5482.0000
			581	01	09/11/85	5490.0000
			581	02	09/11/85	5540.0000
			581	63	0%/11/85	5370.0000
			581	04	09/11/85	5460.0000
			581	05	09/11/85	5400.0000
			583	01	05/01/83	6420.0000
			583	01	04/07/83	5830.0000
			583	01	68/12/60	H000-0000
			583	01	03/24/85	6606.0000
			583	01	06/07/85	6150.0000
			583	01	09/11/85	6890.0000
			584	01	02/08/83	A350.0000
			564	01	06\08\83	6380.0000
			584	01	09/21/83	8109.0000
			584	01	03/26/85	7484.0000
			584	01	06/0//85	6/16.0000
			584	01	09/11/85	7440.0000
			587	01	01/31/83	4220.0000
			587	01	06/08/83	4570.0000
			587	01	09/21/83	4/90.0000
			747	01	03/22/85	6780.0000

Table F.3.23 GROUND WATER QUALITY MEASUREMENTS EXCEEDING EPA DRINKING WATER QUALITY STANDARDS SITE: GRAND JUNCTION 01/31/83 TU 09/11/85 (Concluded)

FORMATION OF COMPLETION: ACLUVIUM HYDRAULIC FLOW RELATIONSHIP: ON-SITE

PARAMETER	UNITS OF MEASURE	MAXIMUM VALUE	LOCATION ID	SAMPLE ID	LOG DATE	PARAMETER VALUE+/-UNCERTAINTY
TOTAL SOLIDS		500.0	747 747 IE = 100	01 01 × * * * *	06/07/85 09/05/85	7174.0000 7130.0000
ZINC	MG/L	5.0	-	-	-	-

MAPPER DATA FILE: GRU01*UDPGWQ100371

Table F.3.24 GROUND WATER DUALITY MEASUREMENTS EXCEEDING EPA DRINKING WATER DUALITY STANDARDS SITE: GRAND JUNCTION 03/22/05 TO 09/10/85

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: GROSS GRADIENT

PARAMETER	UNITS OF MEASURE	MAXIMUM	LOCATION LU	SAMPI E	LUG DAFE	PARAME ÉER VALUEEZ-UNDERTALNTY
ARSENIC	MG/L	0.05	-	-	-	-
BARJUM	MG/l	1.0	-	-	-	-
CAUMEUM	书67七	0.01	-			-
CHL (IK) DE	MG/L	250.0	737	01	03/27/85	BH0.0000
			737	01	06/07/85	1080.0000
			737	01	0%/0%/85	4400.0000
			739	01	03/22/85	9/0.0000
			739	01	06/0//85	1130.0000
			7:39	U 1	09/05/85	12-0.0000
			742	01	03/2//85	590.0000
			742	01	06/0//85	6/3.0000
			747	01	04/40/85	705.0000
**** SAMPLES	EXCEEDING	MAX EMEM VAL				
CHROMJUM	MG/L	0.05	-	-	-	-
COPPER	MG/L	1.0	-	-	-	-
FLUORI DE	MG/L	1.4	-	-	-	-
GROSS ALPHA	PCI/L	15.0	7:37	01	()3/22/85	185.0000
			737	01	03/7/185	
			/42	01	03/22/85	
**** SAMPLES	FXCEEDING	MAXIMUM VAL				
IRON	MG/L	0.3	73 7	01	03/22/85	4.7000
			737	0.1	06/07/65	- 6 (st. +) +
			739	01	03122/85	3.4000
			739	01	06/07/85	4.4700
			7 (39	01	09/05/85	.4700
			747	01	03/77/85	5.7000
			742	01	06/0//85	.5600
			742	01	09/10/85	•6800
**** SAMPLES	EXCEEDING	HAXTHUM VAL	UE = 1313 7	K ####		
LEAD	MG/L	0.05	-	-	-	-
MANGANESE	86/L	0.05	737	01	03/22/85	2.6000
			737	01	06/07/85	2.4700
			737	01	09/06/85	2.1900
			739	01	03/22/85	1.8000
			739	01	06/01/85	1.7600
			739	01	04/05/85	1.5800
			742	01	03/22/85	4.6000
			742	01	06/07/85	2.7700
			742	01	09/10/85	2.4500
#### SAMPLES	EXCEPDING	MAXIMUM VALU			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
HERCURY	MG/L	0.002	-	-	-	-
N) TRATE	MG/L	44.0	-	-	-	-
PH	SU	6.5 TO 8.5	-	-	-	-

Table F.2.24 GROUND WATER DUALITY MEASUREMENTS EXCHEDING EPA DRINKING WATER DUALITY STANDARDS SITE: GRAND JUNCTION 03/22/85 TO 09/10/85 (Concluded)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: CROSS BRAD(ENT

PARAMETER	UNITS OF MEASURE	HAX) HUM VALUE	I NCATION	SAMPIE	LUG DATE	PARAMETER VALUE+Z-UNIERTATINTY
RA226+RA228	PC(/L	5.0	7.37	01	04/07/85	< 6.0000
			739	01	06/07/85	< 6.0000
			/42	01	03/22/85	(6.0 000
#### SAMPLES	EXCEFDING	MAXIMUH VALL	IF = 49 7	****		
SELENIUM	MG/L	0.01	-	-	-	-
SILVER	MG/L	0.05	-	-	-	-
SULFATE	MG/L	250.0	/37	01	03/22/85	3800.0000
			7 37	01	06/0//85	3770.0000
			737	01	07/06/85	3850.0000
			739	01	03122185	4 000.0000
			7 3 9	01	06/07/85	BASO.0000
			739	01	09705785	3960.0000
			/ 42	01	01/22/45	3500.0000
			747	01	06/0//85	3460.0000
			/42	01	09/10/85	3420.0000
**** SAMPLES	EXCEEDING	MAXIMUM VALL	JE = 400 2	<u> </u>		
TOTAL SOLTOS	MG/L	500.0	737	01	03/22/85	B1 34,0000
			73/	0.4	00/0//85	8300.000
			7:37	01	09/06/85	B-140.0000
			739	01	03/22/85	8374.0000
			/39	01	06/07/85	H444.0000
			739	01	09705785	8530.0000
			742	01	03/22/85	6828.0000
			742	01	06/0//85	7126.0000
			142	01	09/10/85	/0/0.0000
#### SAMPLES	EXCEPDING	MAXIMUM VALL	$IF = 100 \ 2$	****		
ZINC	MG/L	5.0	-	-	-	-

MAPPER DATA FILE: GRJ01+UDPG401003/5

Table F.3.25 GROUND WATER QUALITY MEASUREMENTS EXCLEDING EPA DRINKING WATER QUALITY STANDARDS SITE: GRAND JUNCTION 02/01/83 TO 09/10/85

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: DOWN GRADIENT

PARAMETER	UN) TS OF MEASURE	MAX]MUM VALUE	LOCATION TD	SAMPLE TD	LUG NATE	PARAMETER VALUE+Z-UNCERTA (NTY
ARSENIC **** SAMPLES	MG/L EXCEEDING	0.05 MAXIMUM VALU	586 JE = 2%	01 ****	09/20/83	. 1 10 0
BARIUM	MG/L	1.0	-	-	-	-
CADM) UM	MG/L	0.01	-	-	-	-
CHLORIDE	MG/L	250.0	585	01	05/03/83	/90.0000
			585	01	06709783	800.0000
			585	01	09/20/83	840.0000
			585	01	03/25/85	850.0000
			585	01	06/07/85	868.0000
			585	01	09/10/85	854.0000
			586	01	02/02/83	805.0000
			586	01	04/09/83	860.0000
			596	01	09/20/83	820.0000
			586	01	03/25/85	740.0000
			586	01	06/07/85	860.0000
			586	01	09/10/85	898.0000
			589	01	02/01/83	/49.0000
			589	01	06708783	840.0000
			589	01	09/22/83	860.0000
			589	01	03/25/85	930.0000
			589	01	06/0//85	1100.0000
			589	01	09/09/85	1260.0000
			590	01	02/02/83	736.0000
			590	01	06/07/83	990.0000
			590	01	58/55/60	6/0.0000
			590	01	03/25/85	830.0000
			590	01	06/07/85	459.0000
			590 7:32	01	09/09/85	759.0000
			732	01	03/26/85	930.0000
				0.1	06/07/85	1130.0000
			732	01	09/06/85	8/2.0000
			733	01	03/25/85	1100.0000
			733 733	01 01	06/07/85 09/06/85	1250.0000 1270.0000
			736	01	03/22/85	890.0000
			736	01	06/07/85	1060.0000
			736	01	09/10/85	997.0000
			738	01	03/25/85	670.0000
			738	01	03/23/85	944.0000
			738	01	09/09/85	1000.0000
			740	01	03/22/85	650.0000
			740	01	05/07/85	707.0000
			740	01	09/09/85	755.0000
**** SAMPLES	FXCEEDING	MAXIMUM VAL			0//0//03	7 - 1- J • V V V
CHROMIUM	MG/L	0.05	-	-	-	-

Table F.3.25 GROUND WATER QUALITY MEASUREMENTS EXCEEDING EPA DRINKING WATER QUALITY STANDARDS SITE: GRAND JUNCTION 02/01/83 TO 09/10/85 (Continued)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: DOWN GRAD(ENT

PARAMETER	UNITS OF MEASURE	MAX]MUM VALUE	LOCATION ID	SAMPLF [D	LUG DATE	PARAMETER VALUE+Z-UNDER (A (NTY
COPPER	MG/L	1.0		_		_
FIUORIDE	MG/L	1.4	585	01	09/20/83	3.2000
			585	01	03/25/85	3.1000
			585	01	06/07/85	3.2000
			585	04	09/10/85	3.7000
			586	01	09/20/83	3.4000
			586	01	03/25/85	3.1000
			586	01	06/07/85	3.3000
			586	01	09/10/85	3.7000
**** SAMPLES	FXCEEDING	MAXIMUM VAL				
GROSS ALPHA	PCI/L	15.0	585	01	03/25/85	380.0000
			586	01	03/25/85	490.0000
			589	01	03/25/85	260.0000
			590	01	03/25/85	240.0000
			732	01	03/26/85	105.0000
			733	01	03/25/85	185.0000
			736	01	0:3/22/85	345.0000
			738	01	03/25/85	170.0000
			140	01	03/22/85	245.0000
**** SAMPLES	EXCEEDING	MAXIMUM VAL	UE = 100 %	****		
IRON	MG/L	0.3	585	01	02/03/83	4.0300
			585	01	06/09/83	2.6400
			585	01	09/20/83	2./100
			585	01	03/25/85	13.0000
			585	01	06/07/85	11.2000
			585	01	09/10/85	11.0000
			586	01	02/02/83	13.5000
			586	01	06/09/83	6.0900
			586	01	09/20/83	4.7/00
			586	01	03725785	16.0000
			596	01	06707785	12.8000
			586	01	09/10/85	15.4000
			589	01	02/01/83	2.7200
			589	01	09/27/83	3.4200
			589	01	03/25/85	1.1000
			589	01	06/07/85	3.7900
			589	01	09/09/85	3.0500
			590	01	03/25/85	1.1000
			733	04	0:3/25/85	4.2000
			733	04	06/07/85	2.0400
			733	01	09/06/85	1.3100
			736	01	03/72/85	.5000
			7:38	01	03/25/85	10.0000
			738	01	06/0//85	9.9700
			738	01	09/09/85	10.3000

Table F.3.25 GROUND WATER QUALITY MEASUREMENTS EXCEEDING EPA DRINKING WATER QUALITY STANDARDS SITE: GRAND JUNCTION 02/01/83 TO 09/10/85 (Continued)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: DOWN GRADIENT

PARAMETER	UNITS OF MEASURE	MAXIMUM VALUE	LOCATION	SAMPLE (D	LUG DATE	PARAMETER VALUE+7-UNDERTAUNTY
IRDN **** SAMPLES	MG/L FXCEEDJNG	0.3 MAXIMUM VALL	740 JE = 66 %	01	03/22/85	.4000
LEAD	MG/L	0.05	-		-	_
MANGANESH	MG/L	0.05	585	01	02/03/83	3.4200
			585	01	06/09/83	3.3800
			585	01	09/20/83	4.8000
			585	01	03/25/85	4.8000
			585	01	06/07/85	4.0500
			585	01	09/10/85	4.3100
			586	01	02/02/83	4.0700
			586	01	06/09/83	334.0000
			586	01	09/20/83	4.6000
			586	01	03/25/85	4.8000
			588	01	06/07/85	4.0200
			586	01	09/10/85	4.3300
			589	01	02/01/83	1.2000
			58 9	01	06/08/83	1 - 1100
			589	01	09/22/83	1.6100
			589	01	03/25/85	2.0000
			589	01	06/07/85	2.1800
			589	01	09/09/85	2.0800
			590	01	02/02/83	-3 600
			590	01	06/0//83	.3800
			590	01	09/22/83	1.2300
			590	01	03/25/85	1.5000
			590	01	06/07/85	.7400
			590	01	09/09/85	1.5700
			732	01	03/26/85	1.0000
			/32	01	06/0//85	.8500
			732	01	09/08/85	.6600
			733	01	03/25/85	2.2000
			733	01	06/07/85	2.1200
			733	01	09/06/85	1.8900
			736	01	03/22/85	2.7000
			736	01	06/0//85	:3.0000
			736	01	09/10/85	2.1600
			738	01	03/25/85	1.6000
			738	01	06/07/85	1.4000
			7:38	01	09/09/85	1.4200
			740	01	03/22/85	3.7000
			740	01	06/07/85	2.9600
			740	01	09/04/85	3.2700
**** SAMPLES	EXCEED ING	MAX (MUM VALI	JE = 100 %	****		
MERCURY	MG/l	0.002	_	_	_	
NITRATE	MG/L	44.0	-	_		
NTINHIE		77.0	-	_	-	-

Table F.3.25 GROUND WATER QUALITY MEASUREMENTS EXCREDING EPA DRINKING WATER QUALITY STANDARDS SITE: GRAND JUNCTION 02/01/83 TO 09/10/85 (Continued)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: DOWN GRADIENT

PARAMETER	UNITS OF MEASURE	MAXIMUM VALIJE	LOCATION TD	SAMPLE ID	LUG DATE	PARAMETER VALUE+Z-UNCER FAINTY
PH	SU	6.5 TO 8.5	-			
RA226+RA228	PCI/L	5.0	585	01	09/20/83	18.0000
			585	01	03/25/85	
			586	01	09/20/83	22.0000
			586	01	03/25/85	6.1000
			586	01	09/10/85	6-1000
			589	01	06/07/85	
			590	01	06/07/85	•
			7:32	01	06/07/85	
			733	01	03/25/85	-
			/33	01	09/06/85	
			736	01	06/07/85	
			2:38	01	06/07/85	
0.480.50			740	01	06/07/85	< 6.0000
**** SAMPLES	EXCERDING	S MAXIMUM VALU	F = 583	<u> ****</u>		
SFLENJUM	MG/L	0.01	589	01	02/01/83	.0120
**** SAMPLES	EXCEEDING	MAXIMUM VALU	E = ? ?	×***		
SILVER	MG/L	0.05	-	-	_	-
SULFATE	MG/L	250.0	585	01	02/03/83	4320.0000
	1107 2		585	01	06/09/83	4500.0000
			585	01	09/20/83	3800.0000
			585	01	03/25/85	3600.0000
			585	01	06/07/85	3780.0000
			585	01	09/10/85	3820.0000
			586	01	02/02/83	4320.0000
			586	01	06/09/83	4400.0000
			586	01	09/20/83	3800.0000
			586	01	03/25/85	3700.0000
			586	01	06/07/85	3/40.0000
			586	01	09/10/85	3730.0000
			589	01	02/01/83	3630.0000
			589	01	06/08/83	3200.0000
			589	01	09/22/83	2900.0000
			589	01	03/25/85	3400.0000
			589	01	06/07/85	3350.0000
			589	01	09/09/85	3560.0000
			590	01	02/02/83	3410.0000
			590	01	06/07/83	2100.0000
			590	01	09/22/83	2500.0000
			590	01	03/25/85	3200.0000
			590	01	06/07/85	1:370.0000
			590	01	09/09/85	2570.0000
			732	01	03/26/85	3400.0000
			732	01	06/0//85	3790.0000
			732	01	09/06/85	2860.0000

Table F.3.25 GROUND WATER QUALITY MEASUREMENTS EXCEPDING EPA DRINKING WATER QUALITY STANDARDS SITE: GRAND JUNCTION 02/01/83 10 09/10/85 (Continued)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: DOWN GRAD(ENT

PARAMETER	UNITS OF MEASURE	MAXIMUM VALUE	LOCATION (D	SAMPLE ID	L013 1)ATE	PARAMETER VALUE+Z-UNCER FAUNTY
SULFATE	MG/L	250.0	733	01	03/25/85	3400.0000
ODELITIE	1107 2	20010	733	01	06/07/85	3490.0000
			733	01	09/06/85	:34:30.0000
			736	01	03/22/85	4100.0000
			736	01	06/07/85	3890.0000
			736	01	09/10/85	3760.0000
			7:38	01	03/25/85	2900.0000
			738	01	06/07/85	3050.0000
			7:38	01	09/09/85	3310.0000
			740	01	03/72/85	3600.0000
			140	01	06/07/85	3260.0000
			740	01	09/09/85	3300.0000
**** SAMPLES	S EXCEEDING	MAX (MUM VAL	JE = 100 7	(****		
TOTAL SOLID	S MG/L	500.0	585	01	07/03/83	6440.0000
	5 11071.	300.0	585	01	06/09/83	6520,0000
			585	01	09/20/83	6640.0000
			585	01	03/25/85	/198.0000
			585	01	06/07/85	7340.0000
			585	01	09/10/85	7 120.0000
			586	01	02/02/83	6760.0000
			586	01	06/09/83	6620.0000
			586	01	09/20/83	6530.0000
			596	01	0:3/25/85	/2/6.0000
			586	01	06/07/85	7186.0000
			586	01	09/10/85	7170.0000
			589	01	02/01/83	6400.0000
			539	01	06/08/83	60:30.0000
			589	01	09/22/83	6150.0000
			589	01	03/25/85	/302.0000
			589	01	06/0//85	7184.0000
			589	01	09/09/85	7550.0000
			590	01	02102183	6560.0000
			590	01	06/07/83	46/0.0000
			590	01	09/22/83	5600.0000
			590	01	03/25/85	6566.0000
			590	01	06/07/85	3292.0000
			590	01	09/09/85	0000.0808
			732	01	03/26/85	7504.0000
			732	01	06/07/85	/864.0000
			732	0 1	09/06/85	6390.0000
			733	01	03/25/85	/922.0000
			733	01	06/07/85	8092.0000
			733	01	09/06/85	7850.0000
			736	01	03/22/85	8728.0000
			736	01	06/07/85	8792.0000
			736	01	09/10/85	8220.0000

Table F.3.25 GROUND WATER QUALITY MEASUREMENTS EXCEDING EPA DRINKING WATER QUALITY STANDARDS SITE: GRAND JUNCTION 02/01/83 TO 09/10/85 (Concluded)

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: DOWN GRADIENT

PARAMETER	UNITS OF MEASURE	MAX (MUM VAL UF	OCATION ID	SAMPLE IV	LOG DATE	PARAMETER VALUE+Z-UNCERTAINTY
TOTAL SOLIDS	MG/L	500.0	738 738	01	03/25/85	12 134.0000 6870.0000
			738 740 740	01 01 01	09/09/85 03/22/85 06/07/85	7430.0000 68/6.0000 6872.0000
**** SAMPLES	EXCFEDING	MAXIMUM VALU	740 E = 100 5	01 % ****	09/09/85	6790.0000
ZINC	MG/L	5.0	-	-	-	-

MAPPER DATA FILE: GRJ01*UDPGWQ100372

Table F.3.26 GROUND WATER DUALITY MEASUREMENTS EXCEEDING EPA DRINKING WATER DUALITY STANDARDS SITE: GRAND JUNCTION 03/21/85 TO 0//25/86

FORMATION OF COMPLETION: SHALF HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

PARAMETER	UNITS OF MEASURE	MAX) MUM VALUE	LOCATION (D	SAMPL F	LIG NATE	PARAMETER VALUE+/-UNCERTAINTY
ARSENIC	MG/L	0.05			_	_
BARJUM	MG/L	1.0	-	_	-	-
CADMIUM	MG/L	0.01	-	-	-	-
CHLORIDE	MG/L	250.0	727	01	03/29/85	360.0000
			727	01	06/07/85	312.0000
			727	01	09/16/85	325.0000
			743	01	03/21/85	650.0000
			743	01	06/07/85	838.0000
			743	01	09/10/85	955,0000
			743	01	07/25/86	930.0000
**** SAMPLES	EXCEEDING	MAX (MUM VALU	IE = 100	~ ****		
CHROMIUM	MG/L	0.05	-		-	_
COPPER	MG/L	1.0	-	-	-	-
FLUORIDE	MG/L	1.4	727	01	03/29/85	2.8000
			727	01	06/07/85	2.4000
			727	01	09/16/85	2.9000
**** SAMPLES	EXCEEDING	MAX (MUM VALU	IE = 50	×***		
GKOSS ALPHA	PCI/L	15.0	727 743	01	03/29/85	45.0000
**** SAMPLES	EXCEEDING	MAXIMUM VALU		01 (****	03/21/85	< 40.0000
IRON	MG/L	0.3	-		-	-
LEAD	MG/L	0.05	-	-	-	-
MANGANESE	MG/L	0.05	/27	01	09/16/85	.0800
			743	01	09/10/85	.0700
**** SAMPLES	EXCEEDING	MAX(MUM VALU	JE = 28 ;	<u> ****</u>		
MFRCURY	MG/L	0.002	-	-	-	-
NITRATE	MG/L	44.0	-	-	-	-
ън	SU	6.5 TO 8.5	727	01	03/29/85	8.6000
			743	01	03/21/85	10.2000
			743	01	06/07/85	11.4000
			743	01	09/10/85	10.2000
**** SAMPLES	EXCEEDING	MAX (MUM VALU	743 JE = 71 3	01 { ****	07/25/86	8.5200
RA226+RA228	BCT //	F 0	707	<u>.</u>	0 () () () 0 F	
KHZZO+KHZZO	PCI/L	5.0	727	01	06/07/85	
**** SAMPLES	EXCEFDING	MAXIMUM VALU	743 IF = 22 :	01 <u></u> ****	06/07/85	< 6.0000
SELENIUM	MG/L	0.01	_	_	-	_
S) I VER	MG/L	0.05	_	-	_	_
SULFATE	MG/L	250.0	/43	01	03/21/85	2000.0000
			743	01	06/07/85	1900.0000
			/43	01	09/10/85	1/50.0000

Table F.3.26 GROUND WATER QUALITY MEASUREMENTS EXCEEDING EPA DRINKING WATER QUALITY STANDARDS SITE: GRAND JUNCTION 03/21/85 10 0//25/86 (Concluded)

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENE

PARAMETER	UNITS OF MEASURE	MAXIMUM VALUE	LOCA'I JON I D	SAMPL F	LOG DATE	PARAMETER VALUE+/-UNCERTAINTY
SULFATE **** SAMPLES	MG/L Fxceeding	250.0 MAXIMUM VALU	743 IE = 57 7	01 (****	07/25/86	1900.0000
TOTAL SOLIUS	MG/L	500.0	727 727 727 743 743 743 743 743	01 01 01 01 01 01	03/29/85 06/07/85 09/16/85 03/21/85 06/07/85 09/10/85 0//25/86	2098.0000 2118.0000 2150.0000 4034.0000 4316.000 4450.0000 4110.0000
**** SAMPLES	EXCEEDING	MAXIMUM VALU	F = 100	(****		
ZINC	MG/L	5.0	-	-	-	-

MAPPER DATA FILE: GRJ@1*UDPGW0100378

•

Table F.3.27 GROUND WATER DUALINY MEASUREMENTS EXCLEDING EPA DRINKING WATER QUALITY STANDARDS SITE: GRAND JUNCTION 02/08/83 TO 09/11/85

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW RELATIONSHIP: UN-SITE

PARAMETER	UNITS OF MEASURE	MAXJMUM VALUE	LOCATION (D	SAMPLE ID	LOG DATE	PAKAMETER VALUE+/-UNCERTA (NTY
ARSENIC	MG/L	0.05				
BARIUM	MG/L	1.0	_	_	_	_
CADM(UM	MG/L	0.01	_	_	_	_
CHLORIDE	MG/L	250.0	582	01	02/08/83	496.0000
		200.0	582	01	03/30/85	590.0000
			582	01	05/07/85	698.0000
			582	01	09/11/85	/23.0000
**** SAMPLES	EXCEEDING	MAXIMUM VALU			077 117 83	/23.0000
CHROMIUM	MG/L	0.05	-	_	_	-
COPPER	MG/L	1.0	_		_	_
FLUOR (DE	MG/L	1.4	582	01	09/11/85	1./000
		MAX1 MUM VALU		• •		
GROSS ALPHA	PCTZL	15.0	582	01	03/30/85	200.0000
		MAXIMUM VALU				
RON	MG/L	0.3	582	01	05/08/83	.5000
			582	01	04/11/85	1.0700
**** SAMPLES	EXCEEDING	MAX(MUM VALU				
LF AD	MG/L	0.05	-	-	-	-
MANGANESE	MG/L	0.05	582	01	02/08/83	. 1400
			582	01	03/30/85	.3000
			582	01	06/0//85	. 1:300
			582	01	09/11/85	.7500
**** SAMPLES	EXCLEDING	MAX (MUM VALU	E = 100	X ****		
MERCURY	MG/L	0.002	-	-	-	_
NITRATE	MG/L	44.0	-	-		-
PH	SU	6.5 TO 8.5	-	-	-	_
RA226+RA228	PC(/L	5.0	582	01	04/07/85	< 6.0000
**** SAMPLES	EXCEPDING	MAXIMUM VALU	E = 19 5	<u> </u>		
SELENIUM **** SAMPLES	MG/L Exceeding	0.01 MAXIMUM VALU	582 F = 25 3	01 2 ****	02/08/83	.01/0
SILVER	MG/L	0.05	-	-	_	-
SUL FAILE	MGZL	250.0	582	01	02/08/83	1665.0000
000111111			582	01	03/30/85	2700.0000
			582	01	06/07/85	2440.0000
			582	01	09/11/85	3190.0000
**** SAMPLES	EXCEFDING	MAXIMUM VALU				
TOTAL SOLIDS	HG/L	500.0	582	01	02/08/83	3350.0000
			582	01	03/30/85	5510.0000
			582	01	06/01/85	5180.0000
				-		

Table F.3.27 GROUND WATER QUALITY MEASUREMENTS EXCEEDING EPA DRINKING WATER QUALITY STANDARDS SITF: GRAND JUNCTION 02/08/83 TD 09/11/85 (Concluded)

F(RMAT)ON OF COMPLETION: SHALE . HYDRAULIC FLOW RELATIONSHIP: DN-SITE

PARAMETER	UNITS OF MEASURE	MAX) MUM VALUE	LOCATION [D	SAMPLE ID		PARAMETER VALUE+/-UNCERTAINTY
TOTAL SOLIDS		500.0 Maximum valu	582 E = 100 5	01 X ****	09/11/85	64/0.0000
ZÍNC	MG/L	5.0	-	-	-	

MAPPER DATA FILE: GRJ01*UDPGW0100380

Table F.3.28 GROUND WATER QUALITY MEASUREMENTS EXCLEDING EPA DRINKING WATER QUALITY STANDARDS SITE: GRAND JUNCTION 03/26/85 TO 07/25/86

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW RELATIONSHIP: CROSS GRAD(ENT

