

DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review

Design and Demonstration of a Comprehensive Biomass Feedstock Supply System

March 2015 Feedstocks Platform

Presented By:

Kevin Comer Antares Group, Inc.

Principle Investigator:

Fred Circle FDC Enterprises

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Goal Statement (Project Objectives)

Demonstrate all aspects of an innovative industrialscale feedstock supply system for industrial-scale (>500,000 tons/year) biomass end-users.

- Cost reductions for large scale feedstock delivery estimated to be ~\$13.00 per ton (conservative)
- Identify and measure economic costs for all stakeholders
- Support development of material quality and sustainability specifications

Goal Statement (Project Objectives)

- Key equipment development
 - Improved Industrial Grade Baler
 - Self Loading Trailer
 - Bale Picking Truck
 - Single-pass Harvest Systems
 - Improved Header for Heavy Crops

Heavy Crop Header

Single Pass Baling

Self-Propelled Baler

Bale Picking Truck (BPT)

Self-LoadingTrailer (SLT)

Quad Chart Overview

Timeline

- Project start date: 9/1/2010
- Project end date: 6/30/15
- Percent complete: 95%

Budget	Total Costs FY 10 –FY 12	FY 13 Costs	FY 14 Costs	Total Planned Funding (FY 15-Project End Date	
DOE Funded	\$2,998,403	\$1,255,020	\$187,797	\$570,542	(
	Project (Cost Share			(
Abengoa Bioenergy	\$287,173				(
Allied Freeman	\$1,394,178			\$294,723	(
Antares Group Inc.	\$0				
Collaborators	\$295 <i>,</i> 815			\$376,965	(
FDC Enterprises	\$154,129	\$41,711		\$538,038	(
Kansas State University	\$69 <i>,</i> 248	\$36,184			
Kelderman Farms	\$144,025			\$119,697	(
Kelderman Manufacturing	\$780,053		\$6,801		(
Mendel Biotechnology	\$145,094				
TR Miles Consulting					(
Vermeer	\$37,908				(
MacDon				\$269,911	

Barriers

- Barriers addressed
 - Ft-L. Biomass Material Handling and Transportation
 - Ft-M. Overall Integration and Scale-Up
 - Ft-D. Sustainable Harvesting

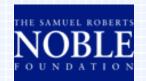
Partners

- FDC Enterprises (Prime Contractor)
- Equipment Manufacturers:
- o Kelderman Manufacturing
- Allied Systems / Freeman
- o MacDon
- Assistance from others:
 - Vermeer, JCB, Rotochopper
- Abengoa Bioenergy (Initial End-User)
- Antares Group (Mgt. & Tech. Services)
- o INL (Lab Analysis, Sustainability)
- Kansas State (Sustainability) 4

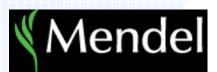
FDC Enterprises Grasslands Services

ABENGOA BIOENERGY Science. Solutions. Service.

MacDon⁻ The harvesting specialists.


Collaborative Development

Team



Greenhouse Gas Services a GE AES venture

T.R. Miles Consulting Engineering Consulting

Project Overview TEAM GENESIS / BACKGROUND Switchgrass Cofiring Ottumwa, Iowa

Group Incorporated * MacDon

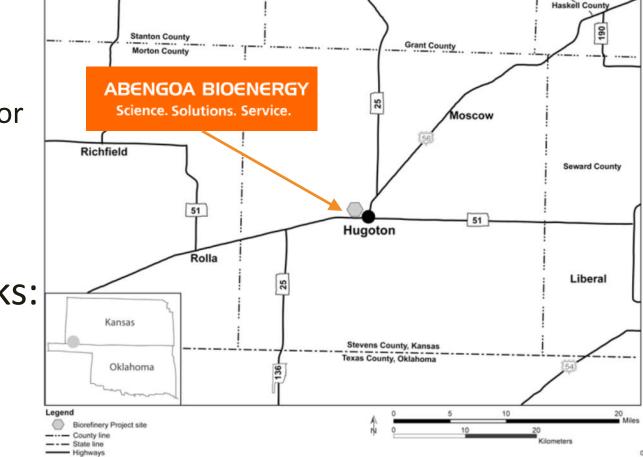
- Ottumwa Generating Station
 - Alliant Energy / Mid-American
 - 726 MW, PRB Coal, 1982 startup
 - Twin furnace T-fired PC boiler
 - 2.5 to 5% heat input from switchgrass, 12.5
 to 25 ton/hr
 - Separate biomass injection, 2 4 ports
- Fuel
 - 3' x 4' x 8' switchgrass bales
 - 2-step milling process to 1/8" minus
- Current Project Plan based on Lessons Learned (Teaming, Equipment Needs) 4/3/2015

