IoT Interoperablity at Bosch

Adam Wynne & Charles Shelton Bosch Research and Technology Center, Pittsburgh, PA 2015-03-11

Adam Wynne (RTC3)

What Does Bosch Do?

Automotive Technology

Household products

Industrial Systems

Building Management

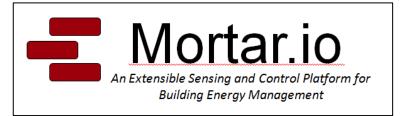
Software Solutions

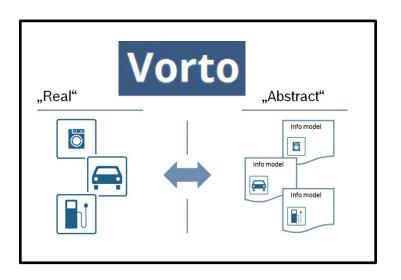
Bosch in IoT

- → Not traditionally a software business
- → In the IoT of the future, everyone will be a software company!
- → Acquired Software Innovations, 2008
 - Business process management
 - Cloud-based IoT solutions
- → Acquiring Prosyst (announced February 2015)
 - Provider of dynamic gateway solutions based on OSGi
 - Leader in OSGi technology and standards development
- → Corporate Research in IoTS
 - Middle ware
 - Assistance services
 - Security & Privace
 - Partner with local universities

Characteristics of IoT Applications

- → Asynchronous communication
- → Peer-to-peer communication
- → Message- or event-based
- → Must be resilient to loss of connectivity
- → Current trend is towards cloud hosted web services, hub-and-spoke architectures, vertical integration
- → In the future, IoT systems will:
 - Require sophisticated automation and assistance services
 - Exhibit systems-of-systems, decentralized architectures
 - Support for large range of platforms, data formats, protocols
 - Require interoperability between vendors


Bosch Approach


Bosch is committed to an open platform approach for IoT, since we know that "nobody can do it alone"

--Stefen Ferber, blog.bosch-si.com

Contributions to Open Source and Standards

Semantic Sensor Network Ontology

Author

W3C Semantic Sensor Network Incubator Group

Protocols and Frameworks

- → Great! We want to leverage open protocols and open source frameworks ... how do we choose??
- → A recent review of application level protocols found:
 - ~30 communication protocols
 - ~70 Java-based communication frameworks
- → Most of these protocols are based on some traditional concepts...
 - Message oriented middleware
 - Publish-subscribe
 - Client-server
- → BUT, they are lighter weight in terms of communication overhead
- → SOME are looking towards a future of systems of systems

A Sample of Protocols and Frameworks

- → Service Orientation: CoAP (Constrained Application Protocol)
 - Proposed IETF standard (https://tools.ietf.org/html/rfc7252)
 - REST-ful protocol design, supports discovery (web linking)
 - Low header overhead and parsing complexity.
- → Message Broker: MQTT (Message Queue for Transport Telem.)
 - Broker-based pub/sub system for constrained environments
 - OAS IS Standard (MQTT v3.1) as of November 2014
- → Advanced Message-Orientation: AMQP (Adv. Msg. Queue Protocol)
 - OASIS Standard, supports arbitrary topologies
 - Aims to standardize (binary) wire format for all types of MoM
 - First cross-platform MoM specification

How Will the IoT Evolve?

If the Internet of Things is going to be successful it needs to be built on the principles that made the Internet successful – open standards and open source software.

-- Ian Skerret, Eclipse IoT Working Group

The Smart Campus Opportunity

→ Harnessing the Power of **Open Innovation** in the IoTS

What is the **Smart Campus** concept?

- → Smart Campus is a vision for the future of smart commercial spaces
 - Current R+D efforts focus on individual home / building automation
 - Medium-scale (e.g. multi-building) spaces have unique requirements
 - Opportunity to create connected campus environments that enhance:
 Productivity + Efficiency, Safety + Security, Social + Professional Interaction
- Challenges / Problems to be Solved
 - Identify high-potential business opportunities in medium-, large-scale IoTS
 - Address technical requirements unique to segment: scalability, security, integration
 - Deliver high-quality User Experiences (UX) for both Web and Mobile

Approach

- Utilize CMU* campus as a 'Living Lab" for ideas, prototyping, validation
- Focus on leveraging existing Bosch portfolio to enter adjacent markets
- Increase innovation via direct engagement of end users / domain experts

Opportunity to leverage current portfolio + university collaboration to drive innovation

Our Testbed Partner: Carnegie Mellon University

CMU Statistics¹

Population	15,507	Housing	4069 beds
Are a	.6 km ²	Facilities (useable)	.6 km ²
Electricity	118K mWh	Input Energy*	522,759 mmBTUs
Buildings	109	Parking	3,309 units

Research and Technology Center

¹ Factbook 2014, CMU Institutional Research and Analysis

^{*} Natural Gas, of which ~73% converted to steam

M2M* Interfaces: Focus on Energy, Environment

EnFuse Panel Meters
Electricity usage
11 x 48 = 528 feeds

Lutron Lighting Controller 277 VAC lighting control

AutoMatrix PUP Controller

HVAC 30 x 6 (inter-building) x 24 = 4320 feeds

FireFly Environmental

Light, temp, humidity, sound, motion, vibration, pressure 120 feeds

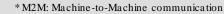
Thermostat

802.15.4 Pneumatic thermostat with branch pressure monitoring 70 feeds

Chilled Water and Steam

Temperature and flow-rate $2 \times 2 = 4$ feeds


Fan Control Units


802.15.4 units for heat exchangers in each room Control and power metering 170 feeds

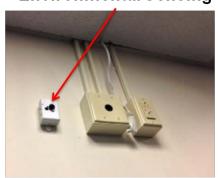
Localization

ALPs + VLC Localization Feed per person

Out of the Lab: Professional Install and Support

Panel Electrical Metering

Fan Blower Control



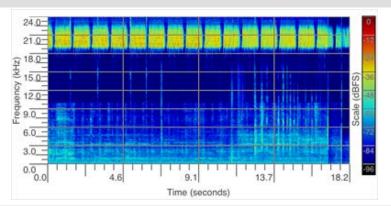
Wireless Thermostat

Beaglebone Gateway

Environmental Sensing

Lutron Lighting Control

Big Data Target: 270K source points, 40B records, 1.5TB data, ~500 writes/sec


Sensor Andrew: Powerful End-User Features

Mobile Application Framework

Infrastructure-based Localization

Application Authoring Environment¹

¹ MakerSwarm, Maya Design, www.makerswarm.com