PARAMETER	UNITS OF MEASURE	MAX) MUM VALUE	LOCATION ID		LOG DATE	PARAMETER VALUE+Z-UNDERTATINTY
ARSENIC	MG/L	0.05	-	-	-	-
BARIUM	MG/L	1.0	-	-	-	-
CADMIUM	MG/L	0.01	-	-	-	-
CHLORIDE	MG/L	250.0	741	01		1900.0 000
			741	01	06/0//85	5050-0000
			741	01	09/13/85	2060.0000
			741	01	07725786	1900.0000
**** SAMPLES	EXCEEDING	MAXIMUM VALL	JE = 100	{ *** *		
CHROMIUM	MG/L	0.05	-	-	-	-
COPPER	MG/L	1.0	-	-		-
FLUORIDE	MG/L	1.4	-	-	-	-
GROSS ALPHA	PCI/L	15.0	741	01	03/26/85	< 50.0000
**** SAMPLES	EXCEEDING	MAX (MUM VAL)	JE = 100	****		
IRON	MG/l	0.3	-	-	-	-
LEAD	MG/L	0.05	-	-	-	-
MANGANFSF	MG/L	0.05	741	01	09/13/85	-0600
**** SAMPLES	EXCHEDING	MAX (MUM VALL	JE = 25 3	X ****		
MERCURY	MG/L	0.002	-	-	-	-
NITRATE	MG/L	44.0	- .	-		-
PH	SU	6.5 TO 8.5		01		9.2000
			741	01	06/07/85	8.7000
**** SAMPLES	EXCEEDING	MAXIMUM VALL	JF = 50 :	****		
RA226+RA228			741		06/0//85	٢ ٢٠٥٥٥٥
**** SAMPLES	EXCFEDING	MAXIMUM VALL	JE = 19 2	<u>{</u> ****		
SELENIUM	MG/L	0.01	-	-	-	-
SJLVER	MG/L	0.05	-	-	-	-
SULFATE	MG/L	250.0	-	-	-	-
TOTAL SOLIDS	MG/L	500.0	741	01	03/24/85	3308.0000
			741	01	06/07/85	
			741	01	• • • • • • •	
			741	01	07/25/86	3690.0000
**** SAMPLES	EXCEFDING	MAXIMUM VALL	: 100 = F	2 ****		
ZINC	MG/L	5.0	-	-	-	-

MAPPER DATA FILE: GRJ01+UD+GW0100377

Table F.3.29 GROUND WATER QUALITY MEASUREMENTS EXCLEDING EPA DRINKING WATER QUALITY STANDARDS SITE: GRAND JUNCTION 03/25/85 TD 09/16/85

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW RELATIONSHIP: DOWN GRADIENT

PARAMETER	UNITS OF MEASURE	MAX1MUM VALUE	LOCATION ID	SAMPLE (D	LUG DATE	PARAMETER VALUE+Z-UNCERTATINTY
ARSENIC	 MG∕L	0.05	728	01	06/07/85	
**** SAMPLES	EXCEEDING	MAX(MUM VAL	735 JE = 97	01 ****	09/16/85	.0600
BARIUM	MG/L	1.0	-	-	-	-
CADMIUM	MG/L	0.01	-	-	-	
CHEORIDE	MG/1	250.0	728	01	03725785	800.0000
			728	01	06/0//85	436.0000
			728	0'2	06/07/85	436.0000
			728	03	06/07/85	422.0000
			728	04	06/07/85	432-0000
			728	05	06/07/85	463.0000
			728	01	09/09/85	716.0000
			728	02	09/09/85	Z30.0000
			728	63	09/09/85	801.0000
			728	04	09/09/85	69/.0000
			728	05	0 9/0 9/85	765.0000
			729	01	04/01/85	2300.0000
			729	01	06/07/85	3480.0000
			729	01	09/16/85	4010.0000
			731	01	03/26/85	300.0000
			731	01	06/07/85	554.0000
			731	01	09/13/85	7 18.0000
			735	01	03/29/85	2/0.0000
			735	01	06/0//85	500.0000
			735	01	09/16/85	690.0000
**** SAMPLES	EXCEEDING	MAXIMUM VALL	JE = 100 %	****		
CHROMIUM	MG/L	0.05	-	-	-	·=·
COPPER	MG/L	1.0	-	-	-	-
FLUORIDE	MG/L	1.4	729	01	04/01/85	2.4000
			735	01	03/29/85	2.1000
			735	01	06/0//85	3.4000
			735	01	09/16/85	4.7000
**** SAMPLES	EXCEEDING	MAX (MUM VALI	BE = 19 2	****		
GROSS ALPHA	PCI/L	15.0	728	01	03/25 /85	120.0000
			729	01	04/01/85	10.0000
			731	01	03/28/85	40.0000
**** SAMPLES	EXCEEDING	MAXIMUM VALU	JE = 100 2	****		
IKON	MG/L	0.3	728	01	03/75/85	2.5000
			7 28	01	04/0//85	1.5800
			728	02	06/07/85	1.5800
			/28	03	04/07/85	1.4500
			728	04	03/07/85	1.5300
			/28	05	06/0//85	1.5100

Table F.3.29 GROUND WATER QUALITY MEASUREMENTS EXCEEDING EPA DRINKING WATER QUALITY STANDARDS SITE: GRAND JUNCTION 03/25/85 TO 09/16/85 (Continued)

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW RELATIONSHIP: DOWN GRADIENT

PARAMETER	UNITS OF MEASURE	MAX1MUM L VALUE	NOCA'I JUN ID	SAMPLF ID	LUG DATE	PARAMETER VALUE+Z-UNCERTAINTY
**** SAMPLES	EXCEEDING	MAX (MUM VALUE	= 29 2	×***		
LEAD	MG/l	0.05	-	-	-	-
MANGANESE	MG/L	0.05	728	01	03/25/85	1./000
			728	01	06/07/85	.9500
			728	02	06/0//85	. ୨୦୦୦
			728	0(3	06/07/85	.9500
			1.58	04	06/07/85	. 9400
			728	05	06/07/85	.9000
			158	01	09/09/85	1.6100
			728	02	09/09/85	1.5600
			728	0.3	09/09/85	1.5900
			728	04	09/09/85	1.6100
			158	05	09/09/85	1.6000
			735	01	04/16/85	.0600
**** SAMPLES	EXCEEDING	MAX (MUM VALUE	= 59 3	****		
MERCURY	MG/L	0.002	-	-	-	-
NETRATE	MG/L	44.0	~	-	-	-
PH	SU	6.5 10 8.5	729	01	04/01/85	11.5000
			729	01	03/0//85	9.2000
			729	01	09/16/85	9.1000
			731	01	03726785	12.5000
			731	01	06/07/85	12.5000
			734	01	09/13/85	12.4000
			735	01	03/29/85	11.8000
			735	01	06/0//85	40,8000
			735	01	09/16/85	9.6000
**** SAMPLES	EXCEEDING	MAXIMUM VALUE	= 44	****		
RA226+RA228	PCI/L	5.0	728	04	06/07/85	6.00 00
			729	01	04/01/85	(/.0000
			731	01	03/26/85	
**** SAMPLES	EXCEEDING	MAX (MUM VALUE	= 16	2 ****		
SELENJUM	MG/L	0.04	729	01	04/01/85	.0110
0. 22.03 0.0			735	01	03/29/85	.0240
			735	01	06/07/85	.0160
**** SAMPLES	EXCEEDING	MAX (MUM VALUE	-	/ ****		
SILVER	MG/L	0.05	-	-	_	-
SULFATE	MG/L	250.0	728	01	03/25/85	3400.0000
		20010	728	01	06/0//85	1430.0000
			728	02	06/07/85	1450.0000
			728	03	06/07/85	1400.0000
			728	04	06/0//85	14:30.0000
			728	05	06/0//85	1570.0000

Table F.3.29 GROUND WATER QUALITY MEASUREMENTS EXCEEDING EPA DRINKING WATER QUALITY STANDARDS SITE: BRAND JUNCTION 03/25/85 TO 09/16/85 (Concluded)

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW RELATIONSHIP: DOWN GRADIENT

PARAMETER	UNITS OF I MEASURE	MAX (MUM VAL UE	LOCATION ID	SAMPLE ID	LOG DATE	PARAMETER VALUE+-UNCERTAINTY
SULFAIF	MG/L	250.0	728	01	09/09/85	2650.0000
00021100	1072	230.0	728	02	09/09/85	5850.0000
			728	03	09/09/85	2780.0000
			/28	04	09/09/85	2680.0000
			728	05	09/09/85	2700.0000
			729	01	04/01/85	330.0000
			735	01	06/07/85	317.0000
**** SAMPLES	EXCEEDING MAX	(MUM VAL)				
TOTAL SOLIDS	MG/L	500.0	778	01	03/25/85	6600.0000
			728	01	06/0//85	3638.0000
			728	02	06/07/85	3684.0000
			728	03	04/01/85	3668.0000
			728	04	06/07/85	3638.0000
			728	05	06/07/85	3672.0000
			728	01	04/04/85	5430.0000
			7'28	02	09/09/85	5950.0000
			728	03	09/09/85	5850.0000
			158	04	07/07/85	5870.0000
			728	05	0%/0%/85	5820.0000
			/29	01	04/01/85	4842.0000
			779	01	06/07/85	6280.0000
			7:29	01	09/16/85	6650.0000
			734	01	03/26/85	2994.0000
			731	01	06/07/85	2/40.0000
			731	01	07/13/85	2830.0000
			735	01	09/14/85	1810.0000
**** SAMPLES	EXCEEDING MAX	IMUM VAL	UF = 100 2	*** *		
ZINC	MG/L	5.0	-	-	-	-

MAPPER DATA FILE: GRJ01*UDPGW0100379

Table F.3.30 GROUND WATER QUALITY MEASUREMENTS EXCEEDING EPA DRINKING WATER QUALITY STANDARDS SITE: GRAND JUNCTION 03/29/85 TO 07/27/86

FORMATION OF COMPLETION: SANDSTONE HYDRAULIC FLOW RELATIONSHIP: UP BRADIENT

PARAMETER	UNITS OF MEASURE	MAXIMUM VALUE	LOCATION ID	SAMPLE ID	LI)G DATE	PARAMETER VALUE+Z-UNCERTA (NTY
ARSENIC	MG/L	0.05	-			
BARIUM	MG/L	1.0	724	01	03/30/85	5.1000
	1107 6		724	01	06/0//85	5.5400
			724	02	06/07/85	5.2900
			724	03	04/0//85	5.3200
			724	04	06/07/85	5.4900
			724	05	06/07/85	5.9300
			725	01	03/29/85	1.8000
			725	02	03/29/85	1.8000
			725	01	06/07/85	1.0500
**** SAMPLES	EXCEEDING	MAX(MUM VAL	DE = 59	****		
CADMIUM	MG/L	0.01	-	-	-	-
CHEOR (DE	MG/L	250.0	724	01	03730785	1600.0000
			724	01	06/0//85	1520.0000
			724	02	06/07/85	1510.000
			724	03	06/07/85	1560.0000
			/24	04	06/0//85	1500.0000
			724	05	06/07/85	1600.0000
			724	01	09/13/85	883.0000
			724	02	09/13/85	914.0000
			724	03	09/13/85	90:3.0000
			724	04	09/13/85	922.0000
			724	05	09/13/85	925.0000
			724	01	07/25/86	1900.0000
			724	02	07725786	1800.0000
			724	03	07/25/86	1800.0000
			724	04	07/25/86	1800.0000
			724	05	07725786	1800.0000
			725	01	03/29/85	2400.0000
			725	02	03/29/85	2300.0000
			725	01	06/0//85	3250.0000
			725	01	09/12/85	4150.0000
			725	01	07727786	3400.0000
			726	01	07/25/86	520.0000
**** SAMPLES	EXICEEDING	MAX(MUM VAL	IJE = 100	2 ****		
CHROM) UM	MG/L	0.05	-	-	-	-
COPPER	MG/L	1.0	-	-	-	-
FLUORIDE	MG/L	1.4	724	01	03/30/85	2.6000
			724	01	06/07/85	2.1000
			724	02	06/07/85	2.1000
			724	03	06/0//85	2.2000
			724	04	06/07/85	2.1000
			/24	05	06/0//85	5.0000
			724	01	09/13/85	2.1000
			724	02	09/13/85	2.1000

Table F.3.30 GROUND WATER QUALITY MEASUREMENTS EXCLEDING EPA DRINKING WATER QUALITY STANDARDS SITE: GRAND JUNCTION 03/29/85 TD 07/2//86 (Continued)

FORMATION OF COMPLETION: SANDSTONE HYDRAULIC FLOW RELATIONSHIP: UP BRADIENT

PARAMETER	UNITS OF MEASURE	MAXIMUM VALUE	OCATION [D	SAMPIE ID	LUG DATE	PARAMETER VALUE+Z~UNDERTAINTY
FLUORIDE	MG/L	1.4	124	03	09/13/85	2.1000
			724	04	09/13/85	2.1000
			724	05	09/13/85	2.2000
**** SAMPLES	EXCEEDING	MAXIMUM VALU	E = 73 %	****		
GROSS ALPHA	PCI/L	15.0	724	01	03/30/85	< A0.0000
			725	01	03/29/85	220.0000
			725	02	03/29/85	100.0000
**** SAMPLES	EXCEEDING	MAXIMUM VALUE	= 100 %	****		
IRON	MG/L	0.3	725	01	06/0//85	111.0000
			725	01	91/21/86	-6100
			726	01	07/25/86	1.6800
**** SAMPLES	EXCEEDING	MAXIMUM VALU	= 13 %	****		
LEAD	MG/L	0.05	-	-	-	-
MANGANESE	MG/L	0.05	724	01	09/13/85	.0700
			724	02	09/13/85	.0700
			724	03	09/13/85	.0600
			724	04	07/13/85	.0700
			724	05	09/13/85	.0700
			725	01	07/27/86	- 1800
			726	01	07/25/86	.4600
**** SAMPLES	EXCEEDING	MAX (MUM VALUE	= 31%	****		
MFRCURY	MG/L	0.002	-	-	-	-
NITRATE	MG/L	44.0	-	-	-	-
PH	SU	6.5 TO 8.5	725	01	03/29/85	12.6000
			725	02	03/ 29/85	12-6000
			725	01	06/07/85	11.9000
			725	01	09/12/85	11.9000
			725	01	07/27/86	9.0600
**** SAMPLES	EXCEED (NG	MAXIMUM VALUE	= <u>??</u> %	****		
RA226+RA228	PCI/L	5.0	724	01	06/07/85	8.0000
			725	01	03/29/85	11.0000
			725	02	03/29/85	5.3000
			725	01	09/12/85	5.1000
**** SAMPLES	EXCFEDING	MAXIMUM VALUE		****		
SELENIUM	MG/L	0.01	725	01	06/07/85	.0160
**** SAMPLES	EXCEFDING	MAXIMUM VALUE	= 4 %	****		
SILVER	MG/L	0.05	-	-	-	_
SULFATE	MG/L	250.0	-	-	-	-
TOTAL SULIDS	MG/L	500.0	724	01	03/30/85	45/6.0000
			724	01	06/07/85	4438.0000

Table F.3.30 GROUND WATER DUALITY MEASUREMENTS EXDEDING EPA DRINKING WATER QUALITY STANDARDS SITE: GRAND JUNCTION 03/29/85 TO 07/27/86 (Concluded)

FORMATION OF COMPLETION: SANDSTONE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

PARAMETER	UNITS OF MFASURE	MAXIMUM VALUE	LOCATION ID	SAMPLE 1D	LOG DATE	PARAMETER VALUE+Z-UNCERTAINTY
TOTAL SOLIDS	MG/L	500.0	724	07	06/07/85	4450.0000
			724	03	06/07/85	4428.0000
			724	04	06/07/85	4430.0000
			724	05	06/07/85	4468.0000
			724	01	09/13/85	2950.0000
			724	02	09/13/85	2980.0000
			724	63	09/13/85	3110.0000
			724	04	09/13/85	30/0.0000
			724	05	09/13/85	3380.0000
			724	01	01/25/86	3930.0000
			724	02	07/25/86	3930.0000
			724	03	07/25/86	3920.0000
			724	04	07/25/86	3920.0000
			724	0.5	07/25/86	3920.0000
			725	01	03/29/85	6174.0000
			725	02	03/29/85	51/H.0000
			725	01	06/07/85	7164.0000
			725	01	09/12/85	69:30.0000
			725	01	07/27/86	7210.0000
			126	01	01152180	/050.0000
**** SAMPLES	EXCEFDING M	1AXIMUM VAL	UF = 100	****		
ZINC	MG/L	5.0	-	-	-	-

MAPPER DATA FILE: GRJ01*UDPGWQ100376

Maps of iso-concentrations for those constituents for which a "plume" could be defined are presented in Figures F.3.15 through F.3.18.

<u>Background water quality</u>. Background water quality in the alluvium varies both seasonally and with distance from the Colorado River (U.S. Bureau of Reclamation, no date). Several wells were used to characterize background water quality in the alluvium. Two U.S. Bureau of Reclamation wells, 711 and 712 (Figure F.3.10) exhibit the decreasing quality moving away from the river (Table F.3.7).

The use of Bureau of Reclamation wells 711 and 712 as representative of background water quality in the alluvium is based on the following reasons:

- o The wells are approximately 2.5 miles from the tailings where ground-water levels are more than 20 feet above the levels near the tailings.
- o The wells penetrate a ground-water system that is known to be continuous through the Grand Valley (U.S. Bureau of Reclamation, 1978).

Water quality for samples taken from well 743 is defined as background for the Mancos Shale, based on two reasons:

- o The well is hydraulically upgradient or crossgradient from the tailings depending upon temporal effects.
- o Water quality for a sample taken from the well is similar to or better in quality than reported water quality for other monitoring wells completed in Mancos Shale in the area (e.g., U.S. Bureau of Reclamation, 1978).

Background water quality for the Dakota Sandstone was more difficult to define than background in the alluvium or Mancos Shale. An extensive study of the artesian water supply of the Grand Junction area did not include samples from wells completed in the Dakota Sandstone (Lohman, 1965). It did, however, produce qualitative reports on the water quality in the Dakota Sandstone (Lohman, 1965): "The water generally is too poor for use..."

It is also reported that locally, water from either the Burro Canyon Formation or Dakota Sandstone or both, is satisfactory for domestic use (Lohman, 1965). Because of this apparent spatial variability in the quality of water in the Dakota Sandstone, problems in defining background quality for the Dakota Sandstone near the site were identified:

 Samples from domestic wells completed in the Dakota Sandstone might not be representative of quality near the site.

F-203

F-204

o The Mancos Shale thins from the east end of the site toward the west. A well drilled through the upgradient alluvium might not be representative of background quality for the Dakota Sandstone below the downgradient alluvium, where there is probably more interaction between water in the alluvium and the Dakota Sandstone.

These problems indicated the need to drill a background well in the Dakota Sandstone which was not only below the downgradient alluvium, but reasonably certain of being uncontaminated. A nest of wells were drilled on one of the islands west of the site, including wells in the Mancos Shale and Dakota Sandstone. Water quality from the well in the Dakota Sandstone (725) is defined as background based on the following reasons:

- o Flow in the Dakota Sandstone is probably from south to north; based on the dip of the beds, and identification of the probable recharge area as the outcrop area, which is to the south of the site (Lohman, 1965).
- o The alluvium overlying the Mancos Shale and Dakota Sandstone near the background well is separated from the contaminated portion of the alluvium in the immediate vicinity of the tailings by an arm of the Colorado River.
- o Water quality for samples at an adjacent background well completed in the Mancos Shale (727) did not show indications of contamination.

To determine the nature and extent of contamination in the alluvial ground water resulting from leachate generated at the Grand Junction site, upgradient, on-site, crossgradient, and downgradient concentrations were compared to background alluvial ground-water quality (Tables F.3.17 through F.3.20), and all ground-water analyses were compared to the EPA primary and secondary drinking water standards (Tables F.3.21 through F.3.30). Comparisons to both the standards and the background quality are needed because the background ground water, as represented by samples from wells 711 and 712, consistently exceeded several standards (Table F.3.21). Table F.3.31 summarizes the comparison to background alluvial ground-water quality, and Table F.3.32 summarizes exceedences to the EPA standards. The standards for gross alpha, manganese, sulfate, and TDS are exceeded by all of the background samples. The standards for chloride and iron are exceeded by 66 percent of the background samples and for radium and selenium, 19 and 16 percent of the samples, respectively.

Based on the exceedence of the standards and the exceedence of the maximum background values by alluvial groundwater samples on the site and downgradient of the site, five constituents are most critical:

		Upgrad	ient	0n-s	ite	Downgra	adient	Crossgr	adient
Constituent ^a	Maximum backgroynd value	Percent exceedence ^c	Maximum value	Percent exceedence	Maximum value	Percent exceedence	Maximum value	Percent exceedence	Maximum value
Alkalinity	1073	0		15	1375	0		0	
Aluminum	0.05	4	0.30	12	0.51	6	0.19	11	0.20
Ammonium	15.7	13	62.1	100	521.0	54	438	0	
Antimony	0.008	0	0.00	0		3	0.012	0	
Arsenic	0.005	8	0.01	78	0.18	25	0.11	0	
Barium	0.068	0		9	0.17	15	0.30	0	
Boron	1.097	0		0	0.40	0	0.000	0	
Cadmium	0.0012	0		37	0.42	3	0.003	0	6 00
Calcium	423	100	655 783.0	90 06	654	89 97	665	100	630
Chloride	399.8 0.02	30 4	0.07	96	1030	97 10	1270	100	1250
Chromium Cobalt	0.02	4 0	0.07	3 31	0.03 0.66		0.03 0.082	33	0.030
Conductance	6715	4	7735	64	10,004	7 76		0 88	0260
Copper	0.0508	4 0	1135	25	0.20	70	10,780 0.116	88	9360
Cyanide	0.005	0		0	0.20	0	0.110	0	
Fluoride	1.15	13	1.60	83	4.90	25	3.7	11	1.20
Gross Alpha	126.6	25	230	75	255	88	490	33	185
Gross Beta	25.0	50	100.0	100	155	100	200	66	80
Iron	1.48	13	3.04	53	12.0	53	16.0	33	5.7
Lead	0.005	0	0.01	6	0.01	9	0.02	0	5.7
Magnesium	548	4	570	Õ	0.01	10	620	33	625
Manganese	8.74	0 0		3	10.0	2	334	0	020
Mercury	0.0003	0		4	0.0004	6	0.0009	0 0	
Molybdenum	0.076	21	0.150	90	0.53	46	0.44	66	0.14
Nickel	0.068	9	0.090	84	0.380	40	0.17	0	0.11
Nitrate	8.45	Ō		10	50.00	14	39	Ő	
TOC	55.8	8	525	38	139.0	39	522	22	562
Lead-210	2.7	0		25	2.8	5	2.7	0	002

Table F.3.31 Comparison to background alluvial ground-water quality

	_		ient	On-si	te	Downgra	adient	Crossgr	adient
Constituent ^a	Maximum backgroynd value	Percent exceedence ^C	Maximum value	Percent exceedence	Maximum value	Percent exceedence	Maximum value	Percent exceedence	Maximum value
рН	7.45	13	7.8	0		2	7.6	0	
Phosphate	2.54	0		0		0		0	
Polonium-210	0.50	0		12	1.10	0		0	
Potassium	15.63	13	29.70	9 0	113.00	76	120	0	
Radium-226	0.50	0		83	29.00	16	18	0	
Radium-228	0.50	16	1.10	44	2.20	9	4.5	0	
Selenium	0.015	0		28	0.24	0		0	
Silica	21.3	0		41	29.0	17	27.8	0	
Silver	0.005	0		0		0		0	
Sodium	952	0		21	1210	74	1370	66	1260
Strontium	4.52	36	6.84	84	6.7	96	7.9	100	7.40
Sulfate	3834	0		25	49 00	15	4500	22	4000
Thorium-230	0.50	0		19	0.95	9	5.4	0	
Tin	0.0025	0		9	0.008	7	0.01	22	0.005
TDS	7221	0		9	8100	35	12,134	66	8530
TOX	0.25	38	8.20	50	0.70	53	0.90	66	0.60
Uranium-234	35.2	5	36.0	46	64.0	95	118	88	118
Uranium-238	23.1	11	30.7	61	66.0	100	116	100	33
Vanadium	0.02	0		59	13.8	43	0.40	11	0.03
Zinc	0.06	8	1.00	46	37.0	17	0.39	22	0.09

Table F.3.31 Comparison to background alluvial ground-water quality (concluded)

^aAll concentrations are in mg/l except specific conductance which is in units of micromhos per centimeter. Gross alpha, gross beta, lead-210, polonium-210, radium-226, radium-228, thorium-230, uranium-234, and uranium-238 are in units of pCi/l, and pH is in standard pH units.

^bThe maximum background value is the greater of the highest recorded value and the mean of all values plus two standard deviations.

^CPercent exceedance represents the number of samples that exceed the maximum background level.

Constituent	Standard ^a	Background alluvium percent exceedence	Upgradient alluvium percent exceedence	On-site alluvium percent exceedence	Downgradient alluvium percent exceedence	Crossgradient alluvium percent exceedence	Upgradient shale percent exceedence	Downgradient shale percent exceedence	Crossgradient shale percent exceedence	Upgradient sandstone percent exceedence
Arsenic	0.05	0	0	15	2	0	0	9	0	0
Barium	1.0	0	Ō	0	0	0	0	Ō	0	59
Cadmium	0.01	0	0	25	3	0	0	0	0	0
Chloride	250.0	66	65	100	97	100	100	100	100	100
Chromium	0.05	Õ	4	0	0	0	0	0	0	0
Copper	1.0	0	0	0	0	0	0	0	0	0
Fluoride	1.4	0	9	83	25	0	50	19	0	73
Gross Alpha	15 ⁴	100	100	100	100	100	100	100	100	100
Iron	0.3	66	43	6 8	66	88	0	29	0	13
Lead	0.05	0	0	0	0	0	0	0	0	0
Manganese	0.05	100	100	100	100	100	28	59	25	31
Mercury	0.002	0	0	0	0	0	0	0	0	0
Nitrate	44.0	0	0	3	0	0	0	0	0	0
рH	6.5 to 8.5	0	0	0	0	0	71	44	50	22
Radium	5.0 ^C	19	26	50	28	19	22	16	19	30
Selenium	0.01	16	0	34	2	0	0	14	0	4
Silver	0.05	0	U	0	0	0	0	0	0	0
Sulfate	250.0	100	86	100	100	100	57	64	0	0
TDS	500.0	100	9 5	100	100	100	100	100	100	100
Zinc	5.0	0	0	0	0	0	0	0	0	0

Table F.3.32	Comparison of	ground-water	quality	to EPA standards
		gi bulla Hubel	quarrey	

F-208

^aAll standards are in units of mg/l except pH, gross alpha, and radium. Gross alpha and radium (radium-226 plus radium-228) are in units of pCi/l, and pH is in standard pH units.

^bThis standard excludes uranium and radon. Analyses included all alpha emitters including uranium and radon; therefore, the percent exceedences for gross alpha are conservatively high. Also, the gross alpha is not a drinking water standard but is applied to contamination from uranium mill tailings.

^CMany values were less than six pCi/l. These values were considered to be in exceedence of the standard; therefore, the percent exceedences for radium are conservatively high.

- Chloride exceeded the drinking water standard in 100 percent of the on-site samples and 97 percent of the downgradient samples; it exceeded the maximum back-ground value in 96 percent of the on-site samples and 97 percent of the downgradient samples.
- o Fluoride exceeded the drinking water standard in 83 percent of the on-site samples and 25 percent of the downgradient samples, and exceeded the maximum back-ground value in 83 percent of the on-site samples and 25 percent of the downgradient samples.
- Iron exceeded the drinking water standard in 68 percent of the on-site samples and 66 percent of the downgradient samples; it exceeded the maximum background value in 53 percent of both the on-site and downgradient samples.
- Sulfate exceeded the drinking water standard in 100 percent of on-site and downgradient samples and exceeded the maximum background value in 25 percent of the on-site samples and 15 percent of the downgradient samples.
- Cadmium exceeded the drinking water standard in 25 percent of the on-site samples and three percent of the downgradient samples; it exceeded the maximum background value in 37 percent of the on-site samples and three percent of the downgradient samples.

Other constituents whose concentrations exceeded the maximum background values in on-site and downgradient samples, but have no associated drinking water standards, include calcium, gross beta, potassium, strontium, ammonium, specific conductance, molybdenum, nickel, sodium, uranium, total halogenated hydrocarbons (TOX), and vanadium. During placement of the tailings slurry, leachate may have moved upgradient in the shallow ground water. This past movement of leachate may account for elevated, upgradient concentrations of some constituents such as ammonium.

All of the manganese and TDS concentrations in on-site and downgradient samples exceeded the drinking water standards but only exceeded the maximum background concentration for manganese in three percent of the on-site samples and two percent of the downgradient samples. For TDS, nine percent of the onsite samples and 35 percent of the downgradient samples exceeded the maximum background concentration.

Although radium and gross alpha are shown to exceed the Title II uranium mill tailings standard, these values are not appropriate. Radium is considered to exceed the standard for analyses with detection limits over five pCi/l. Many of the recorded exceedences are less than six pCi/l. These samples may be within compliance of the standard. The gross alpha

measurements included uranium and radium whereas the standard excludes these two constituents. Excluding uranium activity from the gross alpha count would reduce the measurements to less than the standard for most of the samples.