Project Overview (Team History)

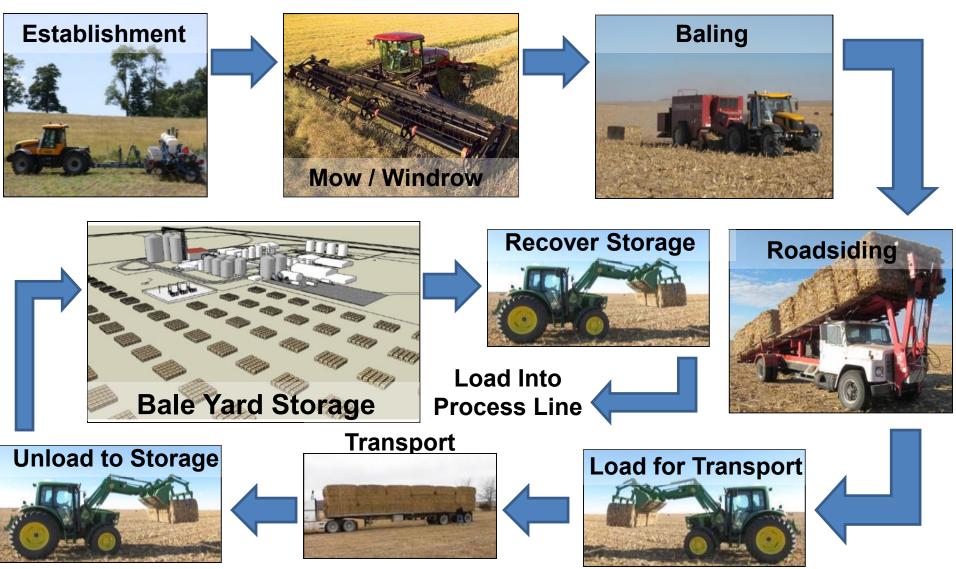
Project Overview (Team History)

with this .

