DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review

Novel Electro-Deoxygenation Process for Bio Oil Upgrading

March 24, 2015
Thermochemical Conversion

S. (Elango) Elangovan

Goal Statement

- Demonstrate the techno-economic feasibility of upgrading biomass derived pyrolysis oil using electro-deoxygenation process
- Move technology from concept stage (TRL 1) to practical, applied R&D at TRL 2-3

Technical Area Objective	Relevance of Innovation
Carbon Efficiency	Deoxygenation of both organic and aqueous phase of bio-oil prior to phase separation
Hydrogen Efficiency	In-situ hydrogen generation from steam present in bio-oil

- Advance DOE-BETO goal of producing bio-oils with desirable qualities for making hydrocarbon transportation fuels
- Enable acceptance of widely varied non-food, "high impact" biomass based bio-oil feedstocks to produce fuels that are similar to those found in crude oil derived products.

Quad Chart Overview

Timeline

Project start date: October 1, 2013

Project end date: September 30, 2016

• Percent complete: 33%

Budget

	FY 14 Costs	Total Planned Funding (FY 15-Project End Date)
DOE Funded	\$ 485,820	\$ 2,118,326
Cost Share (Ceramatec)	\$ 169,044	\$ 581,456
Cost Share (Drexel Univ)		\$ 75,776

Barriers

- Bio-Oil stabilization and improved catalysts for deoxygenation
- Removal of hydroprocessing steps with processing inline with fast pyrolysis
- Understanding of coking and contamination issues within process
- High C efficiency by utilization of aqueous phase of bio-oil
- Technical target: Integration of deoxygenation process and pyrolysis unit

Partners

PNNL (20%):

Pyrolysis Integration

Drexel University (10%):

LCA

Technology Holding, LLC:

TEA consultancy

Project Overview

Bio-Oil as a fuel Source

- Low heating value, incomplete volatility, acidity, instability, and incompatibility due to <u>oxygenated organic compounds</u>
- Elimination of oxygen by current processes is inefficient; requires hydrogen; amenable to only centralized processing
- Ceramatec has demonstrated oxygen removal from CO₂/steam mixture and proposed extending the concept to deoxygenation of bio-oil

Program Objectives

- 1. Demonstrate technical feasibility of electrochemical deoxygenation (EDOx) reactor at bench scale
- 2. Integrate the EDOx reactor with a bench scale pyrolysis reactor
- 3. Perform overall process simulation
- 4. Perform life cycle analysis and overall techno-economic modeling
- 5. Prepare a preliminary commercialization plan

Approach (Technical)

- Oxygen ion based membrane electrolyzer
 - Technology has been demonstrated for electrolysis of CO₂-steam mixture to produce CO+H₂ mixture by using electric energy
- Unique Aspects:
 - Direct removal of oxygen from bio-oil compounds
 - In-situ generation of hydrogen from steam electrolysis for indirect deoxygenation

- Removed oxygen is electrochemically transported across the membrane and is a high purity valuable byproduct
- Y1 Go/No-Go Decision Points to show Proof of Concept
 - 60% efficiency of deoxygenation using model compounds
 - 30% efficiency of deoxygenation and 75% C and H efficiency using aqueous fraction of bio-oil

Approach (Management)

- Critical success factors
 - Technical: Demonstration of bio-oil deoxygenation at high (85%)
 C and H efficiency
 - Market: Adaptation of distributed pyrolyzers with economical access to bio-mass
 - Business: Investment in manufacturing infrastructure for large scale production of electrolysis units
- Potential challenges
 - Direct integration of EDOx units with a pilot scale pyrolyzer
 - Electrode poisoning from contaminants in pyrolysis vapors
- Project structure
 - Ceramatec: Leading R&D company in solid oxide electrolysis
 PNNL: A national lab with extensive pyrolysis experience
 Drexel: University to evaluate LCA and TEA aspects of overall process
 - Monthly teleconference among team members and quarterly milestone updates to DOE

CERAMATEC TOMORROW'S CERAMIC SYSTEMS

Technical Accomplishments/Progress/Results

Test Set-up

Electrochemical Button Cell

- Preliminary screening of deoxygenation capability
- ~ 2 cm² electrode active area
- Stirred reactor configuration
- Evaluation of operating conditions

Electrochemical Stack

- Larger scale testing ~50 cm² active area
- Typically 10 cell stacks
 - longer residence time
 - No mixing of fresh inlet and product stream