The organic components, total organic carbon (TOC), and total halogenated hydrocarbons (TOX) often exceed the background concentrations. To check the toxicity of the organic component, several samples were collected for analysis of priority pollutants and several organics which have drinking water standards. These samples were collected from locations that had high TOC in previous analyses. The analyses for the specific organics indicated concentrations less than detection or very low concentrations.

The distribution of key chemical constituents in ground water is discussed further below, indicating the distinction between contaminants which have a readily definable plume (e.g. patterned distribution) and those which although elevated, have a sporadic distribution.

Aluminum. Background concentrations of aluminum appear to be near the lower detection limit (LDL) of 0.001 to 0.1 mg/l. Samples collected in September, 1983, detected aluminum at levels of 0.17 to 0.51 milligrams per liter (mg/l) near the tailings and 0.018 to 0.19 mg/l downgradient of the tailings. Samples collected in March, 1985, were analyzed using a LDL of 0.1 mg/l. Aluminum was detected in one upgradient alluvial well (745) at a concentration of 0.3 mg/l and in three downgradient wells completed in bedrock (729, 735, 731) at concentrations of 0.2 to 0.7 mg/l.

Ammonium is a key indicator of contamina-Ammonium. At background alluvial wells, concentrations do not extion. ceed 15.7 mg/l. Below or near the tailings, concentrations in the alluvium range between 18 and 393 mg/l for samples collected in March, 1985. Downgradient concentrations in the alluvium ranged from background levels up to 124 mg/l. A plume extends at least 1100 feet but less than 2600 feet downgradient in the alluvium (Figure F.3.15). Wells completed in the shallow bedrock also show elevated levels of ammonium, ranging from background (6.05 mg/l) to 18.1 mg/l. An industrial drainage (flood-control) well (710) had a reported concentration of 45 mg/l in March, 1985. The distribution of ammonium beneath and around the site in the shallow ground water indicated that the water quality in well 710 may be affected by leachate through the tailings. No other indications of contamination were found at this well with the possible exception of elevated uranium (see below).

Arsenic. Background arsenic concentrations appear to be the LDL of 0.01 mg/l. Samples collected from alluvial wells in March, 1985, found arsenic above the LDL only in wells near or below the tailings, at levels between 0.015 and 0.019 mg/l. Downgradient wells completed in the shallow bedrock showed arsenic at concentrations between 0.010 and 0.013 mg/l. Within the shallow bedrock a detectable plume of arsenic probably extends at least 2000 feet but less than 3000 feet downgradient from the tailings (Figure F.3.16).

Arsenic in the bedrock may represent residual contamination. During active milling arsenic concentrations in the alluvium could have been high enough to act as a source of contamination for the underlying Mancos Shale. Flow through the relatively high permeability alluvium could have flushed arsenic out of the alluvium (no arsenic was measured in downgradient samples from alluvial wells), whereas flow in the relatively low permeability shale did not flush out the arsenic.

Boron. Concentrations of boron in samples collected in the 1985 and 1986 field program were very similar to background concentrations.

<u>Chromium</u>. Background concentrations of chromium appear to be between the LDL of 0.01 mg/l and 0.03 mg/l. The primary drinking water standard for chromium is 0.05 mg/l. Only three wells sampled in March, 1985, fall outside the background concentration range (743, 744, 582). Elevated concentrations of chromium do not seem to be associated with the tailings.

<u>Cobalt.</u> Background concentrations of cobalt appear to be at the LDL. Samples collected in March, 1985, showed elevated concentrations of cobalt only in wells completed beneath the tailings (583, 584) or evaporation pond (747).

Manganese. Manganese is absent in shallow bedrock wells except for one well completed beneath the tailings. Background concentrations of manganese in alluvial wells appear to range from 1.1 to 2.6 mg/l. Samples showed elevated concentrations below or near the tailings, ranging up to 4.8 mg/l. There is no apparent downgradient plume. The secondary drinking water standard for manganese is 0.05 mg/l, and the majority of wells sampled exceeded this standard.

Molybdenum. Molybdenum in ground water is commonly associated with uranium mill tailings. Molybdenum is also common in the waters of Colorado. It has been measured at a concentration of 0.033 mg/l in the Colorado River below Glenwood Springs, and at a concentration of 0.087 mg/l in the Colorado River between Kremmling and Dotsero (Voegeli and King, 1969). Background concentrations in the alluvial ground water are probably subject to a relatively high degree of uncertainty, but appear to range up to 0.12 mg/l.

Molybdenum appears to be present in elevated concentrations below the tailings with concentrations up to 0.53 mg/l. Based on an upper background concentration of 0.12 mg/l, and also looking at the spatial variations in concentration, there does not appear to be a downgradient plume.

<u>Nickel</u>. Background concentrations of nickel appear to be at or below the LDL of 0.04 mg/l. Elevated concentrations were found below the tailings and evaporation ponds, ranging up to 0.29 mg/l. One downgradient alluvial well (736) had a concentration of 0.10 mg/l, and one deep bedrock well west of the tailings had a possible anomalous concentration of 0.05 mg/l.

<u>Radium-226</u>. Background concentrations of radium-226 in the alluvium are less than LDL of one pCi/l. Background concentrations in the Dakota Sandstone are more difficult to determine. A national survey of uranium and radium concentrations in ground water found that in the Colorado Plateau, which includes Grand Junction, interpretation of ground water is complicated by the abundance of uranium deposits (Scott and Barker, 1962):

"The region is the chief uranium province of the United States, both areally and quantitatively. It was not possible before preparation of this report to collect sufficient samples of ground water for statistical treatment from sources known to be unassociated with uranium deposits."

As an alternate means of characterizing background, the recommendation of the same authors was followed (Scott and Barker, 1962): "The statistical results from the western stable region might tentatively be used to evaluate this region, for these two regions were coextensive before the Laramide orogeny." The "anomaly threshold" for the western stable region is 7.3 pCi/l (Scott and Barker, 1962).

A single water sample from a well completed below the tailings had a radium-226 concentration of 29 pCi/l, and several water samples from below the tailings have had concentrations of 15 to 18 pCi/l. Radium-226 has not been detected at any wells away from the tailings, except for concentrations of 1.6 to 5.5 pCi/l at two bedrock wells to the west of the site (724,725), which is below the "anomaly threshold" used to define background.

Selenium. The background concentration of selenium appears to be at or below the LDL of 0.002 mg/l or 0.005 mg/l. Elevated concentrations of selenium are associated with the tailings, particularly at one well (584) where concentrations have reached 0.240 mg/l. Two downgradient wells (729, 735) completed in the shallow bedrock also show concentrations of selenium at concentrations of 0.011 and 0.024 mg/l in March, 1985. There is no apparent downgradient plume in the alluvium; however, five wells (581, 582, 583, 584, and 589) have shown selenium levels greater than the primary drinking water standard of 0.01 mg/l. These levels have not been consistently elevated but have fluctuated above and below the standard upon repeated sampling.

Total dissolved solids. Concentrations of total dissolved solids (TDS) in the alluvium range from seasonal lows of less than 900 mg/l upgradient of the tailings (588) up to a local high of 12,000 mg/l (738). The highest concentrations off the site (738) exceed the highest concentrations measured below the tailings by a factor of three, and are probably a result of other sources of contamination (Section F.3.2.5), rather than contamination from the tailings. There is no readily apparent downgradient plume in the alluvium. The secondary drinking water standard for TDS is 500 mg/l, and all wells sampled exceeded this standard. On the basis of TDS (Hem, 1970) water quality in the alluvium ranges from seasonally fresh to brackish to salty. It is predominantly brackish.

Water quality in the Mancos Shale and Dakota Sandstone near the site can be classified as brackish. There is no readily apparent TDS plume in the shallow bedrock.

Uranium. Background concentrations of uranium in shallow ground water vary, reaching at least 40 pCi/l (Bureau of Reclamation well 712) and have been measured as low as 6.8 pCi/l(well 588). Uranium concentrations fluctuate seasonally by a factor of two to six. Below the tailings, concentrations have been measured as high as 610 pCi/l (584).

A plume of uranium elevated above background concentrations extends downgradient of the tailings (Figure F.3.17). Concentrations are 100 pCi/l at a distance of approximately 2000 feet from the site, and 80 pCi/l at a distance of approximately 3000 feet from the site. Wells 2000 feet north to northwest of the tailings (737,739) are cross-gradient from the tailings. Concentrations at these wells were measured at 58 and 34 pCi/l. Because of the variability and known high concentrations of uranium in the background, it is not certain if these concentrations reflect contamination. There are no correlative indicators of contamination at these wells (e.g. elevated concentrations of ammonium, vanadium, or other constituents associated with mill tailings).

Background concentrations of uranium in deep bedrock wells may be discerned from previous studies of geochemistry in the area. A sample population of 30 (Markos and Bush, 1983a) included several artesian wells and found a mean uranium concentration of 0.012 mg/l (8.2 pCi/l), with a range calculated maximum of 0.034 mg/l (23.1 pCi/l). A compilation of data on uranium concentrations in ground water found too little data to produce statistics for the geotectonic region which includes Grand Junction, but recommended the use of data for another region wherein the "anomaly threshold" for uranium was 0.048 mg/l (32.64 pCi/l) (Scott and Barker, 1962). Concentrations in samples collected in March, 1985, in bedrock wells near the tailings were all within the range calculated maximum and below the anomaly threshold. Uranium has not shown a tendency to migrate into the bedrock. Shallow bedrock wells (729, 735, 741) which exhibit other indications of contamination (see below) all had uranium concentrations below the lower detection limit.

One upgradient industrial drainage well (710) had a reported uranium concentration of 52 pCi/l. This is more than 25 percent above the highest measured background concentration of 40 pCi/l and may represent contamination.

<u>Vanadium</u>. Background concentrations of vanadium appear to be the LDL of 0.01 mg/l. For water samples collected in March, 1985, vanadium was seen at a few wells. Below the tailings (584) concentrations reached 7.48 mg/l. Downgradient of the tailings vanadium is seen in wells completed in the shallow bedrock (729, 741, 735, 731). No vanadium was reported for alluvial wells sampled in March, 1985.

<u>Zinc.</u> Background concentrations of zinc probably range up to 0.1 mg/l. Elevated concentrations are apparent below the tailings to 4.1 mg/l (584), at one well upgradient of the tailings (745) at 1.0 mg/l, and in shallow bedrock wells downgradient of the tailings (729, 735) at concentrations up to 5.3 mg/l. Only three alluvial wells showed zinc at concentrations greater than 0.1 mg/l. These are wells 582, 583, and 738 with concentrations of 0.2, 0.6, and 0.2 mg/l, respectively.

<u>Other radioisotopes</u>. No detectable concentrations of polonium-210 or thorium-230, were found for a LDL of one pCi/l. Lead-210 was reported in one background well (711) at 2.3 pCi/l and at one well below the tailings (584) at 2.8 pCi/l.

Organic compounds. Organic compounds were used in the milling process at Grand Junction, including di(2-ethylhexyl) phosphoric acid (EHPA), and tributyl phosphate (TBP) dissolved in No. 2 fuel oil (Merritt, 1971). Total organic carbon (TOC) and total organic halogen (TOX) were used as a screening guide in an attempt to determine if organic compounds were present in ground water near the site. Concentrations of TOC and TOX are reported in Tables F.3.7 through F.3.16.

Because TOC and TOX were found in the ground water, the following selected wells were sampled for analysis of organic compounds:

581,583 (below tailings)
732,736 (downgradient)
737 (cross-gradient, north of tailings)
744,746 (upgradient)
747 (below evaporation pond).

An analysis of water samples was done for EPA priority pollutants and up to 10 other compounds. No organic compounds were reported with the following exception:

- o Methylene chloride, found in four analyses at five to eight parts per billion (ppb), and thought to be from laboratory contamination.
- o Tetrahydrofuran, reported at well 583 at 46 ppb. The suggested permissible concentration in water is 8100 ppb (Sittig, 1981).
- o Bis(2-ethylhexyl) phthalate, reported at upgradient well 746 at 150 ppb.
- o Nine alkanes, reported at upgradient well 746 at concentrations between 26 to 72 ppb.

The Grand Junction tailings are in an area where there is substantial industrial, commercial, and agricultural activity which would involve the use of organic chemicals. The detection of organic chemicals in ground water at upgradient well 746 can probably be attributed to one of these sources, as can the detection of one compound below the tailings (well 583) at a concentration well below the suggested permissible concentration in water. There is no apparent organic contamination of ground water associated with the tailings.

F.3.1.7 Proximity of site to surface water

The tailings are immediately adjacent to and hydraulically connected to the Colorado River. At times of high river stage the Colorado River flows directly against the covered tailings. The other prominent nearby bodies of surface water are a drainage ditch immediately adjacent to the east end of the tailings, a drainage ditch which flows north-south approximately 1500 feet east of the tailings, and a duck pond near the east end of the tailings. (Figure F.3.10). Numerous other major and minor canals, laterals, drainage ditches, and ephemeral drainages are within three miles of the tailings. The discharge of contaminants to surface water is discussed in Section F.3.2.4.

F.3.2 PHYSICAL AND CHEMICAL CHARACTERIZATION OF WASTE AND CONTAMINANT TRANS-PORT

The physical and chemical characterization of waste and contaminant transport has several purposes:

- o Identification of the potential contaminants.
- Determination of which contaminants have migrated from the tailings.

- o Identification of the extent and relative concentration of contamination, e.g., the contaminant plume.
- o Determination of the rate of contaminant migration.
- o Determination of the extent to which contaminated ground water is discharging to hydraulically connected surface water.
- o Separation of the contamination due to mill tailings from other contaminant sources.

F.3.2.1 Geochemistry of waste

The geochemical setting of the potentially affected hydrogeologic environment has been studied in detail on a sitespecific basis. Pertinent findings of these studies are discussed below.

Milling. The Grand Junction mill was operated as an acid-leach process. Relative to other acid leach tailings, the pH is about two pH units higher (less acidic): ranging from 4.0 to 6.5 with a median of 5.5. Both hydrochloric and sulfuric acid were used during the milling process. Iron, ammonia, and salt (NaCl) were other prominent constituents associated with the milling process (Merritt, 1971).

<u>Tailings</u>. The water-soluble concentration of chemical constituents in the tailings is an indicator of which constituents represent potential contamination. Among the constituents which have been found to be present in the tailings in water-soluble form at concentrations above background levels are uranium, vanadium, arsenic, cadmium, and molybdenum. The soils in the evaporation ponds also contain water-soluble concentrations of arsenic, uranium, and vanadium which are above background concentrations (Markos and Bush, 1983a).

Comparison of uranium and radium data for tailings versus adjacent, contaminated soils shows differences (Markos and Bush, 1983a). The migration of radium is much less than that of uranium. Uranium can be expected to be more mobile than radium because it forms sulfate and carbonaceous complexes, whereas radium forms precipitates with sulfate and carbonate.

The tailings also contain high concentrations of the anions sulfate and chloride. The high concentrations of these anions and the acidic conditions of the tailings enhance the mobility of most elements, including such elements as the water soluble constituents listed above as well as selenium, iron, and aluminum.

The mobility of these constituents decreases in the ground water relative to their mobility in the tailings. The migration rates of these constituents is less than the ground-water seepage velocity due to geochemical retardation processes such as precipitation and adsorption. Some data on the leaching behavior of the tailings in fresh water are available (Veyera, 1980), and are presented in Table F.3.33 and Figure F.3.19. These data indicate that key constituents have leached from the tailings. The mobility of many of these constituents decreases in the ground water. Section F.3.1.6 discusses which constituents are detected above background concentrations in ground water.

F.3.2.2 Water-quality impacts

Water-quality impacts are evaluated for three cases: existing conditions, relocation of the tailings, and impacts for stabilization on the site.

Existing impacts. Water quality for the affected hydrogeologic regime is described in Section F.3.1.6. The concentration of several constituents exceeds EPA standards for drinking water as a result of tailings leachate. The tailings have not caused the quality of the Colorado River to fall outside Colorado water quality standards. The background quality of the ground water is predominantly brackish, and the affected system is not currently used for any purpose.

<u>Relocation of the tailings - residual effects at the pro-</u> cessing site. If the tailings are relocated to an alternate disposal site, impacts to water quality near the processing site would be due to residual contamination in the ground water, and possibly sorbed or precipitated contaminants in the alluvium. The impacts to ground water at the Cheney Reservoir and Two Road sites are discussed in Sections F.4 and F.5, respectively.

EPA standards require an evaluation of the persistence and permanence of adverse effects of the ground water. A mixing cell model was used to evaluate the persistence of residual contamination at Grand Junction. A single cell model for water quality is created by assigning a water quality to each component of the water balance for the cell. A mixing cell model was chosen because:

- The varied flow direction within the shallow ground water would tend to make the system analogous to a mixing cell.
- A single cell mixing cell model is simple and is easy to use.

The mixing cell model for the alluvial system has the following features:

o The water balance consists of ground-water inflow, transient storage, and ground-water outflow. Net infiltration and seepage to, or from, deeper aquifers is considered negligible.

Soil type Solid weight (g) First sample weight (g)	Beach sand 1,000 273.8	Slimes 1,170 275.0
Ca ppm Mg ppm	687.00 169.00	607.00 2,230.00
Na ppm	314.00	6,880.00
С ppm ррт	12.00	84.00
	0.60	1.00
Al ppm Fe ppm	0.30 0.03	76.00 1.53
Yn ppm	0.36	7.84
Ti ppm	0.01	0.08
Cu ppm	0.07	13.00
Zn ppm	0.04	225.00
Ni ppm	0.05	7.51
1o ppm	2.68	0.31
Cd ppm	0.01	6.44
Cr ppm Sr ppm	0.02	0.08
Sr ppm 3 ppm	2.80 0.19	6.39 1.60
Ba ppm	0.08	0.13
ppm	0.10	5.80
iga ppm	0.01	
Pb ppm Hga ppm As ppm Se ppm	1.60	
Se ppm	10.70	
	124.00	0.00
4 ^{ppm}	2,330.00	10,800.00
	504.00 96.00	10,640.00 ND
NO ₃ ppm DH ³ standard units	6.40	4.30
Cond ppm	4,700.00	35,800.00
lds ppm	4,560.00	35,560.00
)ash - sample not analyzed		
ND - Not determined		

Table F.3.33 Chemical analysis of first effluent sample for distilled water leaching test

^aHg, As, Se determined by NaBH₄ reducing technique (vapor generation) to avoid spectral interference.

Ref. Veyera, 1980.

RESULTS OF DISTILLED DRIP LEACH TESTS ON BEACH SAND AND SLIME'S Source: Veyera(1980)

F-219

- o The mixing cell is treated as a completely mixed system. Dispersivity is not treated explicitly, but is considered only in that it enhances mixing and essentially, creates a dilution problem.
- Geochemical retardation (i.e. sorption, precipitation), desorption, and radioactive decay are not considered. This assumption overestimates contaminant migration rates and may underestimate flushing times.
- o Time is discretized on an annual basis.

A schematic illustration of the conceptual model and the equations representing the model are shown in Figure F.3.20. The results of the model for the gradual dilution of uranium are presented in Table F.3.34. A range of results is found, depending on the initial concentrations in the ground-water background concentrations, volume of alluvial ground water below the tailings (calculated using drainable porosity), and the rate of ground-water flux. This range in results gives some indication of the sensitivity of the model, and of the physical system, to the uncertainty or variability in various factors.

The results of the model show that residual uranium would be flushed from the aquifer within 100 years, but that concentrations of uranium greater than the EPA's health advisory level of 10 pCi/l may persist for more than 25 years. However, background concentrations of uranium may be more than the advisory level (Section F.3.1.6).

Residual concentrations of contaminants other than uranium were not evaluated with the mixing cell model. Other than uranium, only ammonium had a readily definable plume in the alluvial ground water. The sporadic distribution of other contaminants indicates that one or more of several processes is occurring:

- o The constituents are subject to substantial geochemical retardation and dispersion.
- The effects of leaching of constituents into ground water are obscured by the concentrations present in the background water.
- o The constituents are rapidly flushed from the ground water.
- o Variability may also result from the density, locations, and completion depths of the monitor wells.

Solute transport calibrations and simulations were conducted for ammonium, arsenic, chloride, and uranium in the alluvial ground-water system. The calibrations are based on interpretation of Figures F.3.15 through F.3.18. Solute transport was simulated with an analytical equation presented in

LEGEND	RULES
C _n DENOTES CONCENTRATION V _n DENOTES VOLUME	$C_0 \text{ AND } V_1 \text{ ARE CONSTANTS}$ $\frac{dV_0}{dt} = \frac{dV_2}{dt} \text{ AND ARE CONSTANT}$ $C_2(t_{n+1}) = \frac{C_0 \cdot \left(\frac{dV_0}{dt}\right) \triangle t + C_1(t) \cdot V_1 - C_1(t) \left(\frac{dV_0}{dt}\right) \triangle t}{\left(\frac{dV_0}{dt}\right) \triangle t + V_1}$ $C_1(t_{n+1}) = C_2(t_{n+1})$

FIGURE F.3.20

MIXING CELL MODEL OF GROUND-WATER QUALITY

			Average initial	Effluent concentrations ^e				
Ground-water flux rate	Background concentration ^b	Cell volume ^C	concentration under tailings ^d	10 yrs	25 yrs	50 yrs	100 yrs	
5.7 x 10 ⁶	20	7.0×10^7	600	285	102	32	20	
1.6×10^7	20	1.4×10^8	600	217	59	23	20	
1.0×10^8	20	2.5 x 10^8	600	40	20	20	20	
1.6×10^7	20	1.4×10^8	125	56	27	20	20	
1.6×10^7	20	1.4×10^8	300	115	39	21	20	
1.6×10^7	6.8	1.4×10^8	300	106	26	8	6.8	
1.6×10^7	40	1.4×10^8	300	128	57	41	40	

Table F.3.34 Results of mixing cell model for residual uranium concentration in ground water

F-222

^aIn liters per year, from Table F.3.5. ^bIn pCi/l, from Table F.3.6. ^cIn liters, from Table F.3.6. ^dIn pCi/l, highest seasonal concentrations below tailings, from Table F.3.6. ^eIn pCi/l, for given number of years after remedial action.

Javandel et al, 1984, page 19. The equation is a solution to a two-dimensional, homogeneous, isotropic porous medium having a unidirectional steady state flow. The dispersion coefficients are in the direction and orthogonal to the direction of flow. The source is a strip orthogonal to the direction of flow. Retardation, exponential decay of the solute, and exponential decay of the source can be simulated. The computer code which numerically solves this equation is documented; this documentation is available in the UMTRA Project Office, Albuquerque, New Mexico.

For each simulation, a source length of 960 feet and a decay constant for the solute of zero were used. The present time was assumed to be 25 years since solute transport began. The calculated average linear velocity for the alluvium at the site ranges from 60 to 1800 feet/year. Calibrations were determined using the low value, 60 feet/year, and adjusting the retardation coefficient to approximate measured values. Because the decay constant for the solute was zero and the decay factor for the source was small (0.02 to 0.044), retardation coefficients and average linear velocities tend to vary linearly and directly. Therefore, if the transport for a given solute was calibrated at the low velocity and some retardation factor, a similar calibration could be obtained at the high velocity by multiplying the first retardation factor by the ratio of the high velocity to the low velocity. Dispersivities were calibrated with the ammonium plume because this plume was defined best. The calibrated values of dispersivity were 225 feet for longitudinal and 22.5 feet for transverse. These values are within the range expected for alluvium (Freeze and Cherry, 1979). Table F.3.35 presents the input and results of the calibrations.

Two simulations were performed for each constituent based on the calibrations. In one simulation, it was assumed that the source would continue to decay at the same rate as in the calibration. This is a no action scenario. In the other simulation, it was assumed that the source would decay from its present concentration to background during a three-year remedial action. This scenario predicts lower concentrations than may be expected because residual contamination is not taken into account. The likely occurrence would be somewhere between these two predictions. Figures F.3.21 through F.3.24 show the results of these simulations for a point along the axis of the plume at the location of the Dakota Sandstone subcrop.

These analyses indicate the following:

- o Levels of the four constituents generated during remedial action should be minor.
- o Arsenic is presently, and even with no action should remain, well below drinking water standards.

Table F.3.35 Solute transport calibrations

Constituent - Ammonium Decay factor for source = 0.02 Initial source concentration = 500 mg/l Present source concentration = 303 mg/l Velocity/retardation coefficient = 12/feet/year

X-coordinate (feet)	Y-coordinate (feet)	Measured concen- tration (mg/l)	Calculated concen- tration (mg/l)
200	0	300	294
650	0	100	111
900	0	25	37
1450	0	1	0.7
200	500	100	90
650	500	15	42
900	500	1	14
1450	500	< 1	0.3

Constituent - Arsenic Decay factor for source = 0.044 Initial source concentration = 0.025 mg/l Present source concentration = 0.008 mg/l Velocity/retardation coefficient = 60/feet/year

X-coordinate (feet)	Y-coordinate (feet)	Measured concen- tration (mg/l)	Calculated concen- tration (mg/l)
775 1350	0	12 11	12.2 11.4
1645	0	10	9.6
775	500	11	5.2
1350	500	9	5.1
1645	500	4	4.3

Constituent - Uranium Decay factor for source = 0.02 Initial source concentration = 300 pCi/liter Present source concentration = 182 pCi/liter Velocity/retardation coefficient = 54/feet/year

X-coordinate (feet)	Y-coordinate (feet)	Measured concen- tration (mg/l)	Calculated concen- tration (mg/l)
190	0	180	192
2130	0	60	57
190	500	100	61
2130	500	20	26

Table F.3.35 Solute Transport Calibrations (concluded)

Constituent - Chloride Decay factor for source = 0.1 Initial source concentration = 2340 mg/l Present source concentration = 513 mg/l Background concentration = 350 mg/l-average linear velocity = 124 ft/yr-No retardation

X-coordinate (feet)	Y-coordinate (feet)	Measured concen- tration (mg/l)	Calculated concen- tration (mg/l)
880	0	700	750
1920	0	1100	1090
2640	0	1200	1200

- Ammonium may persist in the ground water for several hundred years at elevated concentrations. No State of Colorado or Federal water quality standard is applicable.
- o Uranium may persist in the shallow ground water for up to 150 years. No State of Colorado or Federal groundwater standard is associated with uranium.
- o Due to retardation of these constituents, particularly ammonium, natural restoration or artificial restoration would be exceedingly time consuming.
- The movement of other elevated constituents which are cations such as iron, manganese, and nickel also will be retarded.

In addition to simulating the transport of cations, the transport of chloride was simulated. Chloride is a mobile anion and usually is transported with the ground water without retardation. The plume for chloride is highly irregular which makes the use of the solute transport equation difficult. A primary characteristic of the plume is that the higher chloride concentrations are farther from the pile. Figure 3.18 illustrates the idealized plume used for solute transport calibration. Based on this idealized plume, the calibration results are shown on Table 3.35.

Using the calibrated parameters, two simulations were performed: (1) assuming that the source concentration would continue to decay at an exponential rate of 0.1 (no action); and (2) assuming that the source concentration would be eliminated during the remedial action (continuing contamination during source removal). The results of these two simulations are shown on Figure 3.24. The analyses indicate that the present level of chloride due to the tailings contamination is presently the maximum expected at the Dakota Sandstone subcrop and the concentrations should rapidly decline in the next 20 to 30 years. Also, additional contamination resulting from remedial action should be minimal.

Stabilization on the site. For stabilization on the site, water-quality impacts would be due to two causes:

- o Existing contamination in the ground water.
- Continuing contamination of the ground water by tailings leachate.

These impacts can be evaluated by expansion of the mixing cell model used to evaluate the water-quality impacts of tailings relocation. A new term is added to the water balance to account for infiltration through the tailings, and a waterquality description is attached to that term. There are no available data on the concentration of uranium within the tailings pore water, and for the mixing cell model a concentration of 600 pCi/l will be assumed (610 pCi/l was the highest measured concentration of uranium in a well completed below the tailings). Because ground water moves through the tailings, this appears to be a representative concentration of the contaminant source strength.

Results of mixing cell calculations are presented in Table F.3.36 for two different rates of infiltration corresponding to two different values of hydraulic conductivity for the cover (Section F.3.3.2) and for various values of hydraulic and water-quality parameters. It can be concluded that the concentration of contaminants in the ground water is relatively sensitive to the rate of infiltration through the co-For the case of uranium, a higher infiltration rate ver. indicates long-term concentrations in the range of 39 to 235 pCi/l, several times EPA's health advisory level. For the lower infiltration rate, the mixing cell model indicates longterm concentrations of uranium of 8.8 to 52 pCi/l. This is slightly below to several times above the EPA's health advisory level. The range in concentrations reflects variability in background concentrations and hydraulic parameters.

For the toxic non-radioactive contaminants in the ground water, a quantitative assessment was not performed. Uranium and ammonium are the only constituents for which a definite plume could be defined, while other constituents are sporadically distributed in alluvial ground water or are not present at concentrations above background levels (Section F.3.1.6). Stabilization on the site would include removal of the tailings from the ground water, and thus would remove the main source of the sporadically distributed constituents. Because these constituents are not mobile enough to develop a definable plume, removal of their main source means that they would probably be rapidly flushed from the alluvial ground water, relative to the rate of flushing of uranium.

F.3.2.3 Extent of contaminant plume

Iso-concentration maps for those constituents for which a plume could be defined are presented in Section F.3.1.6.

F.3.2.4 Discharge of plume to surface water

Review of existing data. A site-specific geochemical investigation of the Grand Junction tailings (Markos and Bush, 1983a) included experiments to investigate the possible movement of contaminants into the Colorado River (Bush et al., 1980). These studies concluded that "The Colorado River, however, contains no measurable contamination from the tailings." (Markos and Bush, 1983a).

	Background		Leachate		Average initial concen-	Effluent concentrations ^g			
Ground-water flux rate ^a	concen5 tration	Infiltration rate ^C	concen- tration ^d	Cell volume ^e	tration under tailings ^f	10 yrs	25 yrs	50 yrs	100 yrs
5.7x10 ⁶	20	8.9×10^{-1}	600	7.0×10^7	600	343	253	236	235
5.7 x 10^{6}	20	8.9×10^{-2}	600	7.0×10^{7}	600	292	122	61	52
1×10^8	20	8.9×10^{-1}	600	2.5 x 10^8	600	57	39	39	39
1×10^8	20	8.9×10^{-2}	600	2.5 x 10^8	600	42	22	22	22
1×10^8	20	8.9×10^{-2}	600	2.5 x 10^8	125	25	22	22	22
1×10^{8} 1 × 10 ⁸	6.8	8.9×10^{-2}	600	2.5 x 10^8	125	13	8.8	8.8	8.8
1×10^8	40	8.9×10^{-2}	600	2.5 x 10^8	125	45	42	42	42

Table F.3.36 Results of mixing cell model of uranium concentration in ground water for stabilization on site

^aIn liters per year, from Table F.3.4. ^bIn pCi/l, from Table F.3.6. ^cIn cm/year, from Table F.3.11. ^dIn pCi/l, highest measured concentration below the tailings, from Table F.3.6. ^eIn liters, from Table F.3.5. ^fIn pCi/l, highest seasonal concentrations below tailings, from Table F.3.6. ^gIn pCi/l, for given number of years after remedial action.

Continuously-monitored water-quality data from the Colorado River system near Grand Junction are available from two sources: the U.S. Geological Survey (USGS, 1931-1986) and the Radium Monitoring Network (EPA, 1973). As of 1983, the USGS reported water-quality information for stations at Cameo (upstream of Grand Junction), the Gunnison River near Grand Junction, and the Colorado River near the Colorado-Utah state line. As of 1972 the Radium Monitoring Network (RMN) reported water-quality for stations at DeBeque (upstream of Grand Junction), the Gunnison River at Grand Junction, and the Colorado River near Fruita, Colorado (downstream of Grand Junction). The RMN was reduced after 1972, and its usefulness was impaired (EPA, 1973).

The USGS data include measurements of specific conductance, common ions such as calcium, magnesium, sodium, potassium, alkalinity, sulfate, and chloride; and other dissolved constituents such as arsenic, barium, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, selenium, silver, and zinc. The RMN data include measurements of radium-226, uranium, and occasional measurements of total alpha, gross beta, thorium-alpha, lead-210, strontium-90, and polonium-210.

Evaluation of USGS data for the 1982 water year failed to show any measurable changes in Colorado River water quality attributable to the tailings. This is to be expected due to several factors:

- o The relatively large flow of the Colorado River would dilute and disperse contaminants originating from the tailings.
- o The effect of the tailings would be overshadowed by effects of influx of the Gunnison River into the Colorado River one mile downstream of the tailings.
- o The influx to the Colorado River of irrigation return flow, urban runoff, and ephemeral drainages should overshadow the effects of the tailings.

Evaluation of the RMN data for the years 1962 to 1972 showed no evidence of contamination in the Colorado River which could be attributable to the Grand Junction tailings, even though milling operations were active during the time. The mill site lies between upstream stations on the Colorado River at DeBeque and the Gunnison River upstream of Grand Junction, and the downstream station on the Colorado River near Fruita. The EPA stated that radium concentrations did not appreciably increase through the reach but uranium did increase by about 20 percent. Part or all of that increase is due to the high concentrations of uranium in the Gunnison River upstream of Grand Junction, which exceed concentrations in the Colorado River at DeBeque. It is evident that there would be no clear indication of (e.g., measurable contamination) radiometric contamination of the Colorado River water by the Grand Junction tailings because:

- o The relatively large flow of the Colorado River dilutes known ground-water inflow from beneath the tailings.
- o The effects of the tailings are overshadowed by the effects of influx of the Gunnison River into the Colorado River one mile downstream of the tailings.
- The ambient concentrations of radionuclides in Colorado River water overshadow the effects of the Grand Junction tailings.
- o The cumulative effects of uranium milling on the Colorado River system above Grand Junction would tend to obscure the effects of the Grand Junction tailings.

Impact assessment. Although the effects of the Grand Junction tailings on Colorado River water quality have not been measured to date, there is an unmeasurable but estimatable minimal impact on the water resource. The degree of this impact may be estimated for a given water-quality constituent by calculating the dilution of that constituent in the Colorado River. For example, calculations could be based on an average flow in the Colorado River above Imperial Dam of 10,900 cubic feet per second (USGS, 1979), an average ground-water flux_under the tailings of 7.1 x 10' liter per year $(7.95 \times 10^{-1} \text{ cubic feet per second})$, and an excess concentration of total dissolved solids (TDS) of 5000 mg/l in the ground water. The highest downgradient concentration of TDS is less than 5000 mg/l more than, the maximum of the background range. The flux of 7.1 x 10' liters per year is in the range of fluxes calculated using Darcy's law (Section F.3.1.5), and is the same as calculated in a previous study (NUS, 1983). Based on these numbers a dilution factor of 137,000 is calculated, and influx of contaminated ground water into the Colorado River would contribute 3.7 x 10^{-2} mg/l TDS to the Colorado River. A U.S. Bureau of Reclamation study (URS, 1983) estimated an annual loss of \$540,000 for each increase of one mg/l TDS in the Colorado River at Imperial Dam (along the Arizona-California border). Based on these assumptions and approximate calculations, the TDS load due to the tailings may represent an annual loss of no greater than \$20,060 in the value of the resource to downstream water users.

Using similar assumptions health effects can be addressed. Using ground-water flow volumes of 1.6 x 10' to 1 x 10^8 liters per year (Table F.3.5), an average concentration of uranium in the ground water of 600 pCi/l, and a flow in the Colorado River of 3780 cfs (the 49-year average at Cameo; USGS, 1979), the influx of contaminated ground water into the Colorado River would contribute 2.9 x 10° to 1.8 x 10° pCi/l opposite the tailings. This is an over-estimate because 600 pCi/l represents the highest measured concentration of uranium in the ground water, not an average. Health effects of ingesting water are discussed in detail in Appendix I, Radiation Health Effects.

F.3.2.5 Contaminant sources other than mill tailings

There are several potential contaminant sources other than mill tailings within the potentially affected hydrologic setting. These include:

- o Irrigation return flow.
- o Urban runoff.
- 0 Landfills or buried trash.
- o Industrial activities.

The most easily identifiable source of ground-water contamination in the area is irrigation return flow, including seepage from canals, deep percolation of irrigation water, and urban seepage from water mains, sewers, and gardening. This water percolates through the alluvium and into the Mancos Shale, where it leaches salts. Concentrations of salts exceed 3000 to 4000 mg/l in the Mancos Shale. This leachate moves toward the active alluvium along the Colorado River and then into the river. The entire Grand Valley contributes enough salt to the Colorado River to increase the salinity of the river at Imperial Dam by more than 43 mg/l (U.S. Bureau of Reclamation, 1978). The annual costs of this leachate can be estimated at more than \$23 million using a similar estimation approach as the one presented above (Section F.3.2.4).

The impacts of urban runoff on ground-water quality in the Grand Junction area have not been quantified. It is known that contaminants present on street surfaces contribute to water pollution (EPA, 1972). Among the contaminants known to be present on city streets are phosphates, nitrates, heavy metals, and pesticides.

At one boring location down-gradient of the tailings (733) trash was encountered. The extent of this "landfill" is unknown. This material could contribute to ground-water contamination.

There are numerous industries in the vicinity of the tailings. Several of these use chemicals in their operations. The effects of these industries on ground-water quality, if any, are unknown.

F.3.3 CLIMATIC EFFECTS ON CONTAMINANT MIGRATION

F.3.3.1 Climate

The climate in the vicinity of Grand Junction is relatively dry. Annual precipitation averages about 8.9 inches (22.6 cm). Simmons and Gee (1981) report values of potential evapotranspiration (PET) for Grand Junction in the range of 180 cm per year. Thus the ratio of PET to precipitation is in the range of seven to eight. Selected data for pan evaporation are shown in Table F.3.37.

Year	Months of record	Total evaporatior (inches)
	GRAND JUNCTION 6 ESE	
1977	May-September	55.87
1978	May-September	54.93
1979	May-September	57.29
1980	May-July, September	41.78
verage (period		
of record)	May-September	74.81
	MONTROSE 1	
1977	April, June-October	38.23
1978	April-November	52.93
1979	April-October	50.13
1980	May-October	45.90
verage (period		
of record)	April-November	52.89

Table F.3.37 Selected pan evaporation data for the Grand Junction area

Ref. NOAA, 1977-1980.

F.3.3.2 Contaminant migration in the unsaturated zone

Existing conditions. During the period of active milling and up to the present time, the impact of contaminant transport in the unsaturated zone has been relatively minor. The major impacts to ground water have been the drainage of the initially saturated tailings after deposition and the flow of ground water through those portions of the tailings which are below the water table.

<u>Future conditions</u>. Infiltration of incident precipitation through the tailings can generate leachate which can move out of the stabilized site embankment. It is difficult to predict the precipitation which would infiltrate; however, calculations have been made to provide an upper bound on infiltration.

A variety of methods are used to compensate for the difficulty in predicting infiltration rates. The various methods are briefly described below, while predicted infiltration rates are presented in Table F.3.38. These calculations should be considered as preliminary.

One conservative method of calculating an upper bounding value of infiltration through the tailings embankment is to assume a constant saturated flux through the cover (method 1, Table F.3.38). This calculation uses Darcy's Law to calculate flux:

$$q = K \frac{dh}{dl}$$

where

q = flux (l/t)
K = saturated hydraulic conductivity (l/t)

dh/dl = hydraulic gradient

Net infiltration would probably be significantly less than calculated with method 1, because the flux of moisture into the cover is not constant and because moisture also moves out of the cover by evapotranspiration. A lower, more representative value of net infiltration was calculated using the following assumptions (method 2):

- The sloping embankment cover promotes lateral runoff of excess moisture.
- Infiltration occurs only under a snowpack or during significant (i.e. more than 0.1 inch) precipitation events.

3.15×10^{1}
0
3.15×10^{0}
8.90×10^{-1}
8.90×10^{-2}
Data not available
Not applicable

Table F.3.38 Predicted infiltration rate through the cover at the Grand Junction site

^aMethod 1 is constant Darcy flow under unit hydraulic gradient;

Method 2 is constant Darcy flow during rainfall events > 0.1 inch; Method 3 is wetting front advance during rainfall events > 0.1 inch;

Method 4 is water balance. ^bIn cm/sec. Hydraulic conductivity of cover would be specified in engineering design. ^CIn hours per year.
- o A downward, unit hydraulic gradient exists only under a snowpack or during significant precipitation events.
- Contribution of snowpack to infiltration is minimal, because snows are light and they seldom remain on the ground for long periods of time (U.S. Bureau of Reclamation, 1978).
- o Significant net infiltration occurs only during days with precipitation greater than 0.1 inch of precipitation. For precipitation events less than 0.1 inch, it is assumed that the overlying rock cover would cause large interception losses. For the period 1965-1981, the area averaged 41 days with precipitation greater than 0.1 inch (Colorado Climatological Office, 1982).
- o For days with precipitation greater than or equal to 0.1 inch, the precipitation occurs over a six-hour period. For the period January, 1981, through March, 1985, climatic data for Grand Junction show that days with precipitation greater than or equal to 0.1 inch averaged 5.5 hours of measurable precipitation (NOAA, 1981-1985).

Based on these assumptions, a unit hydraulic gradient occurs for a limited period:

41 days x 6
$$\frac{\text{hours}}{\text{days}}$$
 = 246 hours

This calculated duration of a downward, unit hydraulic gradient is used to calculate annual net infiltration (Table F.3.38).

An alternate means (method 3) of calculating annual infiltration is made using a formula for advancement of a wetting front during constant infiltration (Stallman, 1967):

 $dw/hc + \log 1/(1 + dw/hc) = kt/hcSc$

where

dw = depth of wetting front at time t

- hc = pressure head across wetting front
- k = saturated hydraulic conductivity
- t = time after the ground surface is wetted
- Sc = change in volumetric water content across
 the wetting front

The use of this equation for calculating infiltration is as follows:

- o Infiltration occurs only when there is a surface source of water, although the wetting front would continue to advance after the source is removed.
- o Sc equals the difference between the -15 bar and saturation moisture percentage.
- o Net infiltration occurs only during precipitation events of 0.1 inch or greater (see method 2 for reasoning), which are assumed to last six hours.
- o Net infiltration equals dw x Sc.

This method was not used for the Ground Junction site, but was used for the Cheney Reservoir site (Section F.4). An alternative means of estimating the net infiltration is to assume that it would be less than or equal to the existing net infiltration through the undisturbed soils at the site, and estimate the existing infiltration rate using a water balance calculation (method 4). The reasoning behind this estimate would be that the engineered cover will have a lower permeability than the undisturbed soils, which would tend to restrict infiltration to less than existing rates. It must be noted that factors other than the permeability of the soil control infiltration, e.g. evapotranspiration by the existing vegetation. The existing rate of net infiltration still provides a qualitative measure of what infiltration through the covered tailings could be.

<u>Previous studies</u>. The Grand Junction site was used to investigate the use of vegetation and rock covers to stabilize uranium mill tailings (Mayer et al., 1981). The investigation consisted of simulating moisture movement through the tailings and cover layers. The simulation used a version of the computer code, UNSAT (Gupta et al., 1978). The version is called UNSATV and accounts for the important factors influencing the unsaturated zone:

- o Water infiltration from precipitation or irrigation.
- o Evaporation.
- o Transpiration.
- o Runoff.
- o Drainage.
- o Water vapor diffusion (a feature of UNSATV).

The simulations were run for a one-year period to initialize the model, and then for a two-year period using either the repeated climatic data for 1979 (wettest year in 1976 to 1979 period) or the repeated climatic data for 1976 (driest year 1976 to 1979).

The results of the simulation study have several limitations which restrict their applicability to the current designs for stabilizing the tailings. It should be noted that although the simulations are limited in their applicability, these limitations tend to overestimate moisture movement and thus, discussion of these limitations follows:

- o The cover system design used in the simulations was quite different from the current design. Most significant is that the simulated profile had a lowpermeability layer at depth (1.3 meters) within the multi-layer cover, whereas the current conceptual design has a low-permeability layer near the top of the cover system. The simulated cover had a 1.3-meter thick layer of overburden which could retain moisture, tending to drive water down through the lowpermeability cover.
- o The low-permeability layer used in the simulation was only 15 cm thick, approximately one-tenth (1/10) the thickness of the current design. Using Darcy's Law modified for unsaturated flow (Hillel, 1971):

$$q = -K (theta) - \frac{dh}{dl}$$

where

q = flux
K = unsaturated hydraulic conductivity

theta = water content

dh/dl = hydraulic gradient

dh = change in total head

dl = length of flow path

It can be seen that for a given value of K and a given change in head across a tailings system; the greater the length of the flow path across the low-permeability layer the smaller the flux. The ratio K/dl is sometimes called the "Effectiveness Factor" (Buelt and Barnes, 1981). The current design has an effectiveness factor approximately four times that of the simulation study.

o The simulation was performed using a one-dimensional model, therefore lateral drainage was not considered. And more importantly, the model does not calculate runoff directly, and does not take into account the effects of a sloped surface on runoff. The current conceptual design includes a cover top slope of two to four percent to promote runoff, with sideslopes of 20 percent.

It can be concluded that the previous simulation study (Mayer et al., 1981) included several aspects which would tend to overestimate net infiltration and which limit the applicability of the simulation study to the current design. The current conceptual design would be more effective in minimizing infiltration and leachate production than the design used in the previous simulation study.

The Grand Junction tailings were also the location of a field study of the use of vegetation and rock covers (Beedlow, 1984). Field measurements of matrix potential and volumetric moisture for two sets of two dates in 1982 corroborate the simulation studies. The vegetated cover showed very little change in moisture content relative to rock cover (the changes in moisture content under the vegetative cover are near the resolution of the neutron probe that was used to make the measurements).

The applicability of the field study to the current design is also limited by differences between the two cover designs. The test plots were relatively flat (see Figure 1 in Kirkham et al., 1982), which would minimize runoff. The current conceptual design includes a cover sloped three to four percent, with side slopes of 20 percent, to promote runoff. The test plots had a low-permeability layer at depth with overburden which could retain moisture, which would tend to drive water through the low-permeability layer. Also, the thickness of the low-permeability layer is less than in the current site design although the hydraulic conductivity is lower. The net result was that the current design has a greater effectiveness factor than the test plot. These differences all indicate that net infiltration would tend to be less with the current design than for the test plots.

F.3.4. EXISTING USAGE AND VALUE OF WATER RESOURCES

F.3.4.1 Ground water

Usage. Utilization of ground water in the Grand Junction area is predominantly from deeper confined aquifers rather than from the shallow aquifers. The lack of usage of shallow ground water can be attributed to three factors: the poor quality and low yield of shallow aquifers, and the ready availability of alternate water supplies. Reports on the hydrogeology of the Grand Junction area corroborate this (Lohman, 1965):

"In the Grand Junction area, unconfined aquifers yield but little water or water of poor quality, or both ... Where thick, the alluvium along the principal streams probably would yield considerable water to properly constructed wells, but the water probably would be too hard for domestic or public supplies. It would be suitable chemically for irrigation, but irrigation water from the rivers is abundantly available at lower cost."

In the immediate vicinity of the tailings only one unregistered well, an industrial drainage well upgradient of the tailings, is known to be completed in the alluvium. This upgradient well is used only in summer months when high ground-water levels in the alluvium flood land adjacent to the Colorado River. Location of the well (710) is shown in Figure F.3.1.

There are four artesian aquifers in the Grand Junction area, which are, in order of importance and productivity, (Lohman, 1965):

- o The Entrada Sandstone.
- o The Wingate Sandstone.
- o The lenticular sandstone beds in the Salt Wash Member of the Morrison Formation and in some places in the Brushy Basin Member.
- o The Dakota Sandstone and sandstone in the Burro Canyon Formation.

The Dakota Sandstone is the uppermost artesian aquifer in the vicinity of tailings. No registered wells are known to be completed in the Dakota Sandstone within the potentially affected hydrogeologic environment of the tailings.

Value. The value of shallow ground water in the vicinity of the tailings can be judged by the value of alternative water supplies in the area. The actual value is probably less than alternative water supplies because of the poorer quality of the ground water versus the quality of alternative water supplies. A rate schedule for delivery of city water is shown in Table F.3.39.

Table F.3.39 Rate schedule for water users within Grand Junction city limits

Quantity per month (gallons)	Charge
First 3,000	\$5.35
Next 7,000	\$0.90/1000 gal.
Next 10,000	\$1.05/1000 gal.
More than 20,000	\$1.25/1000 gal.

Ref. City of Grand Junction, 1985.

Because ground water in the Dakota Sandstone varies significantly in yield and quality depending on location, its value must be judged according to yield and quality. The Dakota Sandstone is not utilized in the near vicinity of the tailings, and therefore has only a future value (Section F.3.6).

F.3.4.2 Surface water

Usage. The Colorado River mainstream below the tailings is used by several states and by Mexico for various purposes including domestic use, industrial use, irrigation, livestock watering, and for fish and wildlife.

There are no major domestic users of Colorado River water for 200 miles downstream from Grand Junction (FBDU, 1977). The normal water supplies for Grand Junction are obtained from Grand Mesa surface water, the Juniata and Purdy Mesa reservoirs being the major sources. During dry spells, Grand Junction can use Gunnison River water, the intake being approximately one mile upstream from the confluence with the Colorado River. The Ute Water District uses Colorado River water during dry spells, but its intake is just upstream from Palisade and therefore upstream from the pile.

<u>Value</u>. In the highest category of use, municipal rate schedules are indicative of the highest potential value of Colorado River water (Table F.3.39). Another way to look at value is to look at the incremental losses due to pollution of the river. A 1983 study by the Bureau of Reclamation has estimated an annual loss of \$540,000 for each increase of one mg/l in the total dissolved solids (TDS) content of the Colorado River at Imperial Dam (URS, 1983).

F.3.5 ALTERNATE WATER SUPPLIES

The tailings have not affected any ground water that is currently used. Should the affected ground water be considered for use, there would be potential alternate water supplies. Alternate water supplies in the potentially affected hydrogeologic setting would include several sources:

- o Grand Junction municipal water system.
- o Commercial water supply (delivery by tanker).
- o Drilling of wells into multiple artesian aquifers.
- o Appropriation of Colorado River water (subject to availability).

F.3.6 FUTURE USAGE AND VALUE OF WATER RESOURCES

F.3.6.1 Ground water

Usage. Future usage of shallow ground water in the affected hydrogeologic environment will be minimal because of the availability of the city water, the seasonally low quality of the alluvial aquifer, and the impact of other contaminant sources on the water (Section F.3.2.5). The only known existing use of the alluvial aquifer, at a well upgradient of the tailings, occurs only seasonally when the river is at high stage, and is only for drainage of flooded land. Future use of the uppermost artesian aquifer is also expected to be minimal:

"The sandstones in the Dakota Sandstone and Burro Canyon Formation are tapped by very few wells but, because of the generally poor quality of the water. . . very little additional development of water from these formations is likely or anticipated." (Lohman, 1965).

Value. Estimates of the future value of water resources are difficult to establish, and are severely limited as to the duration over which they can be deemed reliable. One reason for the uncertainty of estimates of water value is that water value is strongly related to population and water demand, and estimates of population changes tend to be very short term. In the Grand Junction area future water demand would also be tied to such uncertain factors as the economics of oil-shale development (oil-shale processing may consume large amounts of water).

Estimates of the value of shallow ground water near the Grand Junction tailings must be based on the fact that it is not a discrete water resource. The shallow ground water is hydraulically connected to the Colorado River and any capture of ground water would draw water from the river. It cannot be "mined" as can some ground-water systems, e.g. there is no non-renewable portion of the alluvial system.

Several factors can be used to qualitatively judge the future value of shallow ground water near the tailings. These factors are:

- o Expected future usage (low).
- o Extent (limited to area adjacent to Colorado River).
- o Amount of system which is non-renewable (none).
- Quality versus alternative sources (poor-exceeds EPA drinking water standards).
- o Availability of alternative supplies (readily available).

Based on these qualitative factors, it can be concluded that the expected future value of the shallow ground water is relatively low.

F.3.6.2 Surface water

Usage. In the immediate vicinity of the tailings, future usage will be minimal. This is because of the same reasons as the expected low use of ground water in the area (the ready availability of good quality municipal water). <u>Value</u>. The value of Colorado River water in the area can be expected to increase. Increasing population, agricultural development, and mineral or energy development in the Grand Junction area and the Colorado River Basin would be expected to increase demand for Colorado River water. The increasing demand would increase the value placed on the water.

F.3.7 IMPACTS IN AFFECTED HYDROGEOLOGIC ENVIRONMENT

Impacts on the affected hydrogeologic environment are discussed both for existing conditions and for future conditions. Future conditions can be affected by any of the alternative actions:

- o No action.
- o Stabilization on the site.
- o Relocation to an alternate disposal site.

F.3.7.1 Human health risks

Health effects of ingesting ground water and surface water are discussed in detail in Appendix I, Radiation Health Effects.

Existing conditions. To date, there are no known users of ground water in the affected hydrogeologic environment and therefore there are no known human health risks from the ingestion of this ground water.

<u>Future conditions</u>. For the no action alternative, impacts on ground-water and surface-water quality would probably be about the same as existing conditions (Section F.3.1.6). The probability of human ingestion of ground water would be low (Section F.3.6.1).

For stabilization on the site, contaminated ground water would be flushed from the affected environment until it approached background conditions. Until the flushing is complete, concentrations of some constituents (e.g. arsenic, cadmium, iron, manganese, selenium, and zinc) would exceed Federal drinking water standards in the ground water below the tailings. During the time of flushing (less than 100 years), the probability of human ingestion would be low due to the low probability of future use of this water (Section F.3.6.1). Potential human health effects due to ingestion of surface water would decline over this same short period. Uranium concentrations would persist at concentrations above background (Section F.3.2.2). Human health risks due to ingestion of ground water containing elevated concentrations of uranium would be minimal, because the expected use of the ground water is low (Section F.3.6.1). Health effects are discussed in more detail in Appendix I, Radiation Health Effects.

F.3.7.2 Damage to crops and vegetation

There is no known agricultural activity overlying the affected hydrogeologic system. There has been no known impact to crops or vegetation. The future likelihood of damage to crops and vegetation is minimal because of the urban setting of the affected hydrogeologic system.

F.3.7.3 Damage to wildlife

There have been no known impacts to wildlife due to ingestion of contaminated ground water. Considering the magnitude of contamination relative to that caused by other sources (e.g. irrigation return flow), the likelihood of damage attributable to the tailings is relatively small.

F.3.7.4 Persistence and permanence of adverse effects

Quantitative and qualitative conclusions on the persistence of ground-water contamination are discussed in Section F.3.2.2. Based on the lack of known adverse impacts at present and the projection of decreasing amounts of contamination, persistent or permanent adverse effects are expected to be minimal.

F.3.8 AQUIFER RESTORATION

For affected ground water at UMTRA Project sites the decision on whether to institute remedial action, what specific action to take, and to what levels an aquifer should be protected or restored should be made on a case-by-case basis. On September 3, 1985, the United States Tenth Circuit Court of Appeals set aside EPA's water protection standards, 40 CFR Part 192.20(a)(2)-(3), and EPA has not yet reissued these standards. When EPA issues revisions to the water protection standards, DOE will re-evaluate the ground-water issues at the site to assure that the revised standards are met. Performing remedial actions to stabilize the tailings prior to EPA issuing new standards will not affect the measures that are ultimately required to meet the revised water protection EPA standards. On this basis, the evaluation of the need for aquifer restoration must take into account several factors:

- Technical feasibility of improving the aquifer in its hydrogeologic setting.
- o Cost of applicable restorative or protective programs.
- o Present and future value of the aquifer as a water resource.
- o Availability of alternative water supplies.
- o The degree to which human exposure is likely to occur.

As indicated by the regulations, remedial actions for affected aquifers can be divided into two basic approaches: ground-water protection and aquifer restoration. A remedial action strategy can also be a combination of these two approaches. At the Grand Junction site, groundwater contamination has probably already reached a maximum physical extent because the contamination has been ongoing for a relatively long time in an alluvial aquifer with relatively large annual flux (inflow and outflow). Therefore, protective measures would have only future benefit to the affected aquifer. Protective measures are incorporated into the remedial action: removal of the tailings to an alternate site or, for stabilization in place, removal of the tailings from the ground water and use of a low-permeability cover to minimize infiltration. The discussion that follows covers only aquifer restoration.

F.3.8.1 Technical feasibility

Two basic approaches to aquifer restoration are plume capture and plume management. An aquifer restoration program could also be a combination of the two approaches. Cost differences between the various technical alternatives will be discussed separately from feasibility.

Plume capture consists of some method or methods of obtaining contaminated ground water, which is then pumped or fed by gravity flow to a treatment facility. Among the methods for obtaining contaminated ground water are drains, wells, sumps, and trenches.