Test Apparatus Schematic

Selected Model Compounds

- Acetic acid
- Acetol (hydroxyacetone)
- Levoglucosan
- Furfural
- Methyl-2-cyclopenten-1-one

- xyacetone) Guaiacol
 - Syringol

Phenol

Methanol

- Model Compounds:
 - Selected to cover representative compounds from carbohydrate and lignin fractions
- Bio-oil Testing:
 - Only aqueous fraction selected more stable to reheating
- Integrated DeOX unit will face slip stream entire bio-oil vapor prior to condensation

Electrolysis Tests on Organic Material

		Fuel	Air side	Food			
Cell #	Electrolyte	side CC	CC	Feed Material	Temperature	Coke Formation	Comments
	_						steam H2 performance increased post test
27	YSZ	Ni	Ag	Acetic Acid	800C		with acetic acid
28	YSZ	Ni	Ag	Acetic Acid, Acetone	700C,800C		Voltage vs Gas Phase Composition sweeps
20	102	INI	Λg	Acetone,	550C, 600C,		Voltage vs Gas Phase Composition
29	SDC	Ni	Ag	Furfural	800C	carbon build up	sweeps
						carbon formation on fuel	
						exhaust tubes and cell in	Voltage vs Gas Phase Compostion
30	SDC	Ni	Ag	Furfural	550C	hot zone	sweeps, poor collection
				Guaiacol,		carbon formation on fuel	Voltage vs Gas Phase Compostion
				furfual, phenol,		exhaust tubes in hot	sweeps, and long term condensate
31	SDC	Ni	Ag	syringol	550C	zone	collection for GCMS, cell cracked
							Low collection due to possible
							condensation in test fixture, cell cracked
32	SDC	Ni	Ag	Syringol	550C		and internally shorted
							New bubbler cart used, Cooled due to
33	SDC	Ni	Ag	Guaiacol	550C	noticed	leaky exhaust lines
24	CDC	Dı	Dı	Cusinani	FF0C	Camaa aalka ay waaidu a	
34	SDC	Pt	Pt	Guaiacol	550C	Come coke or residue	
35	SDC	Pt	Pt	Guaiacol	550C	Come coke or residue	
							operated until power outage terminated
39	SDC	Pt	Pt	PNNL Aq Bio-O	550C	Some coke or residue	test, little sample collected
stack				guaiacol, PNNL			impingers added to collect vapor during BO
541	ScSZ	Ni	Ag	ВО	550C	Pending analysis	run but added too much back pressure
							dilute mix of levoglucosan and water 1 :
46	ScSZ	Pt	Pt	Levoglucosan	550C	Pending anlaysis	33.3, glassed cell

Technical Accomplishments/ Progress/Results: Model Compounds

Button Cell: Syringol Results

Feed and Liquid Product Comparison (GC-MS Results)

Feed				Liquid Products				
Compound	C	Н	0	Compound	C	Н	0	wt %
Syringol	8	10	3	Phenol	6	6	1	76%
				o-cresol	7	8	1	22%
				p-cresol	7	8	1	0%
				m-cresol	7	8	1	0%
				2,6-xylenol	8	10	1	1%
				2-ethylphenol	8	10	1	1%

Gas Product Micro-GC Analysis

Component	H ₂	N ₂	Methane	СО	CO ₂	Ethene	Ethane	Propane
wt%	0.01%	93.7%	0.1%	0.9%	3.8%	0.1%	0.1%	1.4%

Technical Accomplishments/ Progress/Results Model Compound: Syringol

Elemental Balance Between Feed and Liquid Products

Element	Feed wt% By Formula	Liquid Product wt% by GC-MS	Feed to Product wt% Change		
Carbon	62.3%	76.9%	+23.3%		
Hydrogen	6.5%	6.7%	+2.3%		
Oxygen	31.1%	16.4%	-47.2%		

Liquid Product showed 47 wt% Oxygen relative to feed Gas products not included

Technical Accomplishments/ Progress/Results Model Compounds

Button Cell: Guaiacol Results

Feed and Liquid Product Comparison (GC-MS Results)

Fee	d	_		Liquid Pr	roducts					
Compound	С	Н	0	Compound	С	Н	0	wt %		
Guaiacol	7	8	2	2,3-dihydrofuran	4	6	1	0.14%		
				Unknown C6H8O	6	8	1	1.54%		
				2-cyclopenten-1-one	5	6	1	0.68%		
				Phenol		6	1	48.76%		
				2-methyl-2-cyclopenten-1-one	6	8	1	0.51%		
				Benzaldehyde	7	6	1	0.93%		
				4,4-dimethyl-2-cyclopenten-1-one	7	10	1	0.56%		
				o-cresol	7	8	1	18.02%		
				Salicylaldehyde	7	6	2	28.47%		
				2,5-xylenol	8	10	1	0.39%		