Plume management consists of injecting uncontaminated water into the aquifer. The uncontaminated water displaces the plume, forcing it in a direction determined by the injection set-up. Injection can be performed using wells or spreading basins. The injection can be performed to obtain several effects:

- o To keep the plume away from existing or potential ground-water users.
- o To force the plume toward a collection system.
- o To force the plume toward a discharge area.

In the case of the contaminated ground water at Grand Junction, there are no known existing ground-water users (Section F.3.4) downgradient of the tailings, and only one upgradient industrial well which may have been affected by the tailings (Section F.3.1.6). The upgradient well is on the edge of the contaminated shallow ground water, and is used to control high water levels which flood a truck scale at an industrial facility adjacent to the Colorado River. The water is pumped back into the Colorado River, and is rarely used (Seevers, 1985). Plume management could be performed to force contaminated ground water toward a collection system or toward a discharge area. The discharge area in this case would be the Colorado River. Discharge to the Colorado River would only transfer contamination from one water resource (ground water) to another (surface water). Plume management would be of most benefit if it is used to force the plume toward a collection system.

Plume capture near the Grand Junction tailings is complicated by both physical and cultural features. The presence of the Colorado River adjacent to the plume means that there is a ready source of recharge to the alluvial aquifer. Pumping in the shallow aquifer would induce flow from the river to the drain, well, sump, or trench (Figure F.3.25). The flow from the nearby river dilutes the contaminated ground water. Therefore, an increased volume of water would be captured and treated, and thus costs for each activity would be increased. The amount of induced flow can be reduced by various pumping schemes (e.g. more wells pumping less water) or by installing a low-permeability slurry wall as a barrier (Figure F.3.26). Each of these measures would also increase costs for plume capture.

Cultural complications to aquifer restoration at Grand Junction are due to the contaminated ground water underlying a populated area with a concentration of cultural features (buildings, roads, pipes, and the like). A capture scheme may be difficult to implement. There may not be enough available land to effectively implement trenches. Drains or wells (with the accompanying pipelines to the treatment plant) would involve trenching and corresponding disruption to the community.

Plume treatment can be accomplished in a couple of ways. There are various methods of removing contaminants from water; these do not merit further discussion except to conclude that it is technically feasible to clean up the captured water, if given sufficient monetary resources. The treatment system can either be an existing one or one specifically constructed for aquifer restoration.

An existing treatment system could be utilized by routing contaminated water into the existing waste water (sewage) treatment system of the city of Grand Junction. This has the advantage of the using existing waste transmission systems (sewers). It has the disadvantage of mixing the plume waste water with the normal municipal waste water. Municipal wastewater treatment plants usually do not use treatment technologies designed to remove constituents such as those in the tailings plume. Different capabilities could be added to the existing treatment plant; however, these must treat not only the captured plume but also the municipal waste water which is diluting it. It may be ineffective to dilute a waste before treating it.

A scheme for treating the captured plume can also be a treatment system near the mill tailings site. This scheme can be any physical, biological, or chemical means of removing

contaminants from the water. It can also be as simple as evaporating the contaminated water, and disposing of the residual salts. The main disadvantage of treatment at the site in Grand Junction is the necessity for a waste-water transmission system which would have to transect the many cultural structures in the area.

F.3.8.2 Cost

Based on the EPA standards for inactive uranium mills (40 CFR Part 192) it has been determined that aquifer restoration is not needed at the Grand Junction site. This determination took into account, as required by the EPA standards, the cost of a restoration program. The following discussion is included to demonstrate how cost was considered in determining the need for aquifer restoration. The estimation of costs which follows is not meant to be a rigorous analysis, but only an initial investigation of approximate costs. For the Grand Junction site this initial investigation of costs appeared to be adequate for evaluating the need for aquifer restoration.

Remedial action for the Grand Junction tailings would include dewatering and waste-water treatment. This would in effect clean up alluvial ground water below and adjacent to the site. Aquifer restoration could be done for off-site areas within the extent of contaminant plumes.

It is possible to determine some approximate costs of an aquifer restoration program without doing a precise cost estimate. Necessary expenditures for an aquifer restoration program can be identified and approximate costs assigned to them. At a minimum, necessary aspects of an aquifer restoration program for the off-site alluvial ground water at Grand Junction would include:

- o Well installation to capture contaminated ground water.
- o Pumps to lift the water out of the wells.
- o Pipe to carry the captured water to a treatment plant.
- o Trenching to place the pipe below grade.
- o Road repair (asphalt paving) where the pipe crosses city streets.
- o A water treatment plant or added capacity for the waste-water treatment plant on the site.
- o Well abandonment for the capture wells.
- o Operation and maintenance of the restoration system.
- o Decommissioning of the wells and pipeline.

Some approximate costs are presented in Table F.3.40. The system described in this table is for 20-foot-deep wells 250 feet apart. These costs could be scaled down depending on how much of the plume is to be captured. However, many needed items are not included, and the cost estimate in Table 3.40 is therefore conservatively low.

Costs could also be changed by changing well spacing. Note that the table does not include costs for operation and maintenance, nor for water treatment capacity; these costs would normally constitute a major portion of the total costs of an aquifer restoration program. Thus the total cost listed in the table could possibly be increased by a factor of two or more to account for water treatment capacity, operation, and maintenance. Considering the option of scaling down the program described in Table F.3.40 and the unaccounted costs, an aquifer restoration program at Grand Junction could cost between a few hundred thousand dollars to more than a million dollars.

Some other costs of an aquifer restoration program are not addressed in the discussion above. Because the program would be done in a metropolitan area, there would be other direct and indirect costs such as traffic barriers, relocation of utilities or tunneling where pipelines cross utility easements, temporary disruption to businesses, among others. It would be difficult to quantify indirect costs such as disruption to businesses.

F.3.8.3 Future value of the resource

The future value of the affected ground water is discussed fully in Section F.3.6.

F. 3.8.4 Availability of alternative water supplies

Water use in the Grand Junction area is discussed in Section F.3.4. In the area overlying the plume of contaminated ground water, good quality potable water is readily available from water mains. There is little reason at present for people in the area immediately adjacent to the tailings to drill wells into the alluvial aquifer.

F.3.8.5 Degree of human exposure likely to occur

Several circumstances indicate that the likelihood of human exposure to contaminated shallow ground water is low. These are:

 A water distribution system is already in place and fully used in the area overlying contaminated ground water.

Item	Unit price(\$)	Unit description	Units	Costs (\$)
Well installation easement purchase legal survey well drilling 4-inch casing, installed 100-gpm pump well development setting pump field engineer	30 12 1975 100 105 25	feet feet unit hour unit hour		included- included- 52,800 21,120 173,800 17,600 9,240 5,000
Pipeline installation easement purchase legal survey engineering (design) 2-inch PVC pipe trenching (backhoe) asphalt paving field engineer	2 5 2	feet feet square feet	- not - not 24,000 24,000 2,000	included- included- included- 48,000 120,000 4,000 ncluded-
Miscellaneous fencing, installed electrical hook-up water treatment plant	250 600	unit unit	88 88 -not i	22,000 52,800 ncluded-
Operation and maintenance water treatment electricity (pumping) water sampling and analysis	2500 260	month sample	-not in 24 264	ncluded- 65,320 68,640
Decommissioning pulling pump pump resale dismantling fence trenching (backhoe) asphalt paving well abandonment	105 64% 30 5 2 263	unit unit feet square feet unit	88 88 24,000 2,000 88	9,240 -111,232 2,640 120,000 4,000 23,144
TOTAL COST				708,112

Table F.3.40 Approximate costs for selected expenditures required for aquifer restoration

- o The existing water distribution system can be easily hooked into by future development in the area.
- The shallow ground water and Colorado River in the general area are known to be of poorer quality than available water supplies.
- o The taste and short-term effects of ingesting contaminated ground water (e.g., laxative effects due to sulfate) would discourage long-term usage, and long-term usage is necessary to cause a high probability of harm.
- Only one existing user is possibly within the extent of contaminated ground water, and the well is used for flood control.

F.3.8.6 Summary

The need for aquifer restoration in the affected shallow ground water has been considered using the recommended factors of 40 CFR Part 192.20. The following conclusions have been reached:

- o It is technically difficult to improve the aquifer in its hydrogeologic setting. The effort would be complicated by recharge from the nearby river.
- o Conducting an aquifer restoration program could cause a disruption to the community.
- o In monetary terms only, cost of the restorative program would be relatively high compared to the benefit.
- o There are no known users of the affected ground water.
- o The present and future value of the aquifer as a water resource is much lower than the cost of restoration.
- o Alternative water supplies are readily available and are currently being used.
- o The degree of human exposure which is likely to occur is low.
- One industrial user upgradient of the tailings may be within the affected (e.g. contaminated) hydrogeologic setting. The well is used primarily to control high water levels which occur during high stage in the Colorado River. Measures other than aquifer restoration would seem appropriate to ensure that there are no health effects from ingestion of this water.

Based on these criteria, aquifer restoration of the shallow ground water is neither a cost effective nor a necessary means of mitigating ground-water contamination caused by the uranium mill tailings at Grand Junction.

F.3.9 NO ACTION ALTERNATIVE

One of the alternatives addressed in this EIS is the "no action" alternative. It is difficult to quantify the impacts due to no action. On a qualitative basis it can be concluded that the impacts would be very similar to conditions in the existing environment. The following general conclusions can be reached regarding the no action alternative:

- o In the short-term the tailings would remain in contact with the ground water and would continue to act as a source of contamination. Water-quality impacts in the short term would be very similar to those seen in the existing environment.
- o In the long-term there is a high probability that erosion could remove the existing temporary cover. The tailings could be dispersed over a wider area and the potential for leaching of contaminants could be increased.

The water-quality impacts due to the no action alternative will not be further assessed within this appendix. More detailed discussion of the impacts of no action may be derived by reviewing the description of the existing hydrogeologic environment (Section F.3.1).

F.4 POTENTIALLY AFFECTED HYDROGEOLOGIC ENVIRONMENT-CHENEY RESERVOIR SITE

F.4.1 CHARACTERIZATION OF HYDROGEOLOGIC ENVIRONMENT

F.4.1.1 Previous investigations

The Cheney Reservoir area has been included within regional hydrogeologic studies; however it has been the subject of only one site-specific study. The Colorado Geological Survey (CGS, 1982) performed a reconnaissance level study of the location's potential use as a mill tailings disposal site.

F.4.1.2 Recent investigations

The field programs have involved exploratory drilling, hydraulic testing, monitoring well installation, and water sampling in two phases. The first phase was begun with drilling in November to December, 1982. The second phase was begun with drilling in March, 1985.

In the first phase, six exploratory borings were drilled and sampled for stratigraphic logging and to obtain soil samples for laboratory testing. These borings were also used for field permeability tests. An additional three borings were drilled and used for monitor well installation.

In the second phase, two borings were drilled for monitoring well installation. These borings were sampled during drilling for stratigraphic logging. Well construction details for both the first and second phases are presented in Table F.4.1, and well locations are presented in Figure F.4.1.

The first phase was conducted in accordance with a work plan for geotechnical and ground-water hydrology work (Golder Associates, 1982). All field and laboratory work in the second phase was completed in accordance with standard operating procedures. These standard operating procedures are on file with the U.S. DOE UMTRA Project Office in Albuquerque, New Mexico.

F.4.1.3 Stratigraphy

The stratigraphy of the disposal site has been defined through a series of borings (Figures F.4.2 through F.4.4).

On a hydrogeologic basis the stratigraphy can be divided into four zones:

o A surficial layer of unconsolidated deposits.

o The upper weathered zone of the Mancos Shale.

TABLE F.4.1 CHENEY RESERVOIR SITE BOREHOLE AND WELL INFORMATION

							SCREENEL) INTERVAL	
د	b		WELL	TOTAL	SURFACE	TOP OF			BOREHOLE
LOCATION	NORTH	EAST ^D	DIAMETER	DEPTH	ELEVATION	CASING	BEG DP	LENGTH	DEPTH
ID	COORDINATE	COORDINATE	[IN.]	[F T.]	[FTMSL]	[FTMSL]	(F TFD)	[FT.]	[FTFD]
501	15241.1	95359.8			5301.80				49.83
502	14281.7	94162.6			5271,70				51.00
503	133 48.9	92836.0			5238 .4 0				50.00
504	14140.3	96238.6			5325.80				55.70
505	13 132 .9	94694.8			527 9.3 0				50.50
506	11834.9	93198.0			5233.10				50.50
507	11902.9	93261.4	2.000	5 3.4 0	5235.14	5236.5 4	32.40	21.0	52.00
508	14169.1	96180.2	2.000	52,60	5324.06	5325.96	32.60	20.0	50.70
509	14336.4	94130.7	4.000	102.50	5271.57	5273.07	82.50	20.0	105.00
701	14463.1	95021.4	2.000	40.00	5293.10	5295.02	28.00	10.0	38,00
702	13412.9	93568.3	2,000	39. 50	5252 .96	5254.73	27.50	5.0	37.50

^a 501-506 correspond to GCH-1 through GCH-6 in DOE, 1983; 507-509 correspond to GWCH-1 through GWCH-3 in DOE, 1983.

^b Site coordinate system is based on a truncation of modified Colorado coordinate system.

F-259

F-261

- o The lower, less-weathered portion of the Mancos Shale.
- o The Dakota Sandstone and other formations underlying the Mancos Shale.

Surficial layer. The Cheney Reservoir site is on a pediment surface as can be seen by the uniformly-sloping surface of the Mancos Shale in Figures F.4.3, F.4.4, and F.4.5. The unconsolidated deposits, based on the logs of nine borings, range in thickness from 23.5 to 42.0 feet. A brown to reddish brown eolian silt with some clay and sand and occasional gravel to boulder sized fragments of basalt, varies from zero to two to three feet at the surface. This material is underlain by interlayered clay, silt, sand, and gravel, with occasional layers of cobbles and boulders of basalt. This layer apparently represents mixed alluvial and colluvial deposits, and has been mapped as a pediment gravel (Cole and Sexton, 1981).

The primary geochemical mechanism for attenuating acid leachate is neutralization. Eight soil samples were collected at the Cheney Reservoir site. The analyses for calcium carbonate ranged from 4.83 to 34.90 percent by weight with an average of 16.17 percent. This equates to an acid neutralizing potential in tons of calcium carbonate equivalent per 1000 tons ranging from 60.6 to 350.4 with an average of 162.3. Limited data regarding the geochemical characteristics of the surficial layer are available, and are presented in Tables F.4.2 and F.4.3. The occurrence of water in the surficial zone is discussed in Section F.4.1.5.

Weathered Mancos Shale. At other locations, including Shiprock, New Mexico (DOE, 1984), it has been determined that the upper portions of the Mancos Shale will transmit measurable quantities of water. The hydraulic properties of the Mancos Shale would be expected to vary depending on location and stratigraphic position within the shale. At the Cheney Reservoir site, data are available regarding the capacity of the local shale to transmit water:

- o None of the 11 borings at the site encountered noticeable amounts of water in the shale at the time of drilling.
- o The two wells completed below the top of the shale (507, 509) have remained dry for over two years.
- o The three wells which have encountered ground water are completed partly in the upper shale and partly in the overburden.
- o In-situ permeability tests (Table F.4.4) indicate that near one of the dry wells (501) there is little difference between the permeability of the shale and the permeability of the overlying unconsolidated deposits. This is also true for one of the wells (508) with measurable ground water.

F-264

Parameter	Units ^a
Exchangeable sodium	22.1
Soluble sodium	19.2
Exchangeable potassium	0.28
Soluble potassium	0.04
Exchangeable calcium	91.3
Soluble calcium	5.69
Exchangeable magnesium	4.38
Soluble magnesium	1.22
CEC	20.0
Sulfate	2.21
Carbonate	9.50

Table F.4.2 Cation-exchange capacity results

^aAll except sulfate and carbonate data expressed in milliequivalents per 100 grams. Values for sulfate and carbonate expressed in weight-percent.

Ref. NUS, 1983.

Phase	Bulk sample
Analcime	1
Ankerite (Fe-dolomite)	1
Apatite	
Calcite	7
Clays(s) + chlorite	4
Cristobalite	
Gypsum	11
lematite	2
<-feldspar	10
1ica-illite	8
Plagioclase-feldspar	8
^o yroxene	4
luartz	28
Siderite	1
Amorphous	15

Table F.4.3 Mineralogy analysis of bulk and clay-size fractions of soils at the Cheney Reservoir site

Phase C1	ay-size-fraction sample ^d
Calcite	1
Chlorite (+kaolinite?)	8
Gypsum	
K-feldspar	<1
Mica-illite	13
Mixed-layer clays	
Montmorillonite	75
Plagioclase feldspar	<1
Quartz	2

^a17.8 weight percent less than 2 microns.

Ref. NUS, 1983.

Location ^a	Depth interval (ft)	Permeability (cm/sec)
501	12-22 21-31 31-40 40-50	$ \begin{array}{r} 4 \times 10^{-6} \\ 1 \times 10^{-6} \\ <1 \times 10^{-7} \\ <1 \times 10^{-7} \\ <1 \times 10^{-7} \end{array} $
502	10-14 20-31 36-46 41-51	$\begin{array}{cccc} 2 & \times & 10^{-4} \\ 3 & \times & 10^{-6} \\ <1 & \times & 10^{-7} \\ <1 & \times & 10^{-7} \end{array}$
503	8-14 14-28 30-40 40-50	$5 \times 10^{-5} \\ 1 \times 10^{-7} \\ <1 \times 10^{-7} \\ 1 \times 10^{-6} $
504	10-18 22-34 35-44 44-56	3×10^{-5} 5×10^{-6} 6×10^{-5} $<5 \times 10^{-8}$
505	8-18 18-28 23-35 38-51	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
506	10-19 21-29 29-40	$ \begin{array}{r} 6 \times 10^{-5} \\ 1 \times 10^{-4} \\ 6 \times 10^{-5} \\ 6 \times 10^{-4} \\ \text{to } 1 \times 10^{-5} \\ 1 \times 10^{-5} \\ \text{to } 5 \times 10^{-5} \\ \end{array} $
	40-51	to 1×10^{-5} 1 x 10^{-5} to 5 x 10^{-5}

^aBoring locations are shown in Figure F.4.1

Ref. NUS, 1983.

These data show that the upper weathered Mancos Shale is not transmitting significant amounts of water; however, there may be zones in the upper weathered Mancos Shale which are transmitting small amounts of water, but these zones are locally perched and laterally discontinuous.

<u>Communication with deep aquifers</u>. The Colorado Geological Survey reports that the site appears to be underlain by about 300 to 700 feet of Mancos Shale (CGS, 1982). The Mancos Shale is more than 400 feet thick beneath the site, as determined from the structural contours of Williams (1964). The Dakota Sandstone would be the uppermost potential aquifer underlying the Mancos Shale.

The Mancos Shale is generally regarded as a lowpermeability formation which retards the movement of water (Lohman, 1965; Cooley et al., 1969). Because of the low permeability and thickness of the Mancos Shale, hydraulic communication between geologic units above and below the shale is expected to be minimal.

F.4.1.4 Unsaturated zone hydraulics

The description of unsaturated zone hydraulics at an alternate disposal site can include both vertical and horizontal movement of moisture. The characterization of hydraulic properties of the Grand Junction tailings has been documented elsewhere (see Section F.3.1.4), and includes properties for the in-situ tailings as well as properties for different mixtures and different degrees of compaction (Veyera, 1980).

The flux of moisture away from the site boundaries would be controlled by the properties of the surrounding soil or rock matrix, and by the properties of the engineered cover. Field permeability tests of the matrix determined saturated permeability values ranging from 2×10^{-4} cm/sec to less than 5×10^{-5} cm/sec. These tests are summarized in Table F.4.4. The unsaturated hydraulic conductivity will be less than the saturated permeability.

F.4.1.5 Saturated zone hydraulics

Five monitoring wells were installed at the Cheney Reservoir site. Three of the wells encountered saturated conditions, and all three were completed across the interface between the Mancos Shale and the overlying unconsolidated formation. This indicates the existence of water table conditions in the lower part of the unconsolidated zone or in the upper weathered zone of the Mancos Shale. Figure F.4.6 is a waterlevel map for May, 1985. Water levels for March, 1985, were all within 0.5 foot of the May water levels. Slug test results for two wells are summarized in Table F.4.5.

F-269

Location	Hydraulic conductivity (cm/sec)
508	4.8×10^{-6}
701	2.1×10^{-5}

Test analyzed with Bouwer-Rice Method (Bouwer, 1978).

Based on Figure F.4.6, the average hydraulic gradient in this shallow system is approximately 0.025. The hydraulic conductivity in the saturated zone is known from in-situ permeability tests (Table F.4.4) and slug tests (Table F.4.5). These data were used to calculate an average linear or Darcian ground-water flux in the shallow system using Darcy's Law:

$$q = K \frac{dh}{dl}$$

where

q = flux (l/t)
K = hydraulic conductivity
dh/dl = hydraulic gradient (dimensionless).

The lowest measured hydraulic conductivity in one of the two slug tests was 5 x $10^{-2}\,$ cm/sec.

For this permeability the flux is:

q = $(5 \times 10^{-6})(0.025)(3.1536 \times 10^{7} \text{ sec/yr})$ = 3.9 cm/yr = 0.13 ft/yr

For the higher permeability of 1×10^{-5} cm/sec, which seems to be representative of the saturated zone (Table F.4.4) and is approximately the measured value of the other slug test:

 $q = (1 \times 10^{-5})(0.025)(3.1536 \times 10^{7} \text{ sec/yr})$ = 8 cm/yr = 0.26 ft/yr.

Using these flux rates, the ground-water discharge can be calculated for a cross-section of the ground-water system, using Darcy's Law. This calculation is based on the assumption of a continuous ground-water system. If the system is laterally discontinuous the flux would be less than the rate calculated below. Based on the presence or absence of saturated conditions in monitoring wells completed at different depths, the thickness of the system appears to be less than 10 feet. The discharge for a 0.5-mile-wide section of the system is:

$$Q = q \times A$$

where

Q = discharge (1³/t)
A = cross-sectional area (1²)
Q = (0.13 to 0.26 ft/yr)(10 feet x 2640 feet)
= 3432 to 6864 ft³/yr.

The average velocity of the ground water can be calculated if the effective porosity with respect to the medium is known (Bear, 1979). The specific yield is sometimes called effective porosity (Bear, 1979). Specific yield was not measured at the Cheney Reservoir site, but can be assumed based on published values for similar soil types found at the site. Using these assumed values of effective porosity (Todd, 1980), average velocity can be calculated as follows (Bear, 1979):

$$V = Q/n_{ef} A$$

where

V = average velocity (1/t) Q = flow rate (1³/t) $n_{ef} = \text{effective porosity}$ A = cross-sectional area (1²) $V = (3432 \text{ to } 6864 \text{ ft}^3/\text{yr})/(0.03 \text{ to } 0.23) \text{ x}$ (26400 ft^2) = 0.57 to 8.67 ft/yr

The uncertainty in the assumed range of effective porosity is reflected in the calculated average velocity of the ground water.

Recharge. Recharge of shallow ground water in the vicinity of the Cheney Reservoir site probably comes from several sources including seepage losses from Whiting's Ditch (Figure F.4.7), infiltration of precipitation, and seepage from ephemeral and intermittent streams. Of these sources, seepage from Whiting's Ditch probably predominates for two

reasons: it is a constant head source for part of the year, and it is directly uphill from the site area.

Infiltration of precipitation is probably a minor source of recharge. Using the flux values calculated above, an estimate of the bounding maximum value of net infiltration can be made using the hydrologic equation (Chow, 1964):

I - 0 = dS

where

dS = change in storage
I = inflow
0 = outflow

In a long-term, steady state condition, inflow must equal outflow to satisfy the continuity equation. A maximum value of infiltration results if it is assumed that all inflow is due to infiltration.

To estimate a maximum rate of infiltration, the area over which infiltration occurs must be known or assumed:

- For discharge through the 0.5-mile-wide cross section (see above), it is assumed that infiltration occurs over an area 0.5 mile wide extending one mile uphill of the cross-section.
- o Infiltration over the area is uniform.

These assumptions are reasonable because reconnaissance of the area shows it to be relatively uniform with respect to factors which would influence infiltration including slope, vegetation type and coverage, and surficial geology. The maximum infiltration rate is then:

$$I_{max} = Q/A_{i}$$

where

 $I_{max} = maximum infiltration rate (1/t)$ Q = discharge through cross-section (1³/t) $A_{i} = area of infiltration$ $I_{max} = (3.4 \times 10^{3} \text{ to } 6.8 \times 10^{3} \text{ ft}^{3}/\text{yr})/(2640 \text{ ft } \times 5280 \text{ ft})$ $= 2.4 \times 10^{-4} \text{ to } 4.9 \times 10^{-4} \text{ ft}/\text{yr}$ $= 2.9 \times 10^{-3} \text{ to } 5.9 \times 10^{-3} \text{ in/yr}.$

Although this value of recharge is very low, it is consistent with the findings of studies elsewhere in the area. For example, at the Two Road site (Section F.5) ground water is not present in the shallow unconsolidated deposits or Mancos Shale, indicating a very low rate of recharge. If a substantial fraction of the ground-water recharge is derived from seepage from Whiting's Ditch or Indian Creek, the net infiltration of precipitation would be much less than the calculated value.

A quantification of the rate of recharge from Whiting's Ditch into the shallow, perched ground water was attempted. Using a pygmy meter, streamflow was measured directly upstream of the Cheney Reservoir site and downstream of approximately one-third of the site. Measurements further downstream could not be obtained due to a structural diversion. The results of the measurements are shown on Table F.4.6. The flows were low and the stream bottom was soft which resulted in considerable variation in calculated streamflow, particularly at the downstream location. Although the results are not precise and may be inaccurate, the average of the downstream measurements is 0.019 cfs (8.5 gallons per minute) less than the average of the upstream measurements. Assuming that no evaporation occurred from the upstream to the downstream location, and that the recharge from the reach upgradient of the Cheney Reservoir site is three times the calculated recharge rate, then the recharge rate from the ditch to the shallow, perched ground water is 25.6 gallons per minute.

Discharge. Natural discharge of ground water occurs through three main components (Ward, 1975):

- o Evapotranspiration.
- o Discharge by means of spring flow and seepage into surface water bodies.
- o Leakage into adjacent aquifers.

Leakage from the shallow system into adjacent aquifers is probably negligible (Section F.4.1.3). Discharge by evapotranspiration, spring flow, or seepage into surface water bodies can be expected to occur where the ground surface intersects the water table and where an underlying relatively impermeable layer crops out. West of the site there is a topographic break where the slope increases, and the Mancos Shale crops out in some places in ephemeral drainages. Because this area seems like a favorable place for ground-water discharge to occur a reconnaissance was conducted in May, 1985.

During the reconnaissance a walking tour was made of three areas which could be potential discharge areas: incised drainages above the topographic break, the hillslope along the topographic break, and drainages below the topographic break. No signs of seepage were observed. Some small areas of salt accumulation were seen along Mancos Shale outcrops in the incised drainages; however, there are many such areas of salt accumulation within the Grand Valley (Lohman, 1965). Because there were no observed signs of seepage, no definite conclusion about the area of ground-water discharge can be made.
Location	Stream width (feet)	Stream depth (feet)	Rotations per minute	Velocity (feet/ second)	Discharge (cfs)
Upstream-station 1 Upstream-station 2 Upstream-station 3 Average upstream	2.3 2.1 2.2	0.42 0.19 0.28	9.6 42.5 16	0.18 0.72 0.29	0.089 0.144 0.089 0.107
Downstream-station 1 Downstream-station 2 Downstream-station 3 Average downstream	1.9 1.85 1.8 	0.16 0.22 0.44	30.5 11.85 19.75	0.53 0.22 0.35	0.080 0.045 0.139 0.088

Table F.4.6 Stream flow measurements on Whiting's Ditch^a

^aDate: July 25, 1986. Measurement device: pygmy meter.

Instead, several potential means of ground-water discharge can be postulated:

- o The ground-water discharge is small and discharge is in the form of diffuse seepage over a relatively large area. This type of discharge occurs in homogeneous geologic materials (Davis and DeWiest, 1966). The discharge is consumed by direct evaporation and transpiration, and there is no evidence of seepage.
- o The ground-water flux moves down the topographic break through the unconsolidated deposits on the hillslope. The unconsolidated deposits are essentially continuous with the Mancos Shale cropping out only in the incised drainages that transect the topographic break. There is no seepage at the topographic break, and the ground water moves through unconsolidated deposits to discharge at the Gunnison River several miles to the west.
- o Near the topographic break the Mancos Shale is closer to the ground surface and the weathered, more permeable, zone of the shale thickens. Ground water moves across the topographic break deep in the shale and eventually discharges at some unknown point.
- A combination of the three postulated means of discharge occurs.

Whichever of these postulated means of discharge occurs, it can be concluded that discharge either occurs at a point relatively far from the site or discharge is mostly consumed by evapotranspiration.

Yield. The shallow ground-water system appears to have a small potential yield, where potential "safe yield" is defined as the amount of water that can be withdrawn without running out of water (Lohman, 1972). On a quantitative basis, the Thiem equation with Dupuit assumptions can be used to estimate the safe yield of the system (Todd, 1980):

Q = (Pi)K
$$\frac{h_0^2 - h_w^2}{\ln(r_0/r_w)}$$

where

Q = discharge $(1^{3}/t)$ K = hydraulic conductivity(l/t) h₀ = original head (pre-pumping or no drawdown) h_w = head at well r₀ = radius to point of negligible drawdown

r_w = radius of well

For a two-inch well at the uphill side of the site, assuming negligible drawdown at the recharge source (Whiting's Ditch), an initial saturated thickness of 10 feet, and drawdown of eight feet:

> K = 1.4 to 2.8 x 10^{-2} ft/day h_o = 10 feet h_w = 2 feet r_o = 2600 feet r_w = 0.0833 feet Q = 3 to 6 gallons per day.

However, because the ground-water system is sloping and there is no recharge source on the downhill side of the well, sustained yield of ground water can come only from the uphill semicircle surrounding the well and the potential yield is halved:

Q = 1.5 to 3 gallons per day.

The estimated flow through a one-mile wide cross-section in the shallow system is 3432 to 6864 ft /year (Section F.4.1.5). A well or wells capturing all of this water (an impossibility) would yield only 70 to 141 gallons per day.

F.4.1.6 Water quality

Water-quality analyses for three monitoring wells are presented in Tables F.4.7 and F.4.8. Lists of all exceedances of EPA primary and secondary drinking water standards are presented in Tables F.4.9 and F.4.10. The water quality at the farthest upgradient well can be described as fresh, and as brackish at the other two wells. The ground water exhibits a definite increase in total dissolved solids in the downgradient direction. This increase can be attributed to contact with the marine origin Mancos Shale. Concentrations of several constituents exceeding National Primary or Secondary Drinking Water Standards include iron, manganese, pH, sulfate, total dissolved solids, and uranium (health advisory level).

Total organic carbon (TOC) exceeded 700 mg/l at the two wells installed in 1985. This probably resulted from the slow breakdown of biodegradable organic drilling fluid additives, as has been noted by other investigators (Barcelona, 1984; Ericson et al., 1985). The wells were purged after installation and were bailed dry several times prior to sampling. The persistence of high concentrations of TOC may indicate that

Table F.4.7 BROUND WATER DUALITY DATA BY LOCATION SITE: CHENEY RESERVOUR 02/24/83 TO 07/27/86

FORMATION OF COMPLETION: SHALE HYDRAULIU FLOW RELATIONSHIP: UP GRADIENT

		508-01 02/21/83 508-01 03/27/85 508-01 06/07/85 508-01 09/03/85							g	508-04 07/2//86	
PARAMETER	UNTE OF MEASURE	PARAMETER VALUE+/-UNCERTAINTY	VA	PARADETER LUE+Z-UNCERTAINTY	VA	PARAMETER EUF+Z-UNCERTAINTY	บล	PARADETER LUE+Z-UNCERTAINTY	VAI.	PARAIDELER UE+Z-UNCERTAINTY	
ALKALINITY	MG/L CACU3	280.		413.		365.		340.		784.	
ALUMENUM	HG/L		<	0.1	(0.1	(0.1		0.3	
AMPIONIUM	MG/L			0.68	(0.1	<	0.1	<	0.1	
ANTEMONY	MG/L		<	0.003	(0.003	(0.003		_	
ARSENTC	MG/L	< 0.01	<	0.01	<	0.01	<	0.04	<	0.01	
BALANCE	χ	5.85		1.		2.54		- 5 .3		-1.5	
BARIUM	MG/L	< 0.07	<	0.1	<	0.1	(0.05		_	
HORON	116/1_	-		0.11		9.11		0.94			
CADMIUM	MG/L	0.0002	<	0.002	<	0.001	(0.001		~	
CALCIUM	MG/L	164.	•	86.	•	116.	•	91.8		105.	
CHLORIDE	MG/L	33.		22.		21.2		20.6		36.	
CHROMIUM	MG/L	(0.001	<	0.91	<	0.01	1	0.01		0.02	
COBALT	MG/L	< 0.001	ì	0.01	ì	0.05	ì	0.05		-	
CONDUCTANCE	UMHO/CM	1200.	`	870.	``	1006.	`				
COPPER	MG/L	0.0015		0.03	,	0.02	<	10.44.		800.	
CYANIDE	itti)/L	0.0013	,	0.01)		(0.02		-	
		_	<		(0.01					
FLUORIDE	MG/L	-		0.5		0.5		0.47		-	
GROSS ALPHA	PUI/L	-	,	25.				-		-	
GRUSS BETA	PCI/L	=	< (50.		-		**		-	
HYD. SULFIDE			<	0.2				0.27		-	
IRON	MGZL	0.0062		0.2		0.34		0.33		0.14	
LEAD	MG/L	004/	(0.01	<	0.01				-	
MAGNESIUM	MG/L	57.8		44.		55.2		49.6		51.	
MANGANESE	1457L	0.34		0.5		044		0.42		0.,37	
MERCURY	MGZL	< 0.0002	<	0.0002	<	0.0002	(0.0002		~	
MOLYBDENUM	MG/L	0.04	<	0.01	<	0.01	(0.01		0.16	
NICKEL	MG/L	-	<	0.04	<	0.04	<	0.04	(0.04	
NITRATE	Mij/L	< 0.1	(1.	<	1_	(1.	ć	1.	
ORG. L'ARBUN	MG/L	80.9		17.2		23.		42.1		-	
40-210	PC1/L	-	(1.5	<	1.5				-	
РН	SU	7.		7.2		7.4		6.9		7.37	
PHOSPHATE	HG/L	2008	(9.1	(0.1		-		-	
PU-210	PC1/L	-	<	1.	<	1.				-	
POTASSIUM	rhi/L	5.07		3.7		9.83		2.85		365	
RA-226	PC1/L	(0.5	(1.	<	1.	(1.		-	
RA-228	PCI/L	_	è	1.	ì	1.	ì	1.			
SELENIUM	MG/L	0.002	è	0.005	ì	0.005	ì	0.005	,		
SILECA	110/E	-	`	18.9	`	172	`	38.4	(0.005	
SILVER	MG/L	< 0.01	<	0.01	<			-)01 1 			
SODIUM	116/L	71.1	`	94.	`	0.01					
STRUNFIUM	MGZL	/1. 1				79.8		14.2		Y0.4	
SULFATE	1971. 19671.	420.		1.		1.12		1 - 16			
		420.		165.		254.		285		344.	
SULFIDE CONTRACTOR	MG/L			-		Q - 7				-	
TEMPERATURE	C - DEGREE	16.	,	14-		16.		17.		15.	
TH-230	PCIZI		(1.	(1.					
IIN COLUMN	1167L		(0.005	<	0.005	(0.005			
TOTAL SOLIDS	F115/1	1000.		656.		782		790.		878.	

Table F.4.7 GROUND WATER DUALITY DATA BY LOCATION SITE: CHENEY RESERVOIR 02/21/83 TO 0//2//86 (Continued)

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

			LOCAI)	DN 1D - SAMPLE 1D AND	LOG DATE	
		508-01 02/21/83	508-01 03/27/85	508-01 06/07/85	508-01 09/03/85	508-01 07/2//86
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE+/-UNCERIAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUF+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/UNCERTAINTY
TOX	MG/L		0.1	0.17	-	-
U-234	PCI/L	-		1.8	2.	-
U-238	PCI/L	-	-	1.	1.	
URANIUM	MG/L	0.024	0.008		-	0.0241
VANAD) UM	MG/L	0.015	< 0.01	< 0.01	(0.01	0.3
ZINC	MG/L	0.02	0.1	٥.005	0.012	0.024

Table F.4.7 GROUND WATER UVALITY DATA BY LOCATION SITE: CHENEY RESERVOIR 02/24/83 TO 02/27/86 (Continued)

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

PARAMETER	UNIT OF MEASURE		PARAMETER LUE+/-UNCERTAINTY	VA	PARAMETER LUE+7-UNCERTAINTY	Ufa	PAREHETER LUE+Z-UNCERTAINTY		PARAMETER UE+Z-UNCERTAINTY	PARAMETER VALUE + / - UNCERTAIN
ALKAL INITY	MG/L CACU3		581.		403.		274.		412.	
ALUMINUM	MG/L	<	0.1	<	0.1	<	0.1		0.2	
AMPIONIUM	MG/L		0.62		0.1	<	0.1	(0.1	
ANTIMONY	MG/L		0.005	<	0.003	<	0003			
ARSENIC	MG/L	(0.01	<	0.01	<	0.01	(0.01	
BALANCE	z		17.87		0.04		-1.72		-2.79	
BARIUM	MG/L	<	0.1	<	0.1	<	0.05			
BORON	MG/L		0.27		007		0.03		-	
CADITUM	MG/L	<	0.002	<	C. 00 1	<	0.001		-	
CALCIUM	PIG/L		530.		154.		113.		118.	
CHLOR 1DF	MG/L		120.		22.1		22.2		59.	
CHROMIUM	MG/L	<	0.01	(0.01	<	0,01		0.03	
CUBALT	MG/L	`	0.04	ì	0.05	è	0.05		_	
			3100.	``	1098.	``	1112.		850.	
CONDUCTANCE	UMHO/CM	<		<	0.02		0.03			
COPPER	MG/L	ì	0.01	ì	0.07		0.00			
CYANIDE	MGZL	Ś	0.01	(_	
FI UOR IDE	MG/L		0.3		0.5		0.46			
GRUSS ALPHA	PCI/L	<	40.		-				-	
GROSS BETA	PC1/L		60.		-					
HYD. SULFIDE		(0.2		-	(0.1			
IRUN	MG/L		7.7		0.53		0.43		0.87	
LEAD	MG/L	<	0.01	<	0.01		~-			
MAGNESIUM	MG/L		131.		56.2		51.6		54.8	
MANGANESE	MG7L		6.6		1.43		0.51		0.8	
MERCURY	MG/L	(0.0002	<	0.0002		0.0002		-	
MOLYBOENUM	MG/L	(0.01	<	0.01		002		0.17	
NICKEL	MG/L	(0.04	<	0.04		0.06		0.06	
NITRATE	illi/L	(1.	<	1.	<	1.	<	1.	
ORG. CARBON	MG/L		775.		15.		18.2			
PB-210	PCI/L	<	1.5	(1.5		**		-	
PH	SU	•	6.2		7.15		7.		7.07	
PHUSPHATE	1967L	(0.1	<	9.1		_		-	
P0-210	PC1/L	è	1.	ċ	1.				-	
POTASSIUM	MG/L	•	13.1	•	4.48		2.45		4.01	
RA-226	PCI/L	<	1.	<	1.	<	1		-	
RA-228	PCI/L	ì	1.	ì	1.	ì	1.			
				ì	0.005	ì	0,005	1	0.005	
SELENIUM	MG/L	<	6.005	(``	39.4	`		
SILICA	HG/L	,	22.8	,	18.4		77 - 1			
STUVER	MG/L	<	0.01	(0.01				440	
SUDIUM	1967L		243.		77.		<u>ሉ</u> አሳ		118.	
STRONIIUM	MG/L		4.2		1.16		1.14			
SULFATE	1467L		910.		343.		134.		350"	
SULFIDE	MG/L		_		0.2		-			
			14.		16.		1/_		14.	
TH-230	PCI/L	<	1.	<	1.					
1.111	HUIL	<	0.005	(0.005	<	0.005		-	
T01AL 501105	MG/L		3746.		898.		876.		875.	

Table F.4.7

GRUDND WATER NHALLIY DATA BY LUCATEDN STIF: CHENEY RESERVOIR 02/21/83 TO 07/2//86 (Concluded)

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

			LOCATION ID - SAMPLE ID AND LOG DATE						
		701-01 03/27/85	701-01 06/07/85	701-01 09/03/85	701-01 07/27/86				
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE+/-UNCERIAINT	PARAMETER Y VALUE+Z-UNCERTAINTY	PARAMETER VALUE+7-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY				
төх	MG/L	(0.1	0.46						
11-234	PCI/L	-	5.3	1.	-				
U-238	PCI/L	-	3.5	4.	1877				
URANIUM	MG/L	0.046			0.0138				
VANADIUM	MG/L	(0.01	(0.01	< 0.01	0.3				
ZINC	MG/L	0.07	< 0.005	0.018	0.027				

MAPPER INPUT FILE: GRJ03*UDPGWQ400384

Table F.4.8 GROUND WATER GUALITY DATA BY LUCATION STLF: CHENEY RESERVOIR 03727785 10 07727786

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW RELATIONSHIP: ON-SITE

		TOCATION ID - SAMPLE ID AND LOG DATE								
PARAMETER	UNIT OF MEASURF		PARAMETER LUF+7-UNCFRTAINTY	VA	PARAMETER .UE+Z-UNCERTATNTY	VAI	PARAMETER	VAL	PARAMETER LIE+Z-UNCERTAINTY	PARAMETER VALUE+/~UNCERTAINTY
ALKALINITY	MG/L CACO3		270.		670.		399.		405.	and be- tor and all all all and an and an and an and all all all all and an and an and any and
ALUMENUM	MG/L	<	0.1	<	0.1	<	0.1		0.3	
AMMONIUM	MG/L		0.5		0.1	<	0.1	<	0.1	
ANTLMONY	M671	<	0.003	<	0.003	<	0.003			
ARSENTC	HG/L	<	0.01		0.01	<	0.01	<	0.01	
BALANCE	7.		-4.56		13.28		-2.6		0.	
BARIUM	MGZL	<	0.1	<	0.1	<	0.05		_	
BURUN	MG/L		0.09		0.23		0.05		- 494	
CADIDUM	MG/L	<	0.002	<	0.001	<	0.001		-	
CALCIUM	MG/L	•	340.	-	215.	•	109.		100.	
CHLORIDE	MGZL		250.		95.9		30.3		54.	
CHROMEUM	MG/L	<	0.01	<	0.01	<	0.01		0.01	
COBALT	MGZL	ì	0.01	ì	0.05	ì	0.05		-	
CONDUCTANCE	HMHO/CM	`	2800.	``	1357.	`	1265.		800.	
COPPER	MG/L		0.04	,	0.02		0.03		800.	
	MGZL	<	0.04	ì	0.07		0.03			
CYANTEE		`		(
FLUORODE	MGZL.	,	0.4		0.6		0.59		-	
HYD. SULFIDE		<	0.2			<	0.1			
IK(IN	MG/L		5.5		0.12		0.29		0.19	
LEAD	MG/L	<	0.01	<	0.01		-		-	
MAGNESTUM	MG/L		50.		99.		50.2		49.8	
MANGANESE	MG/L		1.7		1.53		1.11		0.92	
MERCURY	MGZL	<	0.0002	<	0.0002		0.0005		-	
MOLYBDENUM	MG/L		0.01	<	0.01	<	0.01		0.12	
NJCKEL	M671	<	0.04	<	0.04		0.04			
NEERATE	MG/L	<	1.	<	1.	<	1.	<	1.	
ORG. CARBON	MGZL		742.		29.4		10.5		-	
PB 2 10	PCT/L			<	1.5				-	
PH	SU		6 .4		6.8		6./		7.45	
PHOSPHATE	MG/L	<	0.1	<	0.1		-		_	
P(1-240	PCJ/L		-	<	1.					
PUTASSIUM	MGZL		11.		1.56		4.03		4.04	
RA226	PC1 /1		_	<	1.	<	1.		_	
RA-228	PC1/L		-	<	1.	ć	1.		-	
SELENIUM	MGZL	<	0.005	ć	0.005	i	0.005	(0.005	
SULICA	MGZL		13.3		27.2	•	43.4	•	-	
STIVEN	MGZL	<	0.01	<	0.01		_			
SODIUM	MGZL	•	250.	``	234.		76.4		156.	
STRONITUM	MG/L		2.7		2.51		1.24		100.	
SULFATE	MG/L		1200.		304.		282.		306.	
SHEFTDE	MGZL		-		0./		006.			
TEMPERATURE			12.							
1H-230	PC1/L		17.	,	1/.		18.		115 .	
		,		Ś	1.	,	-		west.	
TIN	MGZL	<	0.005	<	0.005	<	0.005		-	
TUTAL SULTDS					1584.		880.		/94.	
TOX	19671				0		ar 11			
U-734	PC EZE		-		Z = 4		4.			

Table F.4.8 GROUND WATER DUALETY DATA BY LOCATEUN STIF: CHENEY RESERVOIR 03/2//85 TD 0//2//86 (Concluded)

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW RELATIONSHIP: ON-SITE

			L(ICAT)	UN ID - SAMPLE 10 AND	LOG DATE	
		702-01 03/27/85	702-01 06/0//85	/02-01 09/03/85	702-01 0//27/86	
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE +/-UNCERTAINTY	PARAMETER VALUE+Z-UNCERTAINTY	PARAMETER VALUE+Z-UNCERTAINTY	PARAMETER VALUE+/UNCERTAINTY	
U-238 URANIUM VANADIUM ZINC	PCI/L MG/L MG/L MG/L	 - - 0.01 0.3 	1.5 - < 0.01 < 0.005	3. < 0.01 0.015	0.01:36 0.31 0.017	

MAPPER INPUT FILE: GRJ03*UDPGWQ100382

Table F.4.9 GROUND WATER QUALITY MEASUREMENTS EXCEEDING EPA DR (NKING WATER QUALITY STANDARDS SITE: CHENEY RESERVOIR 02/21/83 TD 07/27/86

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

PARAMETER	UN) (S. OF MEASURE	MAX3MUM VALUE	LOCATION ID	SAMPIF ID	LI)G DATE	PARAMETER VALUE+7-UNCERTAINTY
ARSENIC	MG/L	0.05	-	-	-	-
BAKIUM	MG/L	1.0	-	-	-	-
CADMIUM	MG/L	0.01	-		-	-
CHLORIDE	MG/L	250.0	-	-	-	-
CHROMEUM	MG/L	0.05			-	-
CUPPER	MG/L	1.0	-	-	-	-
FLUDRIDE	MG/L	1.4	-	-	-	-
GKOSS ALPHA	PCI/L	15.0	508	01	03/2//85	25.0000
			701	01	03/27/85	< 40.0000
**** SAMPLES	EXCEEDING	MAXIMUM VALL	JE = 100 %	<u> </u>		
RON	MG/L	0.3	508	01	06/0//85	. 3400
			508	01	09/03/85	.3300
			701	01	03/2//85	/./000
			701	01	06/07/85	.5300
			/01	01	09/01/85	. 4 300
			701	01	01/2//86	.8700
#### SAMPLES	EXCEEDING	HAX [HUH VAL.	JE = 66 7	****		• - • - •
LFAD	MG/L	0.05	-	-	-	-
MANGANESE	MG/L	0.05	50 8	01	68/15/50	. 3400
	•••		508	01	03/27/85	.5000
			508	01	06/01/85	.4400
			508	01	09/03/85	.4700
			508	01	0//2//86	. 3/00
			701	01	03/2//85	6.6000
			701	01	04/0//85	1.4300
			701	01	09703785	.5100
			701	01	0//2//86	. 9000
#### SAMPLES	FXCFEDING	MAX1MUM VALU	IE = 100 7	****		
MERCURY	MG/L	0.002	-	-	-	
NITRAIE	MG/L	44.0	-	-	-	-
PH	SU	6.5 10 8.5	704	01	03/2//85	6.2000
**** SAMPLES	FXCEEDING	HAX) HUM VALL	JF = 117	****		
RA226+RA228	PC[/L	5.0	508	01	06/0//85	< 5.5000
			701	01	03/2//85	
			701	01	09/03/85	
#### SAMPLES	EXCEEDING	MAXIMUM VALL				
SELENIUM	M6/L	0.01	-	-	-	-
SILVER	MG/L	0.05	-	-		-
SULFATE	MG/L	250.0	508	01	02/21/83	420.0000
		20010	508	01	06/07/85	256.0000
			508	01	09/03/85	285.0000
			508	01	0//2//85	344.0900
			300	01	V// £//00	277,0000

Table F.4.9 GROUND WATER QUALITY MEASUREMENTS EXCEEDING EPA DRINKING WATER QUALITY STANDARDS SITE: CHENEY RESERVOIR 02/21/83 TO 07/27/86 (Concluded)

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW RELATIONSHIP: UP GRADJENT

PARAMETER	UNITS OF MEASURE	MAXIMUM VALUE	LOCATION ID	SAMPLE ID		PARAMETER VALUE+/-UNCERTAINTY
SULFATE	MG/L	250.0	701	01	03/27/85	910.0000
			701	01	06/07/85	343.0000
			701	01	09/03/85	334.0000
			701	01	07/27/86	3/50+0000
**** SAMPLES	EXCEEDING	MAXIMUM VALU	F = 88	/ ****		
TOTAL SULIDS	MG/L	500.0	508	01	02/21/83	1000.0000
			508	01	03/27/85	656.0000
			508	01	06/07/85	782.0000
			508	01	09703785	790.0000
			508	01	07/27/86	858*0000
			701	01	03/27/85	3746.0000
			701	01	04/07/85	878.0000
			701	01	09/03/85	876.0000
			701	01	07/27/86	875.0000
**** SAMPLES	EXCEEDING	MAXIMUM VALU	E = 100	/ ****		
ZINC	MG/L	5.0		-		

MAPPER DATA FILE: GRJ03*UDPGWQ100381

Table F.4.10 GROUND WATER QUALITY MEASUREMENTS EXCEEDING EPA DRENKING WATER QUALITY STANDARDS SITE: CHENEY RESERVOIR 03/2//85 TD 07/27/86

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW RELATIONSHIP: DN-S(TE

PARAMETER	UNITS OF MEASURE	MAX3MUM VALUE	LOCATION ID	SAMPLE TD	LOG DATE	PARAMETER VALUE+Z-UNCERTAINTY
ARSENIC	MG/L	0.05				
BARIUM	MG/L.	1.0				-
CADMILUM	MG/L	0.01			1 441	
CHLOR THE	MGZL	250.0				
CHROMEUM	MG/L	0.05				
COPPER	MGZL	1.0		-		
FLUOR (DE	MG/L	1.4				
GROSS ALPHA	FCIM	15.0				
ERON	MG/L	0.3	702	01	03727785	5.5000
			702	01	06/07/85	.7200
**** SAMPLES	EXCEEDING	MAX (MUM_VALU	E = 50	****		
L.F.AD	MG/L	0.05			-	
MANGANESE	1167L	0.05	702	01	03/2//85	1./000
			702	01	06/07/85	1.5300
			105	01	09703785	1.1100
			702	01	07/27/86	.9200
**** SAMPLES	EXCEEDING	MAX (MUM_VALU	E = 100	****		
MERCURY	MG/L	0.002	-	-		-
-NITRATE	MGZL	44.0				-
рн	SU	6.5 TO 8.5	707	01	03/27/85	6.4000
**** SAMPLES	EXCEEDING	MAXIMUM VALU	E = 25 3	****		
RA226+KA228	PCI/L	5.0	702	01	09703785	< 6.0000
**** SAMPLES	EXCEEDING	MAX (MUM_VALU	E = 257	****		
SFLENIUM	MGZL	0.01			_	
SILVER	MG/L	0.05				
SULFATE	MG/L	250.0	702	01	03/27/85	1200.0000
			702	01	06/0//85	304.0000
			702	01	09703785	282.0000
			202	01	07/27/86	306.0000
**** SAMPLES	EXCEEDING	MAXIMUM VALU	f = 100	{ ****		
TOTAL SOL (DS	Mij/L	500.0	702	01	06/0//85	1584.0000
			702	01	09/03/85	880.0000
			702	01	07/2//86	794.0000
**** SAMPLES	EXCEEDING	MAXIMUM VALU				
ZINC	MGZL	5.0				- 16

MAPPER DATA FILE: GRJ03*UDP6W0400382

the system is relatively stagnant with low flow rates; the complete removal of drilling fluid from and around the well bore may require removing several additional bore volumes of water (and drilling fluid).

F.4.1.7 Proximity of site to surface water

The Cheney Reservoir site is approximately 0.8 mile northnorthwest of Cheney Reservoir. To the north of the site Kannah Creek and Smith Ditch (an irrigation canal) are approximately one mile from the site.

Several ephemeral drainages of varying size run generally northwest to southeast within one mile of the site. These drainages flow into Indian Creek, an ephemeral drainage approximately 0.1 to 0.5 mile west-southwest of the site. The Colorado Geological Survey (CGS, 1982) noted that an irrigation ditch of unknown nature crosses the upper part of the site which was investigated. The ditch (Whiting's Ditch) is approximately 0.25 mile northeast of the site boundary as it is now designated. The ditch flows into McDonald Reservoir, a stock-watering and irrigation reservoir approximately one mile northwest of the designated site boundary.

F.4.2 CLIMATE EFFECTS ON CONTAMINANT MIGRATION

F.4.2.1 Climate

The site is less than 15 miles from the processing site and about 600 feet higher in elevation. Except for local topographic effects, the long-term climate is probably very similar to that at the processing site (Section F.3.3.1).

F.4.2.2 Contaminant migration in the unsaturated zone

The predicted rate of net infiltration through the stabilized tailings is a key indicator of the rate of contaminant migration, because infiltration would generate leachate. Four methods of calculating infiltration rates are described in Section F.3.2.2. These same methods are used to predict infiltration rates through the stabilized tailings at the Cheney Reservoir site. The results are summarized in Tables F.4.11 through F.4.13.

F.4.3 EXISTING USAGE AND VALUE OF WATER RESOURCES

F.4.3.1 Ground water

Usage. There are no registered wells within about two miles of the site, and no shallow wells within about 3.5 miles of the site. Existing usage of ground water in the vicinity of the Cheney Reservoir site is minimal due to three factors.

Method ^a	Cover hydraulic conductivity	Duration of flow	Infiltration rate (cm/yr)
1	1×10^{-6}	Constant	3.15×10^{1}
1	1×10^{-7}	Constant	3.15 \times 10 ⁰
2	1×10^{-6}	246	8.90×10^{-1}
2	1×10^{-7}	246	8.90×10^{-2}
3			Table F.4.8
4			$7.4 \times 10^{-3}_{-2}$ to 1.5 x 10 ⁻²

Table F.4.11 Predicted infiltration rate through the cover at the Cheney Reservoir site

^aMethod 1 is constant Darcy flow under unit hydraulic gradient;

Method 2 is constant Darcy flow during rainfall events > 0.1 inch;

Method 3 is wetting front advance during rainfall events > 0.1 inch;

Method 4 is water balance (Section F.4.1.5). ^bIn cm/sec. Hydraulic conductivity of cover would be specified in engineering c^{design.} In hours per year.

					Infiltration
t, sec	k (cm/sec)	hc (cm)	Sc(%) ^a dw	Event(cm)	Annual events I (cm)
21,600 21,600 21,600 21,600 21,600 21,600 21,600	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15700 5235 1047 15700 5235 1047	7 0.55 4.3 0.89 2.1 1.80 7 0.055 4.3 0.089 2.1 0.18	3.8×10^{-2} 3.8×10^{-2} 3.8×10^{-2} 3.8×10^{-3}	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Table F.4.12 Calculated infiltration rates using equation for wetting front advance

^aFrom Table F.4.9

Capillary pressure (Bar)	Water retention, 9
0.1	
0.3	24.47
0.5	23.74
0.7	
1.0	22.38
3.0	21.02
5.0	20.19
7.0	19.55
10.0	18.24
15.0	17.59

Table F.4.13 Capillary moisture retention for Cheney Reservoir cover source

Note: Above tests performed using both ASTM D3152 and D2325 test methods.

First, the current low population density in the area results in a low demand for water in the area. Second, the limited availability of shallow ground water is shown by the fact that monitoring wells drilled on the site failed to encounter significant quantities of shallow ground water and is supported by estimates of yield (Section F.4.1.5). The Mancos Shale is not considered to be water-bearing in the Grand Junction area (Lohman, 1965). Significant quantities of deeper ground water may be available, but at greater drilling costs. Third, shallow ground water is probably too poor in quality for domestic use, except in localized areas.