Gas Product Micro-GC Analysis

Comp	onent	H ₂	N ₂	CH ₄	со	CO ₂	Ethene	Ethane	Propane	Butane	Pentane
wt	%	0.05	95.7	0.17	0.00	2.27	0.04	0.06	1.71	0.01	0.02

Elemental Balance Between Feed and Product

Element	Feed wt% by Formula	Liquid Product wt% by GC-MS	Feed to Product % Change
Carbon	67.7%	74.55%	10.1%
Hydrogen	6.5%	6.26%	-3.7%
Oxygen	25.8%	19.19%	-25.5%

Liquid Product showed 26 wt% Oxygen relative to feed Gas products not included

Technical Accomplishments/ Progress/Results Model Compounds

Stack: Guaiacol Results

Feed and Liquid Product Comparison (GC Results)

Feed		- 9		Liq	uid Pro	, i			<u></u>	id Pro	oduct		
Compound	С	Н	0	Compound	С	Н	0	wt %	Compound	С	Н	0	wt %
Guaiacol	7	8	2	Toluene	7	8	0	0.04	Guaiacol	7	8	2	2.47%
				Styrene	8	8	0	0.05	2,3- dihydrobenzofuran	8	8	1	0.66%
				Anisole	7	8	1	0.43	Naphthalene	10	8	0	0.57%
				1,2,4- Trimethylbenzene	9	12	0	0.34	1,2- dimethoxybenzene	8	10	2	1.89%
				2-cyclopenten-1- one	5	6	1	0.20	Catechol	6	6	2	39.81%
				Phenol	6	6	1	11.07	3-methylcatechol	7	8	2	2.78%
				Methyl Anisole	8	10	1	0.13	4-methylcatechol	7	8	2	2.22%
				Benzofuran	8	6	1	0.85	α-cedrene?	15	24	0	0.10%
				2-methyl-2- cyclopenten-1-one	6	8	1	0.25	o-anisaldehyde	8	8	2	0.07%
				Benzaldehyde	7	6	1	0.13	2,3-dihydro-1H- inden-1-one	9	8	1	0.17%
				o-cresol	7	8	1	8.71	Benzalmalonic dialdehyde?	10	8	2	0.04%
				p-cresol	7	8	1	0.57	o-bidiphenylol?	10	12	1	0.05%
				m-cresol	7	8	1	0.30	Dibenzofuran	12	8	1	0.15%
				Salicylaldehyde	7	6	2	20.65	4-ethyl-3- methylphenol	9	12	1	0.04%
				2,6-xylenol	8	10	1	0.22	2-methylbenzofuran	9	8	1	0.07%
				2-ethylphenol	8	0	1	4.96					

Technical Accomplishments/ Progress/Results Model Compounds

Gas Product Micro-GC Analysis

Stack: Guaiacol Results

Component	H ₂	N_2	CH₄	CO	CO ₂
wt %	0.05%	95.3%	0.18%	0.00%	2.46%
Component	Ethene	Ethane	Propane	Butane	Pentane
wt %	0.05%	0.07%	1.85%	0.01%	0.02%

Elemental Balance Between Feed and Product

Element	Feed wt% by Formula	Liquid Product wt% by GC	Feed to Product % Change		
Carbon	67.7%	70.58%	4.2%		
Hydrogen	6.5%	5.57%	-14.2%		
Oxygen	25.8%	23.85%	-7.5%		

Liquid Product showed 7.5 wt% Oxygen relative to feed Inadequate stack seal caused product loss

Gas products not included

Technical Accomplishments/ Progress/Results PNNL's Aqueous Phase Bio-Oil (Yellow Pine)