A homeowner on Highway 50 approximately 1.5 miles southwest of the site reported that she and her immediate neighbors hauled their water from Grand Junction. A 150-foot test well on her property yielded water that was too saline for use. Where shallow ground water is present in this vicinity, it can be expected to be saline due to contact with the marine-origin Mancos shale; as is the case for shallow ground water in the Grand Valley (Lohman, 1965).

Another homeowner at a location approximately 0.5 mile northwest of the site reported that she and her immediate neighbors also hauled water from a location in the Kannah Creek community.

<u>Value</u>. Because there is no existing usage of shallow or deep ground water within the potentially affected hydrogeologic environment, ground water has no existing present value and only a very low future value (Section F.4.5).

F.4.3.2 Surface water

Usage. Perennial streams with headwaters in Grand Mesa, east of the site, include Kannah Creek and Indian Creek. Kannah Creek is utilized for irrigation along some of its length; however, residents along Kannah Creek obtain potable water for domestic use from a city of Grand Junction water supply line which runs along the Creek.

Indian Creek is tapped by an unlined ditch which diverts flow to McDonald Reservoir (Figure F.4.7). According to the operator of the ditch, the diversion is used for stockwatering and for irrigating pasture near McDonald Reservoir.

<u>Value</u>. The value of surface water in the vicinity of the site can be evaluated by two means. One is to determine the cost of alternative water supplies in the area. A rate schedule for water supplied by the city of Grand Junction to bulk water users in the Whitewater area is shown in Table F.4.14. Another alternative source of water is delivery from commercial suppliers based in Grand Junction, who report charges of \$16 to \$25 per 1100 gallons for delivered water in the Whitewater and Kannah Creek area. These charges can vary significantly depending on the exact location of the delivery and the total quantity of water to be delivered. These charges reflect a much higher value than would be attached with the probably poor quality water underlying the site.

Table F.4.14 Rate schedule for bulk water users near Whitewater

Quantity per month (gallons)	Charge
First 3,000	\$9.40 (minimum)
Next 7,000	\$1.40/1000 gal
Next 10,000	\$1.70/1000 gal
More than 20,000	\$2.10/1000 gal

Ref. City of Grand Junction, 1985.

F.4.4 ALTERNATE WATER SUPPLIES

Stabilization of the tailings at the Cheney Reservoir site would not affect any currently used water resources, and use of the potentially affected ground water would be unlikely (Section F.4.5). Should the potentially affected ground water be considered for use, several alternate sources of water are available.

Water supplies in the immediate vicinity of the Cheney Reservoir site could be obtained from several sources. Homeowners in the area already haul water or obtain it from a city of Grand Junction water line running along Kannah Creek. Surface water could be obtained from perennial streams such as Kannah Creek and Indian Creek if appropriate water rights were obtained. Deep ground water may be available but its potential is unknown.

F.4.5 FUTURE USAGE AND VALUE OF WATER RESOURCES

F.4.5.1 Ground water

Usage. In February, 1985, a homeowner at a location approximately 0.5 mile northwest of the site reported that she had plans to drill a well to a depth of less than 1000 feet. Attempts to utilize deep ground-water resources in the area within several miles of the site may be anticipated. The controlling factors would be the extent to which the population increases, the extent to which other water resources and their distribution systems are developed, and the success of attempts to find usable deep ground water.

Some zones of fresh or potable shallow ground water can be found near creeks and ditches in the area, where the surface water represents a source of recharge. The extent of these zones is probably limited to an area very near the recharge source. The areal extent of these potable zones is limited by the small amount of recharge and the tendency of the underlying Mancos Shale to degrade water quality. The potential sustained yield of the zones is also small (Section F.4.1.5). The potential for development of shallow ground water is minimal.

Value. The difficulty of establishing the future value of water resources is discussed in Section F.3.6.1. The value of shallow ground water in the vicinity of the site would be limited by the low potential yield (Section F.4.1.5) of the system. On a qualitative basis, it can be concluded that the resource value of shallow ground water is low.

F.4.5.2 Surface water

Usage. The nearest potentially developable sources of surface water are Indian Creek and a diversion ditch which carries water from Indian Creek. In years of higher flow in Indian Creek these both could be used to develop greater use of surface water in the vicinity of the site. The degree of development would probably be governed by land use restrictions on the Federal land, by economic factors on nearby private land, and by the availability of additional water rights.

<u>Value</u>. The difficulty of establishing the future value of water resources is discussed in Section F.3.6.1. In the vicinity of the Cheney Reservoir site water is used for various agricultural purposes. The value of water in the area would probably parallel the value of agricultural products. Alternatively, population growth in the area could increase demand for a domestic water supply. On a qualitative or relative basis, it can be concluded that the value of surface water resources in the area is moderate to high.

F.4.6 IMPACTS IN AFFECTED HYDROGEOLOGIC ENVIRONMENT

The impacts in the potentially affected hydrogeologic setting at the Cheney Reservoir site are discussed below.

F.4.6.1 <u>Human health risks</u>

There is no known existing use of shallow ground water in the potentially affected hydrogeologic environment, and future use of shallow ground water is expected to be minimal. Because the probability of human ingestion of potentially affected ground water would be minimal, the probability of human health risks would be minimal.

F.4.6.2 Damage to crops and vegetation

There is no known existing use of shallow ground water by crops and vegetation in the potentially affected hydrogeologic environment, and future use of shallow ground water is expected to be minimal. Because the probability of water use by crops and vegetation would be minimal, the probability of damage to crops and vegetation would be minimal.

F.4.6.3 Damage to wildlife

There is no known existing use of shallow ground water by wildlife, and no known location where wildlife could potentially ingest it. It can be concluded that damage to wildlife due to ingestion of ground water would be minimal.

F.4.6.4 Persistence and permanence of adverse affects

Adverse effects due to ingestion of ground water by humans, crops and vegetation, and wildlife are discussed above. It is concluded that the probability of ingestion of potentially affected ground water would be minimal. Therefore it can be concluded that adverse effects due to ingestion of ground water would be neither persistent nor permanent.

F.5 POTENTIALLY AFFECTED HYDROGEOLOGIC ENVIRONMENT-TWO ROAD SITE

F.5.1 CHARACTERIZATION OF HYDROGEOLOGIC ENVIRONMENT

F.5.1.1 Previous investigations

The Two Road area has previously been the subject of two investigations which included characterization of the hydrogeologic regime. The Colorado Geological Survey (CGS, 1982) did a reconnaissance level study of the location's potential use as a mill tailings disposal site. The Bureau of Reclamation has studied a larger area which includes the proposed tailings disposal area (URS, 1983). The latter investigation was part of the Colorado River Water Quality Improvement Program: the Two Road area is a proposed location for evaporation ponds. The latter investigation included 23 borings and the installation of 22 wells.

F.5.1.2 Recent investigations

The field program has involved exploratory drilling, soil testing, monitoring well installation, and water sampling. The program was begun with drilling in March, 1985. Previous investigations by the U.S. Bureau of Reclamation for a separate project (Section F.5.1.1) included two exploratory borings, field and laboratory testing, and the installation of two monitoring wells within the designated site boundary.

In the March, 1985, field program, 16 exploratory borings were drilled on a four-by-four grid pattern. Monitoring wells were installed in five of the borings. Soil samples were collected from the borings for stratigraphic logging and for laboratory testing. Well construction details are presented in Table F.5.1.

All field and laboratory work was performed in accordance with standard operating procedures. These standard operating procedures are on file with the U.S. DOE UMTRA Project Office in Albuquerque, New Mexico.

F.5.1.3 Stratigraphy

The stratigraphy at the site has been defined by 18 borings. Geologic cross-sections are presented in Figures F.5.1 through F.5.4. On a hydrogeologic basis the stratigraphy can be divided into three zones:

- o A surficial layer of unconsolidated deposits.
- o Mancos Shale.

							SCREENED INTERVAL		
			WELL	TOTAL	SURFACE	TOP OF			BOREHOLE
LOCATION ^a	NORTH ^D	EAST ^D	OLAME TE R	DEPTH	ELEVATION	CASING	BEG DP	LENGTH	DEPTH
ID	COORDINATE	COORDINATE	(IN.)	(FT.)	(FTMSL)	(FTMSL)	(FTFD)	(F1.)	(FTFD)
501	48501.0	19098.6	2.000	56.00	4943.00		51.00	5.0	56.00
502	48476.0	21762.7	2.000	41.00	4918.00		36.00	5.0	41.00
701	49506.5	19243.6	2.000	36.90	4959.42	4961.66	29.90	5.0	35.00
702	49609.9	19826.2			4959.14				20.00
703	49614.0	20354.3			4959.29				30.50
704	49619.1	20832.1	2.000	25.20	4954.52	4956.84	18.20	5.0	23.00
705	48786.9	20834.3			4948.67				28.00
706	48777.1	20338.9	2.000	34.80	4951.42	4935.13	27.80	5.0	33.00
707	48772.4	19800.2	•		4949.97				25.60
708	48764.2	19247.5			4954.53				30.50
709	48053.9	19253.5			4944.75				27.00
710	48041.7	19782.0	2.000	37.80	4943.13	4945.45	30.80	5.0	36.00
711	48030.5	20326.8			4943.11				27.00
712	48016.8	20791.5			4943.42				26.00
713	47298.7	20763.0	2.000	33.00	4933.59	4936.02	26.00	5.0	31.00
714	47303.8	20318.3			4936.71			-	39.00
715	47308.8	19753.7	2.000	29.40	4933.35	4935.67	22.40	5.0	27.40
716	47314.7	19255.0			4937,30			•••	18.00

TABLE F.5.1 TWO ROAD SITE BOREHOLE AND WELL INFORMATION.

^a 501 and 502 are U.S. Bureau of Reclamation borings and monitor wells C-1 and C-2 in URS(1983).

^b Site coordinate system is based on a truncation of modified Colorado coordinate system.

.

o The Dakota Sandstone and other formations underlying the Mancos Shale.

<u>Surficial layer</u>. The site is on a pediment surface formed by erosion of the Mancos Shale. The dominant surficial materials present in the site area are residual soils formed by weathering of the Mancos, pediment gravels, and eolian deposits. Ground water was not encountered in the surficial deposits. Intermittent ground water has been reported in one well adjacent to a stock pond (U.S. Bureau of Reclamation, 1978).

<u>Communication with deep aquifers</u>. The Colorado Geological Survey reports that the site is underlain by approximately 500 to 1100 feet of Mancos Shale (CGS, 1982). The log of an oil well drilled less than 0.5 mile from the designated site boundary reported the top of the Dakota Sandstone at 748 feet below land surface. The Dakota Sandstone would be the uppermost potential aquifer underlying the Mancos Shale. Mancos Shale is generally acknowledged to be a low-permeability formation on a regional basis, as reported by various authors (Lohman, 1965; Cooley et al., 1969). Because of the low permeability and thickness of the Mancos Shale, hydraulic communication between geologic units above and below the shale is expected to be minimal.

F.5.1.4 Unsaturated zone hydraulics

The description of unsaturated zone hydraulics at an alternate disposal site can include both vertical and horizontal movement of moisture. The vertical movement of moisture is controlled to a large extent by the properties of the mill tailings and the engineered cover. The characterization of hydraulic properties of the Grand Junction tailings has been documented elsewhere, and includes properties for the in-situ tailings as well as properties of different mixtures and different degrees of compaction (Veyera, 1980).

The horizontal flux of moisture away from the site boundaries is partially controlled by the properties of the surrounding soil or rock matrix. Field permeability tests of the matrix have been reported for two boreholes within the site boundaries _(URS, 1983), ranging from 1.29 x 10 $^{\circ}$ cm/sec to 1.4 x 10 $^{\circ}$ cm/sec. These tests are summarized in Table F.5.2. The unsaturated hydraulic conductivity will be less than the saturated permeability.

F.5.1.5 Saturated zone hydraulics

All of the monitoring wells installed during March, 1985, were dry in April or May, 1985. Two Bureau of Reclamation wells which are within the proposed site were dry in May, 1985. These wells had been installed more than two years

Location ^a	Depth interval (ft)	Type of test	Permeability (cm/sec)
501 ^b	0-1 4-7.5 8.5-12.7 16-20 31.4-40.9 40.5-50.1 51-56	bucket shallow well shallow well shallow well packer packer packer	$1.4 \times 10^{-3} \\ 4.2 \times 10^{-4} \\ 1.4 \times 10^{-3} \\ 7.8 \times 10^{-4} \\ 1.6 \times 10^{-4} \\ 1.3 \times 10^{-4} \\ 2.1 \times 10^{-4} \\ $
502 ^C	11-21 21-31 31-41	packer packer packer	2.1×10^{-4} 1.8×10^{-4} 1.5×10^{-4}

Table F.5.2 In-situ permeability tests at Two Road

^aBoring locations are shown in Figure F.5.1. ^bURS boring C-1. ^cURS boring C-2.

Ref. URS, 1983.

before. It may be concluded that there is no existing shallow zone of saturation. In-situ permeability tests are described in Section F.5.1.4. If significant quantities of water were to move as saturated flow at the Two Road site, the results of the permeability tests are probably indicative of the hydraulic properties of potential zones of saturation.

F.5.1.6 Water quality

Because of the absence of a saturated shallow groundwater system in the vicinity of the site (Section F.5.1.5), there are no data regarding shallow ground-water quality. There may be ground water in the ephemeral washes on either side of the site. The quality of alluvial ground water is described by comments made about an old well located on a wash, about four miles southwest of the site (State of Utah, 1938).

"This water is used as a supplemental supply of water for stock... during the winter season only; it is not fit for domestic use at any season of the year, and in the summer the mineral content is too high."

F.5.1.7 Proximity of site to surface water

The Two Road site is located in an area of ephemeral drainages. Two ephemeral drainages bound either side of the pediment surface on which the site lies, and are within 0.1 mile of the proposed site boundary. Both of these unnamed washes are tributary to Bitter Creek, an ephemeral wash to the southwest of the site. The hydrologic setting of the site is presented in Figure F.5.5.

F.5.2 CLIMATIC EFFECTS ON CONTAMINANT MIGRATION

F.5.2.1 Climate

Some short-term site-specific climatic data are available from the U.S. Bureau of Reclamation's study of the Two Road site. The site is less than 20 miles from the processing site and is about 100 feet higher in elevation. Except for local topographic effects, the long-term climate is probably very similar to that at the processing site (Section F.3.3.1).

F.5.2.2 Contaminant migration in the unsaturated zone

Ground water was not encountered in wells at the Two Road site. This indicates that infiltration rates are too low to maintain a shallow zone of saturation, and are consistent with the results of water balance calculations of recharge for the Cheney Reservoir site (Section F.4.2.2). Other qualitative indications of low recharge rates in the area are available.

An investigation of ambient soil moisture content in the Grand Junction area found relatively low values (Rogers et al., 1981). The study was done specifically to investigate expected long-term moisture contents in materials likely to be used for covers on stabilized mill tailings. Soil samples from the site were collected during a U.S. Bureau of Reclamation study (URS, 1983). These samples showed very low moisture contents, in the range of two to six percent.

The transition from saturation to partial saturation (i.e. decreasing soil moisture content) entails a steep drop in hydraulic conductivity (Hillel, 1971). Using Darcy's law modified for unsaturated flow (Hillel, 1971), it can be shown that under a unit hydraulic gradient the flux rate is exactly equal to the unsaturated hydraulic conductivity. Thus a low ambient soil moisture content is indicative of a low flux rate and a low rate of recharge.

The site conceptual design for stabilization of the tailings involves placement of the tailings at low moisture contents. Further drainage beyond that which has already occurred at the processing site would be relatively small.

The construction of a compacted low-permeability cover would minimize infiltration. If infiltration rates were approximately equal to those in the existing uncompacted soils, it would be expected that relatively little migration of contamination would occur.

Impact assessment. The distance from the proposed location of the stabilized tailings to surrounding drainages is relatively short, less than 0.1 mile. These drainages are topographic lows and represent potential outlets for contaminants. Although the development of the conceptual model for potential contaminant migration did not include site-specific analytical or numerical calculations, a qualitative assessment of potential impacts can be made:

- Existing and expected usages and values of water resources in the area are low (Sections F.5.3 and F.5.5).
- o Because there is no existing ground-water system at the site, potential seepage could build up in the upper Mancos Shale and overburden before flowing away from the site. Contaminant migration away from the site would be delayed while moisture deficits are replenished.
- o Existing water quality in the adjacent drainages is brackish. If seepage were to reach the alluvium the affected water would already be of poor quality.

 Vegetated slopes are found on each side of the site.
 If low rates of seepage reached these areas, the water would potentially be consumed by evaporation or transpiration.

F.5.3 EXISTING USAGE AND VALUE OF WATER RESOURCES

F.5.3.1 Ground water

Usage. Review of records of the Colorado Division of Water Resources shows that there is no existing usage of shallow or deeper ground water in the vicinity of the site. There are no registered wells in the township surrounding the site. There are monitoring wells adjacent to the site which were installed by the U.S. Bureau of Reclamation's Colorado River Water Quality Control Program.

Review of records of the State of Colorado has shown that there are no existing water rights in the township immediately to the west of the site (T17S, R26E). There are two wells in T18S, R26E which is to the southwest of the site (Figure F.5.5). One is a hand-dug well 11 feet deep in Section 16, approximately four miles from the site. The other is the U.S. Bureau of Reclamation's Bitter Creek Well in Section 30, approximately six miles from the site.

Value. Because there is no existing usage of ground water in the vicinity of the site, it has no existing present value and only potential future value (Section F.5.5.1).

F.5.3.2 Surface water

Usage. Surface water in the vicinity of the site is used for stock watering and for casual use by wildlife.

Value. The estimated value of stock-watering supplies can vary extensively. In years in which livestock production produces minimal profits or even losses for the producer, the value of such supplies is relatively very small. An upper bound on the value of such supplies is probably the cost of providing alternative water supplies. In the area of the proposed site this is less than \$20 per thousand gallons for hauled water. Water of lesser quality than fresh hauled water would have a lesser value.

F.5.4 ALTERNATIVE WATER SUPPLIES

There is no existing shallow ground water below the Two Road site, and it is not expected that water resources near the site would be affected by stabilization of the tailings at the site. In the event that water resources were affected, it would be possible for future water users to obtain water supplies from other sources; including deep wells into artesian aquifers or by hauling water.

F.5.5 FUTURE USAGE AND VALUE OF WATER RESOURCES

F.5.5.1 Ground water

Usage. In the immediate vicinity of the site, test borings have shown that there is no continuous shallow groundwater system. Because of the limited amount and poor quality of shallow ground water, the potential use is minimal.

<u>Value</u>. Shallow ground water is not present in sufficient quantity to have any but a minimal future value.

F.5.5.2 Surface water

Usage. Because of the low precipitation and high evapotranspiration in the area, the potential surface-water development in the area is probably small. Usage in the area would probably continue to be limited to stock watering and casual use by wildlife.

<u>Value</u>. The difficulty of establishing the future value of water resources is discussed in Section F.3.6.1. In the vicinity of the Two Road site the value of water would probably parallel the value of livestock products. On a qualitative or relative basis, it can be concluded that the value of water resources in the vicinity of the site would remain low.

F.5.6 IMPACTS IN AFFECTED HYDROGEOLOGIC ENVIRONMENT

There is no existing shallow ground water at the Two Road site. Potential impacts on humans, crops and vegetation, and wildlife are discussed only in order to meet EPA standards.

F.5.6.1 Human health risks

There is no existing use of shallow ground water at the site and future use is expected to be minimal. It can be concluded that human health risks due to ingestion of shallow ground water would be minimal.

F.5.6.2 Damage to crops and vegetation

There is no existing shallow ground water at the site. It can be concluded that damage to crops and vegetation due to uptake of shallow ground water would be minimal.

F.5.6.3 Damage to wildlife

There is no existing shallow ground water at the site, and therefore no potential way for wildlife to uptake ground water. It can be concluded that damage to wildlife due to uptake of potentially affected ground water would be minimal.

F.5.6.4 Persistence and permanence of adverse effects

Adverse effects due to ingestion of ground water by humans, crops and vegetation, and wildlife are discussed above. Because of the absence of shallow ground water, it is concluded that persistent or permanent adverse effects associated with the ingestion of ground water would be minimal.

F.6 CONCLUSIONS - GROUND WATER

The ground-water systems of the Grand Junction tailings and potential alternate disposal sites have been studied taking into account factors indicated by EPA standards. On September 3, 1985, the United States Tenth Circuit Court of Appeals set aside EPA's water protection standards, 40 CFR Part 192.20(a)(2)-(3), and EPA has not yet reissued these standards. When EPA issues revisions to the water protection standards, DOE will re-evaluate the ground-water issues at the site to assure that the revised standards are met. Performing remedial actions to stabilize the tailings prior to EPA issuing new standards will not affect the measures that are ultimately required to meet the revised water protection EPA standards. Based on these studies and factors, significant conclusions have been reached with respect to the effects or potential effects of the tailings on the hydrogeologic regime:

Grand Junction existing environment

- o Ground water near the processing site is strongly influenced by the adjacent Colorado River.
- o Vertical hydraulic gradients are very close to zero. Measured gradients have indicated both upward and downward flow. There is some uncertainty about the vertical gradient due to the hydraulic characteristics of the Mancos Shale (low permeability, slow recovery after development, and sampling).
- o Background water quality in the alluvium very near the Colorado River can vary seasonally from fresh to brackish. Away from the river it varies from brackish to salty.
- o Water quality in the Mancos Shale and Dakota Sandstone also ranges from brackish to salty. The Dakota Sandstone, the uppermost potential bedrock aquifer, has low potential use near the site.
- The Grand Junction tailings are set within a complicated hydrogeologic area. Factors such as the presence of contaminant sources other than mill tailings complicate the characterization of the site.
- o The tailings contribute contamination in the form of ammonium and uranium to the alluvial ground water.
- o There is evidence of contamination in the Mancos Shale including a plume of arsenic and sporadically distributed, elevated concentrations of aluminum, ammonium, selenium, vanadium, and zinc. There is no evidence of radionuclide migration into the bedrock.
- o Radionuclides other than uranium and radium are not contaminating the ground water. Radium-226 does not appear to be migrating away from the ground water directly below the tailings. Polonium-210 and thorium-230 were not detected in any wells. Lead-210 was detected at approximately equal levels in one background well and one well completed below the tailings.

- o There is no evidence of contamination in the Dakota Sandstone, the uppermost potential bedrock aquifer.
- o Although the tailings have caused changes in the quality of alluvial ground water, there are no known existing effects on humans due to the absence of existing use.
- o The tailings have not caused a measurable degradation in the quality of the Colorado River water; however, some degradation can be calculated. For increases in salinity only, the estimated annual loss of \$23,760 due to the tailings is relatively small when compared to the estimated annual loss of \$23 million caused by irrigation within the Grand Valley.

Aquifer restoration

o Aquifer restoration has been evaluated for the affected ground water and rejected based on relevant considerations in EPA requirements (40 CFR Part 192). Limited measures may be needed to ensure that there is no use of water from a possibly contaminated industrial drainage well.

Stabilization on the site

- A mixing cell model predicts the persistence of elevated concentrations of uranium in ground water. The magnitude of concentrations depends on input values for ground-water flux and ambient (background) uranium concentration; but may be 13 to 243 pCi/l ten years after remedial action, 8.8 to 253 pCi/l at 25 years after remedial action, and stabilized at 8.8 to 235 pCi/l at 50 years after remedial action. Predicted long-term concentrations are lower for a low-permeability cover than for a higher-permeability cover over the tailings.
- o Based on conditions in the existing environment, non-radioactive contaminants are expected to be flushed from the ground water relatively rapidly.

Relocation of the tailings

- Relocation of the tailings to an alternate site would leave residual contamination in the ground water. Based on a mixing cell model, uranium may persist at levels exceeding background concentrations for up to 100 years. Contaminants other than uranium would be flushed relatively rapidly.
- o Sporadic contamination would persist in the Mancos Shale at the Grand Junction site. The same hydrogeologic conditions which cause this persistence make the use of this ground water unlikely.
- o Use of the affected ground water in the near future is unlikely.

Cheney Reservoir site

o There is a shallow ground-water system perched on the Mancos Shale. This system is probably less than 10 feet in thickness.
- o The shallow ground water moves through low-permeability deposits, at an average velocity of approximately 0.57 to 8.67 feet per year.
- o The quality of the water ranges from fresh to brackish. The representativeness of some water-quality analyses is questioned because the residual presence of biodegradable drilling fluid is suspected. The residual presence of drilling fluid after repeated purges of the wells would indicate a very low permeability system.
- o Infiltration rates calculated using a water balance are very low, less than 1.5×10^{-2} centimeters per year. Other calculated infiltration rates indicate that a low permeability cover over the tailings would permit little net infiltration of moisture.
- o The potential yield of the ground-water system is low, 1.5 to 3.0 gallons per day. Expected use of this ground water would be minimal.

Two Road site

- o Ground water was not encountered at the site. Current and potential use of ground water would be minimal because there is none.
- o Seepage from stabilized tailings would be low due to low infiltration and drainage. There is no on-site ground water which would be impacted.

F-312

- Barcelona, M.J., 1984, "TOC Determinations in Ground Water," <u>Ground Water</u>, Vol. 22, No. 1, Water Well Journal Publishing Company, Worthington, Ohio.
- Bear, J., 1979. <u>Hydraulics of Ground Water</u>, McGraw-Hill Book Company, New York, New York.
- Beedlow, P.A., 1984. "Designing Vegetation Covers for Long-Term Stabilization of Uranium Mill Tailings," prepared by Pacific Northwest Laboratory, Richland, Washington, for the U.S. Nuclear Regulatory Commission, Washington, D.C.
- Bouwer, H., 1978. <u>Groundwater Hydrology</u>, McGraw-Hill Book Company, New York, New York.
- Brinkman et al. (J.E. Brinkman, J.R. Hoopes, and P.W. Zelle), 1985. "Hydrologic Site Characterization - The UMTRA Project Approach," <u>Proceedings of the</u> <u>Seventh Annual Symposium on the Management of Uranium Mill Tailings, Low-</u> <u>Level Waste, and Hazardous Waste</u>, Geotechnical Engineering Program, <u>Colorado State University</u>, Fort Collins, Colorado.
- Buelt, J.L., and S.M. Barnes, 1981. "A Comparative Evaluation of Liner Materials for Inactive Uranium Mill Tailings Piles," <u>Proceedings of the</u> <u>Fourth Annual Symposium on Uranium Mill Tailings Management</u>, Geotechnical Engineering Program, Colorado State University, Fort Collins, Colorado.
- Bush et al. (K.J. Bush, G. Markos, and S. Sengupta), 1980. "Investigation of Potential Contamination from the Grand Junction Tailings into the Colorado River," <u>Proceedings of the Third Annual Symposium on Uranium Mill Tailings Management</u>, Geotechnical Engineering Program, Civil Engineering Department, Colorado State University, Fort Collins, Colorado.
- Bush, K.J., and G. Markos, 1982. "Statistical Evaluation of Contamination from Uranium Mill Tailings by Physical Transport and Chemical Migration," <u>Pro-</u> ceedings of the Fifth Annual Symposium on Uranium Mill Tailings Management, Geotechnical Engineering Program, Civil Engineering Department, Colorado State University, Fort Collins, Colorado.
- CDH (Colorado Department of Health, Water Quality Control Commission), 1983. "Classifications and Numeric Standards for Lower Colorado River Basin," Denver, Colorado.
- CDH (Colorado Department of Health, Water Quality Control Commission), 1981. "Colorado Primary Drinking Water Regulations," Denver, Colorado.
- CGS (Colorado Geological Survey), 1982. "Preliminary Report on Potential Sites Suitable for Relocation and/or Reprocessing of the Grand Junction and Rifle Uranium Mill Tailings Piles," prepared by Four Corners Research Institute for the Department of Natural Resources, Denver, Colorado.

- City of Grand Junction. 1985, City Utility Billing Office (unidentified receptionist), personal communication to John B. Price, Sergent, Hauskins, and Beckwith, Technical Assistance Contractor to the DOE UMTRA Project, Albuquerque, New Mexico, dated February 6, 1985.
- COE (U.S. Army Corps of Engineers), 1982. <u>HEC-2 Water Surface Profiles, User's</u> <u>Manual</u>, Corps of Engineers, Hydrologic Engineering Center Computer Program 723-X6-L202A, Davis, California.
- COE (U.S. Army Corps of Engineers), 1981. <u>HEC-1 Flood Hydrograph Package,</u> <u>User's Manual</u>, Corps of Engineers, Hydrologic Engineering Center Computer Program 723-X6-L2010, Davis, California.
- COE (U.S. Army Corps of Engineers), 1976. <u>Flood Hazard Information Colorado</u> <u>River and Tributaries - Grand Junction, Colorado</u>, Corps of Engineers, Sacramento, California.
- Chow, V.T., 1964. "Hydrology and Its Development," in <u>Handbook of Applied</u> <u>Hydrology</u>, V.T. Chow, editor, McGraw-Hill Book Company, New York, New York.
- Cole, R.D., and J.L. Sexton, 1981. "Pleistocene Surficial Deposits of the Grand Mesa Area, Colorado," in R.C. Epis and J.F. Callender, editors, <u>Western</u> <u>Slope Colorado</u>, New Mexico Geological Society Guidebook, 32nd Field Conference.
- Colorado Climatological Office, 1982. "Climatic Listings and Summaries for 9 Stations, 1951-1981," Colorado State University, Fort Collins, Colorado.
- Colorado Department of Highways, 1964. "Unpublished Foundation Boring Logs," Colorado Department of Highways, Grand Junction, Colorado, PDC Center file 5.19.2.3, available from Project Document Control Center, U.S. Department of Energy, UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- Colorado Division of Water Resources, no date. Unpublished logs of wells, Colorado Division of Water Resources, Denver, Colorado, PDC Center file 5.19.2.5, available from Project Document Control Center, U.S. Department of Energy, UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- Cooley et al. (M.E. Cooley, J.W. Harshbarger, J.P. Akers, and W.F. Hardt), 1969. "Regional Hydrogeology of the Navajo and Hopi Indian Reservations, Arizona, New Mexico, and Utah," U.S. Geological Survey Professional Paper 521-A.
- Cooper et al. (H.H. Cooper, Jr., J.D. Bredehoeft, and I.S. Papadopulos), 1967. "Response of a Finite-Diameter Well to an Instantaneous Charge of Water," Water Resources Research, Vol. 3, No. 1, pp. 263-269.
- Crippen, J.R., and C.D. Bue, 1977. <u>Maximum Floodflows in the Conterminous</u> <u>United States</u>, U.S. Geological Survey Water - Supply Paper 1887, U.S. Department of the Interior, Washington, D.C.

- DOE (U.S. Department of Energy), 1985. <u>Remedial Action Plan and Site Conceptual</u> <u>Design for Stabilization of the Inactive Uranium Mill Tailings Site at</u> <u>Shiprock, New Mexico, Revised Final</u>, U.S. Department of Energy, UMTRA <u>Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.</u>
- DOE (U.S. Department of Energy), 1984. <u>Environmental Assessment of Remedial</u> Action at the Shiprock Uranium Mill Tailings Site, Shiprock, New Mexico, U.S. Department of Energy, UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- DOE (U.S. Department of Energy), 1983. Unpublished report prepared by NUS Corporation, Aurora, Colorado, under contract to Sandia National Laboratories (Contract No. 68-3473), for the U.S. Department of Energy, UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- DOI (U.S. Department of the Interior), 1973. <u>Design of Small Dams, Flood</u> <u>Studies, Chapter III</u>, 2nd edition, Bureau of Reclamation, U.S. Department of the Interior, Washington, D.C.
- Dames and Moore, 1984. "Unpublished Field Investigation Book, Shiprock Site," PDC No. 4.19.3.2, Vol. 2. Prepared by Dames and Moore, Phoenix, Arizona, for the U.S. Department of Energy, UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- Davis, S.N., and R.J.M. DeWiest, 1966. <u>Hydrogeology</u>, John Wiley and Sons, Inc., New York, New York.
- Doty, B.P., and R.E. Versaw, 1984. "Groundwater Conditions at the Grand Junction Uranium Mill Tailings Pile," <u>Proceedings of the Sixth Annual</u> <u>Symposium on Uranium Mill Tailings Management</u>, Geotechnical Engineering Program, Colorado State University, Fort Collins, Colorado.
- EPA (U.S. Environmental Protection Agency), 1973. "Radium-226, Uranium, and Other Radiological Data from Water Quality Surveillance Stations Located in the Colorado River Basin of Colorado, Utah, New Mexico, and Arizona--January, 1961 through June, 1972," Technical Investigations Branch and Surveillance Branch, Surveillance and Analysis Division, U.S. Environmental Protection Agency, Region VIII, Denver, Colorado.
- EPA (U.S. Environmental Protection Agency), 1972. "Water Pollution Aspects of Street Surface Contaminants," EPA-R2-72-081, Office of Research and Monitoring, U.S. Environmental Protection Agency, Washington, D.C.
- Ericson et al. (W.E. Ericson, J.E. Brinkman, and P.S. Darr), 1985. "Types and Usages of Drilling Fluids Utilized to Install Monitoring Wells Associated with Metals and Radionuclide Ground Water Studies," <u>Ground Water Monitor-</u> ing Review, Vol. 5, No. 1.
- FBDU (Ford, Bacon & Davis Utah, Inc.), 1981. "Engineering Assessment of Inactive Uranium Mill Tailings, Grand Junction Site, Grand Junction, Colorado," prepared by FBDU, Salt Lake City, Utah, for the U.S. Department of Energy, UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.

- FBDU (Ford, Bacon & Davis Utah, Inc.), no date. "Geologic and Hydrologic Conditions at the Uranium Mill Site at Grand Junction, Colorado," prepared by FBDU, Salt Lake City, Utah, as a backup document to their Phase II-Title I Report ERDA, available from the U.S. Department of Energy, UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- FBDU (Ford, Bacon & Davis Utah, Inc.), 1977. "Geologic and Hydrologic Conditions at the Uranium Mill Sites at Rifle, Colorado," prepared by FBDU, Salt Lake City, Utah.
- FEMA (Federal Emergency Management Agency), 1982. Flood Insurance Study, City of Grand Junction, Colorado, Mesa County, Community Number 080117.
- Ferris, J.G., and D.B. Knowles, 1963, "The Slug-Injection Test for Estimating the Coefficient of Transmissibility of an Aquifer," in <u>Methods of Deter-</u> <u>mining Permeability, Transmissibility and Drawdown</u>, U.S. Geological Survey Water-Supply Paper 1536-I, R. Bentall, editor.
- Freeze, R.A. and J. Cherry, 1979. <u>Groundwater</u> Prentice Hall, Inc. Englewood Cliffs, New Jersey.
- Golder Associates, 1982. "Work Plan for Geotechnical Tasks," PDC Center Remote Storage Location 0076, available from Project Document Control Center, U.S. Department of Energy, UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- Gupta et al. (S.K. Gupta, K.K. Tanji, D.R. Nielsen, J.W. Biggar, C.S. Simmons, and J.L. MacIntyre), 1978. "Field Simulation of Soil-Water Movement with Crop Water Extraction," Water Science and Engineering Paper No. 4013, Department of Land, Air, and Water Resources, University of California, Davis, California.
- Hartley, J. N., and G. W. Gee, 1981. "Uranium Mill Tailings Remedial Action (UMTRA) Joint Field Test," <u>Proceedings of the Fourth Annual Symposium on</u> <u>Uranium Mill Tailings Management</u>, Geotechnical Engineering Program, <u>Colorado State University</u>, Fort Collins, Colorado.
- Hem, J.D., 1970. "Study and Interpretation of the Chemical Characteristics of Natural Water, Second Edition", U.S. Geological Survey Water-Supply Paper 1473.
- Hillel, D., 1971. Soil and Water: Physical Principles and Processes, Academic Press, New York, New York.
- Javandel et al. (I. Javandel, C. Doughty, and C. Tsang) 1984. <u>Groundwater</u> <u>Transport: Handbook of Mathematical Models</u>. American Geophysical Union, Washington, D.C.
- Junge, W.R., and L.E. Dezman, 1983. <u>An Analysis of Control Standards for the Long-Term Containment of Uranium Tailings</u>, prepared by the Colorado Geological Survey and the Colorado Division of Water Resources, Denver, Colorado.
- Kirkham et al. (R.R. Kirkham, P.A. Beedlow, and G.W. Gee), 1982. "Effect of Rock Cover on Multilayer Radon Barrier Effectiveness," <u>Proceedings of the</u> <u>Fifth Annual Symposium on Uranium Mill Tailings Management</u>, Geotechnical Engineering Program, Colorado State University, Fort Collins, Colorado.

- _ohman, S.W., 1972. "Ground-Water Hydraulics," U.S. Geological Survey Professional Paper 708, U.S. Government Printing Office, Washington, D.C.
- Lohman, S.W., 1965. "Geology and Artesian Water Supply, Grand Junction Area, Colorado," U.S. Geological Survey Professional Paper 451, U.S. Government Printing Office, Washington, D.C.
- Lohman, S.W., and others, 1972. "Definitions of Selected Ground-Water Terms -Revisions and Conceptual Refinements," U.S. Geological Survey Water-Supply Paper 1988, U.S. Government Printing Office, Washington, D.C.
- Markos, G., and K.J. Bush, 1983a. "Geochemical Investigation of UMTRAP Designated Site at Grand Junction, Colorado," prepared by Geochemistry and Environmental Chemistry Research, Inc., Rapid City, South Dakota, for the U.S. Department of Energy, UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- Markos, G., and K.J. Bush, 1983b. "Data for the Geochemical Investigation of UMTRAP Designated Site at Grand Junction, Colorado," Geochemistry and Environmental Chemistry Research, Inc., Rapid City, South Dakota, prepared for the U.S. Department of Energy, UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- Mayer et al. (D.W. Mayer, P.A. Beedlow, and L.L. Cadwell), 1981. "Moisture Content Analysis of Covered Uranium Mill Tailings," prepared by Pacific Northwest Laboratory, Richland, Washington, for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830, UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- Martin et al. (J.P. Martin, G.E. Veyera, D.M. Nasiatka, and L.F. Osorno), 1980. "Characterization of the Inactive Tailings Sites," <u>Proceedings of the</u> <u>Third Annual Symposium on Uranium Mill Tailings Management</u>, Geotechnical Engineering Program, Colorado State University, Fort Collins, Colorado.
- McCain, J.F., and R.D. Jarrett, 1976. <u>Manual for Estimating Flood Characteri-</u> <u>stics of Natural-Flow Streams in Colorado</u>, Technical Manual No. 1 of the Colorado Water Conservation Board, Colorado Department of Natural Resources in cooperation with the U.S. Geologic Survey, Denver, Colorado.
- Merritt, R.C., 1971. "The Extractive Metallurgy of Uranium," Colorado School of Mines Research Institute, Golden, Colorado.
- NOAA (National Oceanic and Atmospheric Administration), 1981-1985, "Local Climatological Data," Monthly Summary for Walker Field Station, Grand Junction, Colorado, available from National Climatic Center, Asheville, North Carolina.
- NOAA (National Oceanic and Atmospheric Administration), 1977-1980. "Climatological Data, Colorado," Volumes 82-85, National Climatic Center, Asheville, North Carolina.
- Nelson, J.D., and R.E. Wardwell, 1982. "Characterization of Inactive Uranium Mill Tailings Sites: Grand Junction, Colorado," prepared by Geotechnical Engineering Program, Colorado State University, for the U.S. Department of Energy, UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.

- Pemberton, E.L., and J.M. Lara, 1984. <u>Computing Degradation and Local Scour</u>, Technical Guideline for Bureau of Reclamation, Engineering and Research Center, Denver, Colorado.
- Rogers et al. (V.C. Rogers, K.K. Nielson, and D.C. Rich), 1981. "Ambient Soil Moistures in Western Uranium Milling Regions," draft report prepared for Pacific Northwest Laboratory, Richland, Washington.
- Schumm, S.A., and M.D. Harvey, 1983. <u>Geomorphic Evaluation of the Grand</u> <u>Junction and Rifle Uranium Mill Tailings Piles</u>, prepared by Waste Engineering and Technology, Inc., Fort Collins, Colorado.
- Scott, R.C., and F.B. Barker, 1962. "Data on Uranium and Radium in Ground Water in the United States 1954 to 1957", U.S. Geological Survey Professional Paper 426, United States Government Printing Office, Washington, D.C.
- Seevers, Melvin, 1985. Grand Valley By-Products, Grand Junction, Colorado, personal communication to John B. Price, Sergent, Hauskins and Beckwith, Technical Assistance Contractor to the U.S. Department of Energy, UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico, dated June 19, 1985.
- Simmons, C. S., and G. W. Gee, 1981. "Simulation of Water Flow and Retention in Earthen Cover Materials Overlying Uranium Mill Tailings", UMT/0203 PNL-3877, UC-70, Pacific Northwest Laboratory, Richland, Washington.
- Sittig, M., 1981. <u>Handbook of Toxic and Hazardous Chemicals</u>, Noyes Publications, Park Ridge, New Jersey.
- Skibitzke, H.E., 1963, "Determination of the Coefficient of Transmissibility from Measurements of Residual Drawdown in a Bailed Well," in <u>Methods of</u> <u>Determining Permeability</u>, <u>Transmissibility</u> and <u>Drawdown</u>, R. Bentall, editor, U.S. Geological Survey Water-Supply Paper 1536-I.
- Stallman, R.W., 1967. "Flow in the Zone of Aeration," in <u>Advances in Hydro</u>science, Vol. 4, V.T. Chow, editor.
- Stephens, D.B. and S.P. Neuman, 1982. "Vadose Zone Permeability Tests: Summary," Journal of the Hydraulics Division, Proceedings of the American Society of Civil Engineers, Vol. 108, No. HY5.
- State of Utah, 1938, "Underground Water Claim No. 16418." PDC Center file 5.19.2.5, available from Project Document Control Center, U.S. Department of Energy, UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- Todd, D.K., 1980. <u>Groundwater Hydrology</u>, second edition, John Wiley and Sons, New York, New York.
- URS (URS Corporation), 1983. <u>Salinity Investigation of Glenwood-Dotsero</u> <u>Springs Unit</u>, prepared for the U.S. Department of the Interior, Bureau of Reclamation, Grand Junction, Colorado.
- U.S. Bureau of Reclamation, 1981. <u>Ground Water Manual</u>, U.S. Government Printing Office, Washington, D.C.

- U.S. Bureau of Reclamation, 1978. Appendix B to "Stage One Development, Grand Valley Unit, Definite Plan Report," Colorado River Basin Salinity Control Project, Grand Junction, Colorado.
- U.S. Bureau of Reclamation, no date. "Miscellaneous Unpublished Data," Colorado River Water Quality Improvement Program, PDC Center file 5.19.2.5, available from UMTRA Project Document Control Center, U.S. Department of Energy, UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- USDA (U.S. Department of Agriculture), 1983. <u>Soil Survey of Grand County Area</u>, Colorado, Soil Conservation Service.
- USDA (U.S. Department of Agriculture), 1982. <u>Soil Survey of Rio Blanco County</u> Area, Colorado, Soil Conservation Service.
- USDA (U.S. Department of Agriculture), 1978. <u>Soil Survey of Mesa County Area</u>, <u>Colorado</u>, Soil Conservation Service.
- USDOC (U.S. Department of Commerce, National Oceanic and Atmospheric Administration), 1977. <u>Probable Maximum Precipitation Estimates</u>, <u>Colorado River</u> <u>and Great Basin Drainage</u>, NOAA Hydrometeorological Report No. 49, Silver Spring, Maryland.
- USGS (U.S. Geological Survey) 1931-1986 (serial publication). Water Resources Data Colorado Water Year _____, Volume 2, Colorado River Basin above Dolores River. U.S. Geological Survey Water Data Report, available from National Technical Information Service, Springfield, Virginia.
- USGS (U.S. Geological Survey), 1979. "Water Resources Data for California," Volume I, U.S. Geological Survey Water Data Report CA-79-1.
- Veyera, G.E., 1980. "Unsaturated Flow Parameters of Uranium Mill Tailings," M.S. Thesis, Colorado State University, Fort Collins, Colorado.
- Veyera, G.E., and J.D. Nelson, 1981. "Unsaturated Hydraulic Parameters of Grand Junction Uranium Tailings," <u>Proceedings of the Fourth Annual Symposium on</u> <u>Uranium Mill Tailings Management</u>, Geotechnical Engineering Program, Colorado State University, Fort Collins, Colorado.
- Voegeli, P.T. Sr., and R.U. King, 1969. "Occurrence and Distribution of Molybdenum in the Surface Water of Colorado," U.S. Geological Survey Professional Paper 1535-N, United States Government Printing Office, Washington, D.C.
- Ward, R.C., 1975, <u>Principles of Hydrology</u>, 2nd Edition, McGraw-Hill Book Company, New York, New York.
- Williams, P.L., 1964, "Geology, Structure, and Uranium Deposits of the Moab Quadrangle, Colorado and Utah," U.S. Geological Survey Miscellaneous Geologic Investigation Map I-360.

APPENDIX G

FLOODPLAIN AND WETLANDS ASSESSMENT

TABLE OF CONTENTS

Sectio	on													Page
G.1	PROJECT DESC	RIPTION		•••	•••	••	• •			•		•	•	G-1
	FLOODPLAIN E G.2.1 Flood G.2.2 Flood G.2.3 Flood	analysis. conditions	 during		 dial	 actio	••• on •	•••	•••	•	•••	•	•	G-3 G-3
	WETLANDS EFF G.3.1 Wetla G.3.2 Wetla G.3.3 Wetla	nds descrip nds impacts	tion	•••	•••	•••	•••	•••	· ·	•	•••	•	•	G-9 G-9
G.4	ALTERNATIVES	• • • • •			•••	••	••	•••	••	•	•••	•	•	G-11
G.5	STATEMENT OF	FINDINGS.			•••	••	••	••	•••	•	• •	•	•	G-13
REFERE	ENCES FOR APP	ENDIX G			•••		• •					•	•	G-15

LIST OF FIGURES

Figure		Page
G.2.1	Location of cross sections and floodplain boundaries of the 100-year flood event	G-4
G.2.2	Location of cross sections and floodplain boundaries	u i
	of the 500-year flood event	G-5
G.2.3	Location of cross sections and floodplain boundaries	
0 0 4	of the 100-year flood after relocation of tailings pile	G-7
6.2.4	Location of cross sections and floodplain boundaries of the 500-year flood after relocation of tailings pile	G-8
G.3.1	Wetlands plant community types adjacent to the Grand Junction processing site	G-10

G.1 PROJECT DESCRIPTION

Materials contaminated by uranium mill tailings from the inactive processing site at Grand Junction, Colorado, are present in the floodplain of the Colorado River and in the wetlands within the floodplain. There are no floodplains or wetlands associated with the Cheney Reservoir or the Two Road sites.

The primary feature of the remedial action is the consolidation and stabilization of tailings and other contaminated soils either at the processing site or at an alternate disposal site.

Remedial action would require the following major construction activities regardless of which alternative is selected:

- o Removal of approximately 0.2 acre of vegetation on the 100-year floodplain prior to excavation of contaminated soils.
- o Grading and revegetating the floodplain where excavated, including adding any necessary soil conditioners.
- o Upon completion of the remedial action, radioactive contamination in the floodplain would be reduced to levels that comply with the EPA standards for inactive uranium processing sites (40 CFR Part 192). These areas would then be released for any use consistent with local land use controls.

G.2 FLOODPLAIN EFFECTS

Alteration of the floodplain during and after remedial action is of concern due to the potential for changes in river elevations during flood events and the resulting impacts to nearby properties and structures. These impacts are discussed in this assessment.

Other temporary impacts, such as increased sedimentation and erosion, alteration of habitat, and water-quality changes, are of additional concern. After remedial action, long-term impacts on ground-water quality and flow and surface-water quality would result from the removal of contaminated materials present in the floodplain. Temporary and long-term impacts are discussed in Sections 5.5 and 5.6 of this EIS. Mitigation measures for these short- and long-term impacts are discussed in Sections 5.20 and G.2.2.

Effects of flooding resulting from changes in flood elevations during construction and after completion of the remedial action were calculated. Results of these analyses are summarized in Sections G.2.1 through G.2.3. Additional discussion can be found in Appendix F, Hydrology Report.

G.2.1 FLOOD ANALYSIS

During a 100-year flood event, the flow of the Colorado River at the Grand Junction site would be 61,600 cfs. The maximum water surface elevation at the site would be 4575.1 feet at the tailings pile with a mean velocity of 8.4 fps. Figure G.2.1 is a map of the 100-year floodplain at the Grand Junction site. The base of the tailings would be under approximately six feet of water. Existing erosion at the southeast corner of the pile would be accelerated during a major flood.

The 500-year flood flow would be 84,200 cfs with the water surface elevation ranging from 4574 to 4578 along the tailings pile. The base of the tailings pile would be approximately nine feet under water. Mean velocities would range between six and 12 fps. Figure G.2.2 is a map of the 500-year floodplain boundary.

The PMF, as described in Section 4.6.1, for the Colorado River at the tailings pile would be approximately 889,000 cfs and would range in elevation from 4589 to 4600 along the tailings pile.

G.2.2 FLOOD CONDITIONS DURING REMEDIAL ACTION

During remedial action, aside from the tailings, approximately 0.2 acre would be removed from the Colorado River floodplain. The changes in the flood level and velocities would be undetectable from current flood levels and velocities.

Potential impacts would be mitigated by use of the following measures during remedial action:

o Excavation of contaminated materials in the floodplain during the seasonal dry period, when runoff is lowest.

- o Restrictions on removal of riparian vegetation adjacent to areas subject to excavation to reduce river velocities and associated erosion during flood events.
- o Initiation of revegetation efforts as soon as practicable after removal of contaminated materials.
- o Selective use of water bars, mulch, riprap, or other soil erosion controls to minimize erosion.

G.2.3 FLOOD CONDITIONS FOLLOWING REMEDIAL ACTION

Following remedial action, if the tailings are stabilized on the site, the pile would be stabilized above the 100-year floodplain. The configuration of the excavated areas within and adjacent to the river would be the same as during the remedial action until the vegetation of the floodplain is reestablished. During a 100-year or 500-year flood event, impacts to nearby property and structures would be similar to flood impacts before remedial action. The reestablishment of a vegetative cover would tend to stabilize the floodplain and minimize the impacts during floodflows. Excavated areas of the floodplain would be reclaimed by contouring the area, adding any necessary soil conditioners, and revegetating the area with native riparian plants.

If the tailings are removed from the Grand Junction site, the 100year flood flow boundaries would change slightly from existing conditions. Figure G.2.3 shows the 100-year flood boundary without the tailings present. The elevation of the flood would be slightly higher (0.1 foot), and the mean channel velocity would be slightly higher (0.1 fps) than the conditions predicted for the 100-year flood with the tailings in place. Figure G.2.4 shows the 500-year flood boundary without the tailings present. The maximum water surface elevation during a 500year flood event would be 4577.1 feet at the tailings pile, while the mean channel velocity would be 9.6 fps. These elevations and velocities for the 500-year event are slightly less than would occur if the tailings pile were left in place.

G.3.1 WETLANDS DESCRIPTION

The U.S. Army Corps of Engineers (COE) has determined that approximately 47 acres of the Colorado River floodplain near the existing tailings site are wetlands (COE, 1985). Figure G.3.1 shows wetlands adjacent to the site. Discharge of dredged or fill material including backfilling or recontouring in COE-designated wetlands would require a permit under Section 404 of the Clean Water Act.

The wetlands area consists primarily of palustrine scrub-shrub habitat, with some riverine unconsolidated habitat and some palustrine forested habitat. The scrub-shrub wetland is dominated by tamarisk and the forested wetland is primarily cottonwood (USFWS, 1985).

Wildlife associated with the wetlands consists of birds, small mammals, and some small furbearers (beaver and muskrat).

G.3.2 WETLANDS IMPACTS

Remedial action activities in this riparian zone will be limited to the decontamination of the 400- to 600- square-foot area on Watson Island (Figure G.3.1). This activity would have very little impact on the riparian vegetation since the equipment necessary to perform the job will traverse an existing bridge to Watson Island and existing roads on the island. In addition, the contaminated area is located in a highly disturbed section of Watson Island having been cleared of trees, and piled with rubble and slash. The activity will have very little or no impact on the small side channel of the Colorado River situated near the area of contamination.

G.3.3 WETLANDS IMPACTS MITIGATION

The Department of Interior commented (Section 6.16) on impacts to the riparian area and suggested several mitigations. On the basis of these comments, the potential impacts to the wetlands area would be mitigated by measures listed in Section G.2.2 and by the following actions:

- o Recontouring of excavated areas to create conditions favorable to reestablishment of scrub-shrub wetlands.
- o Revegetation of the area using plant materials that would lead to the reestablishment of palustrine scrub-shrub wetlands.
- o Selective use of water bars, mulch, riprap, or other soilerosion controls to minimize erosion.

After vegetation has been reestablished, habitat similar to preremedial action conditions would develop.

The DOE will continue to consult with the Department of Interior to develop appropriate mitigations.

G.4 ALTERNATIVES

The alternative remedial actions are discussed in Sections 1.2 and 3.2 of this EIS. The impacts of these alternatives are discussed in Sections 5.1 through 5.17. Mitigation measures that are likely to be used are described in Sections 5.20, G.2.2, and G.3.3.

The no action alternative, which entails leaving the site in its present condition, would not be consistent with the intent of Congress in PL95-604 and would not result in DOE's compliance with the EPA standards. For the other alternatives, the construction activities and impacts that would occur are discussed in Sections G.2 and G.3.2.

.

G.5 STATEMENT OF FINDINGS

This is a Statement of Findings prepared pursuant to Executive Orders 11988 and 11990, and 10 CFR Part 1022, Compliance with Floodplain/Wetlands Environmental Review Requirements. Under authority granted by the Uranium Mill Tailings Radiation Control Act of 1978, the DOE proposes to clean up the residual radioactive wastes and other contaminated materials at the inactive uranium mill tailings site in Grand Junction, Colorado, and relocate these materials to the Cheney Reservoir site.

Most of the radioactively contaminated materials are located on the edge of the 100-year floodplain of the Colorado River. As indicated in Section G.3.1, the U.S. Army Corps of Engineers indicated that wetlands were present within the area of planned construction activities.

The principal feature of the proposed action is the transportation of tailings and other contaminated soils (from the floodplain, mill site, and wetlands) to the Cheney Reservoir site approximately 18 miles southeast of the former mill site. The Cheney Reservoir site is well out of the reach of the nearest perennial stream and is not subject to flood events. After removal of the wastes, the former mill site would be restored with uncontaminated fill and recontoured to conform to the surrounding terrain.

Specific construction activities related to the floodplain and wetlands area include: (1) removal of approximately 0.2 acre of vegetation on the 100-year floodplain prior to excavation of contaminated soils; (2) grading and revegetating the floodplain where excavated, including adding any necessary soil conditioners; and (3) use of water bars, mulch, riprap, or other soil erosion controls to minimize erosion.

The DOE examined three alternatives (with multiple transportation modes) for the remedial actions in this EIS. The DOE's proposed action (alternative 3) is to decontaminate the Grand Junction mill site and to relocate the wastes to the Cheney Reservoir site. The other alternatives analyzed in the EIS included taking no action, stabilizing the wastes on the Grand Junction mill site, and relocating the wastes to the Two Road site.

The remedial action has been designed to conform to applicable Federal and state regulations. Before construction begins, all applicable permits and approvals, such as those required under section 404 of the Clean Water Act, will be obtained from the U.S. Army Corps of Engineers, Colorado state agencies, and other agencies having jurisdiction. Initial consultation with the agencies has taken place, and as a result the conceptual design has been modified to minimize environmental impacts (see Sections G.2.2 and G.3.3).

The no action alternative would leave contaminated material in the floodplain and wetlands. Cleanup of this material (all action alternatives) inherently involves action within the floodplain and wetlands areas. On the basis of the floodplain and wetlands assessment (Appendix G), the DOE has determined that there is no practicable alternative to the proposed activities and that the proposed action has been designed to minimize potential harm to or within the floodplain and wetlands.

REFERENCES FOR APPENDIX G

- COE (U.S. Army Corps of Engineers), 1985. Written communication from G. McNure, Chief Regulatory Unit 4, Grand Junction, Colorado, to R. Peel, Jacobs Engineering Group, Inc., UMTRA Project Office, Albuquerque, New Mexico, dated May 7, 1985.
- USFWS (U.S. Fish and Wildlife Service), 1985. Written communication from R. Garrison, Acting Field Supervisor, Salt Lake City, Utah, to R. Peel, Jacobs Engineering Group, UMTRA Project Office, Albuquerque, New Mexico, dated March 28, 1985.