Button Cell Bio-Oil Feed and Liquid Product (cell 39) Comparison

*In Feed Only, In Product Only					
Compound		C H O Bio Oil Feed (90 °C evaporation and condensation as reference feed) wt %		Cell 39 Liquid wt %	
2,3-dihydrofuran	4	6	1		3.12%
Acetic Acid	2	4	2	11.34%	
2-methoxytetrahydrofuran	5	10	2	0.09%	
2,3-butanedione	4	6	2	0.48%	
2-Butenal	4	6	1	0.28%	
Hydroxyacetone	3	6	2	16.14%	19.48%
Acetoin	4	8	2	2.42%	2.20%
3-penten-2-one	5	8	1	1.44%	2.21%
1-hydroxy-2-butanone	4	8	2	6.02%	
Cyclopentanone	5	8	1	1.76%	7.28%
3-Furaldehyde	5	4	2	0.86%	1.93%
2-Butoxyethanol	6	14	2	4.36%	
Furfural	5	4	2	9.85%	24.20%
2-cyclopenten-1-one	5	6	1	13.82%	18.58%
Phenol	6	6	1	3.07%	3.41%
2-methyl-2-cyclopenten-1-one		8	1	4.64%	10.86%
Acetylfuran		6	2	1.05%	1.82%
2,3-dimethyl-2-cyclopenten-1-one		10	1	0.18%	
o-cresol	7	8	1	2.64%	
Acetol acetate	5	8	3	2.62%	2.21%
p-cresol		8	1	0.40%	
m-cresol		8	1	0.48%	
5-methyl-2-furancarboxaldehyde		6	2	1.57%	1.96%
5-methylfurfural	6	6	2	1.57%	
Xylenol		10	1	0.03%	
3-methyl-1,2-cyclopentadione		8	2	0.66%	
Unknown C6H8O		8	1	1.90%	
Unknown C7H10O	7	10	1	0.89%	
1-(acetyloxy)-2-butanone	6	10	3	0.40%	
Guaiacol	7	8	2	6.19%	
2,3-dimethyl-2-cyclopenten-1-one	7	10	1		0.73%
5-methyl-2(5H)-Furanone	5	6	2	0.54%	
2,5-dihydro-3,5-dimethyl-2-furanone	6	8	2	0.64%	
3-ethyl-2-cyclopenten-1-one	7	10	1	0.16%	
Creosol	8	10	2	1.48%	

Technical Accomplishments/ Progress/Results: Aqueous Phase Bio-Oil

Button Cell Aqueous Phase Bio-Oil

Gas Product Micro-GC Analysis

Component	H ₂	N_2	CH₄	CO	CO ₂	Ethene	Ethane	Propane	Butane
Wt %	0.40%	92.95%	0.15%	2.17%	2.02%	0.09%	0.02%	2.17%	0.02%

Elemental Balance Between Feed and Product

Element	90 ° C Condensate Feed wt% by GC- MS	Liquid Product wt% by GC-MS	Feed to Product % Change
Carbon	60.93%	70.58%	15.8%
Hydrogen	7.42%	5.57%	-24.9%
Oxygen	31.65%	23.85%	-24.6%

Bio-oil Liquid Product showed 25 wt% Oxygen relative to feed Feed composition likely varied with time

Gas products not included

Bench-Scale Continuous-flow Fast pyrolysis System at PNNL

Hydrocarbon HX

Hydrocarbon quench circulation flow

Reactor type	Bubbling fluidized bed
Operating Temperature	450-500 ° C
Biomass flow rate	1-1.5 kg/h
Operating pressure	3-5 psig

Nitrogen

High speed screw

0

PUMP.

Isolating valve

Electric

Heater

Nitrogen

FEED

HOPPER

Vapor Residence time	<2 sec				
Biomass used/Size	Softwood, hardwood, grass/ <2mm				
Liquid collection strategy	Dry quench, Hydrocarbon quench, or Electrostatic Precipitator (ESP).				

Planned activity at

liquid yield.

membrane by particulates

Reactor modification:

reduce effective volume

and thus reduce vapor residence time-> Improve

to allow capture of fine

particulates leading to the EDOx reactor-> Reduce fouling of the reactor

electrostatic precipitator to

capture aerosol products-

better mass balance.

Pacific Northwest

accommodate the EDOx

NATIONAL LABORATORY

Re-piping to

reactor

> Improve liquid product capture and achieve

PNNL: **EDOx** 02 **EXHAUST** Cyclones Gas sample Packing tower for GC-TCD SPRAY · Add another cyclone unit analysis FLUIDIZED BED REACTOR Coalescer 1 Dry ice trap Coalescer 2 Potential addition of 00 8 & Liquid-Liquid Separator (prøduct tank) Isopar V phase Liquid Prod PUMP2 Wet Test Meter

Technical Accomplishments: LCA/Process Modeling

- Life Cycle Inventory:
 - Forest residue harvest and farmed tree harvest (Southern Pine) as feedstock
 - Completed for feedstock, additional computation being finalized to complete fuel conversion segment of the fuel production LCI model
- ASPEN+ Modeling:
 - Material and energy balance modeling of fast pyrolysis to bio-oil
 - Model Compounds: Fufural and levoglucosan

Advanced Bio-oil Markets

- Harvesting equipment and energy
- Transportation steps

Feedstocks:

Woody biomass(Forest residues)

- Electricity
- Feedstock provides thermal energy

Technologies:

- Fast Pyrolysis
- Electro de-oxygenation

- Petroleum blendstock
- Bio-char (co-product)

Transportation fuel market:

- -Substitute for gasoline, diesel, or petroleum blendstock
 -Co-products may be land
- -Co-products may be land applied (sequestration)

Technical Accomplishments/ Progress/Results **Summary**

- Year 1 Technical Objectives/Results
 - 60% efficiency of deoxygenation from mixtures of model compounds
 - 30% efficiency of deoxygenation and 75% C and H efficiency using aqueous fraction of bio-oil

Elemental Balance Between Feed and Product

	Syringol Cell 32	Guaiacol Cell 35 1.3 V	BioOil Cell 39
Carbon	23.3%	10.1%	15.8%
Hydrogen	2.3%	-3.7%	-24.9%
Oxygen	-47.2%	-25.5%	-24.6%

Relevance

23

- BETO Multi-Year Program Plan of Using Bio-oil as source of fuel
 - Project demonstrated feasibility of deoxygenation of bio-oil.
 - Both model compounds and aqueous phase of pinewood pyrolysis oil showed oxygen loss via electrochemical means
 - High C and H efficiency was indicated
- EDOx unit can be potentially integrated to pyrolysis unit to stabilize bio-oil prior to cooling
- Project objective is to demonstrate integrated operation of EDOx with pilot scale pyrolysis unit at PNNL
- Successful project will enable hydrogen-free, integrated operation of pyrolyzer to provide stable pyrolysis oil product
- Ceramatec's parent company CoorsTek is the largest technical ceramics manufacturer. Ceramatec will seek to team with a bio-oil producer to demonstrate the technology at TRL 4 – 5.

Future Work

- Process improvement to reach project milestone of 60% efficiency of deoxygenation and 85% C and H efficiency using aqueous phase of bio-oil
 - Evaluation of catalyst with high selectivity for non-oxygenated compounds
 - Improved feed system to introduce entire aqueous phase of bio-oil vapor
 - Elimination of system leaks through improved seals and product collection
 - Integration of gas product in overall mass balance
- Engineering prototype of integrated Electro-EDOx design
 - Final stack design integrated at PNNL
- Completion of TEA and Modeling Efforts
 - ASPEN+ and LCA

Summary

- A novel electrochemical means of deoxygenation demonstrated
 - 1. No external hydrogen feed
 - 2. Electric input allows distributed, small scale operation
 - 3. Integration with pyrolyzer will allow upgrading prior to bio-oil cooling
- 2. Feasibility demonstrated with button cells and stacks using standard electrolysis electrodes
 - 1. Model compounds showed 25 to 47% oxygen removal
 - 2. Bio-oil showed 25% oxygen removal
- 3. When matured, electrochemical process will addres techno-economic challenges of upgrading of bio-oil
- 4. Integrated testing of EDOx unit with PNNL's pilot scale pyrolyzer planned

Additional Slides

Ceramatec Technology Focus in Fuels

- Fuel Synthesis/Processing
 - Biofuels (Production of Na-methylate reactant)
 - Methane to Liquid fuels
 - Heavy oil upgrading
 - Direct methane to chemical
 - Biogas clean up

Project Status: Fuel Synthesis/Ugprading

Electrochemical Deoxygenation of Pyrolysis Oil

- DOE CHASE Project
- Electric Energy input, No hydrogen
- TRL 2

Electrochemical Hydrocarbon Coupling

- USDA (Biomass R&D Initiative)
- Electric Energy input, No hydrogen, Hydrogen byproduct
- TRL 3 4

Biogas and Coal-gas to Liquids

- DOE/ONR/Private
- Biogas tar clean up, Fischer Tropsch (Gas to Liquids)
- TRL 6

Publications, Patents, Presentations, Awards, and Commercialization

- A provisional patent application was filed on August 30, 2013, titled "Hydrogen Utilization and Carbon Recovery", with the application number 61/872,184.
- On September 2, 2014, the non-provisional patent application was filed, titled "Hydrogen Utilization and Carbon Recovery", with the application number 14/474,843.
- A manuscript was submitted to Electrochemical Society Transactions (Title: Electrochemical Upgrading of Bio-Oil)