Replacing up to 5% of this

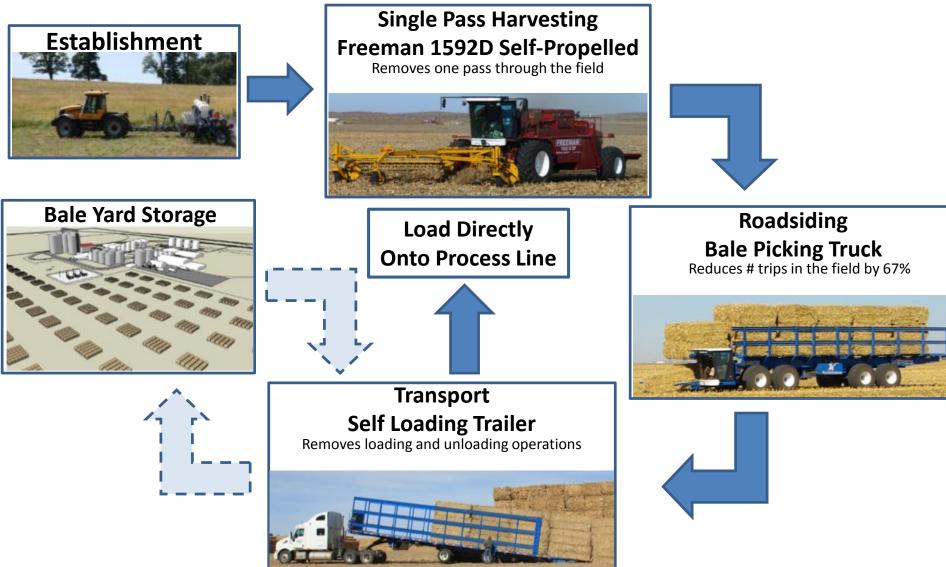


Initial Target System Application

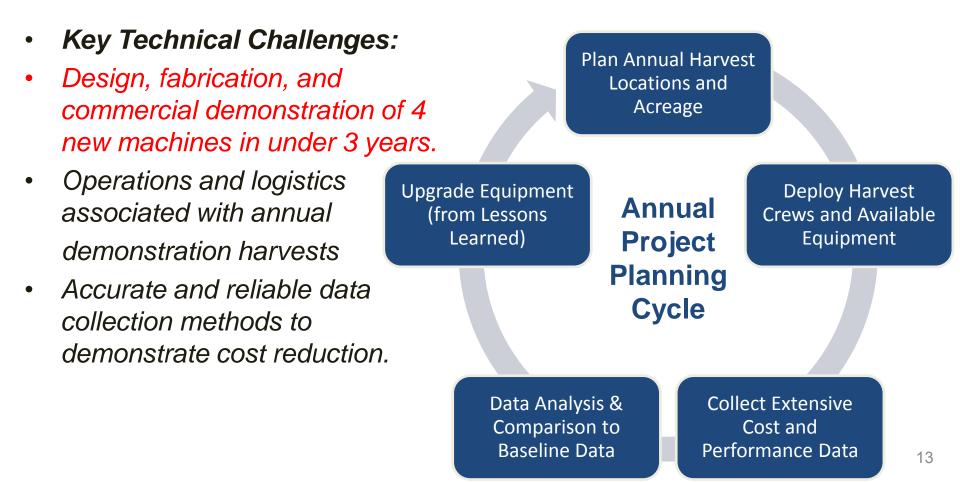

- Feedstock
 Required:
 - ~560,000 ton/yr or more
 - ~ 80 or more
 deliveries per day
- Focus Feedstocks:
 - Corn stover
 - Wheat straw
 - Milo stubble

- Energy crops (Switchgrass, Miscanthus, Biosorghum)

Conventional Equipment (One Example)


Self Loading Trailer System

- Strategy Background
 - Concept based on decades of development and process evolution in the U.S. cotton and other industries
 - Everything is based on standard, proven, off-the-shelf equipment significant
 - With small improvements and a new integration/application


Proposed / Developing System

2 – Technical Approach

• Assembled a proven multi-disciplinary team, with complimentary capabilities to perform all required functions from crop establishment to delivery and processing at the end-use facility.

2 – Management Approach

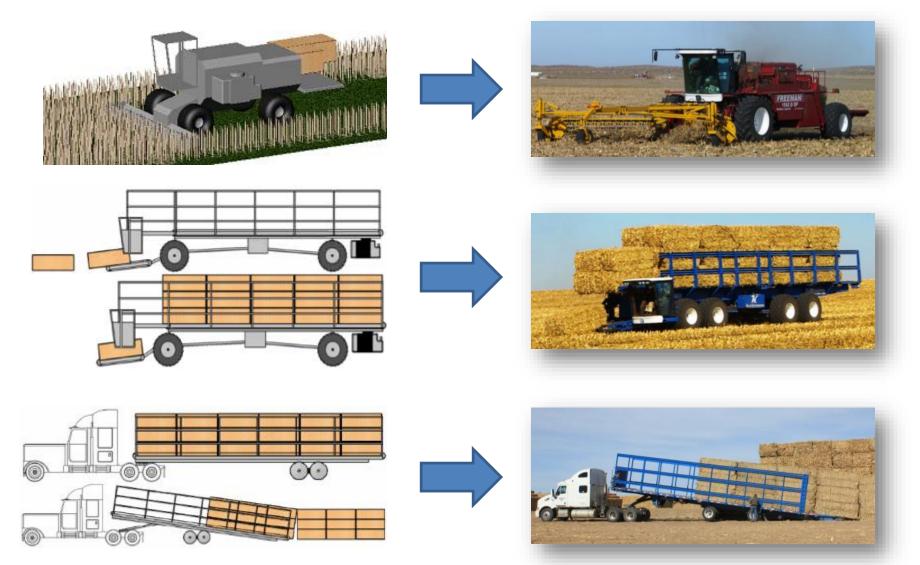
- Assembled a proven multi-disciplinary team, with complimentary capabilities to perform all required functions from crop establishment to delivery and processing at the end-use facility.
- Planned equipment development schedule Prepare Scope, Schedule, and for 3 yr period. (and stuck to it) **Milestones** Used DOE budget and progress reporting system to track and report progress Coordinate tasks with Key Management **Evaluate Progress and** subgroups of key Challenges: Report to Team personnel Coordinating the project activities of over 15 companies across 5 project tasks. Monitor project activity through regular communication and reports

2 – Critical Success Factors

- Eliminate all possible separate operations
 - Mowing/conditioning, raking, trips through field
- Handle fewer pieces
 - Increase bale densities
 - Goal is to gross out a truck (> 12 lb/ft³)
 - Accumulate bales in field
 - Drop 2 or 3 from baler, in strategically good locations if possible (field side)
 - Modularize as soon as possible into truckload package
- Automate operations
 - Loading/Unloading onto trucks, and on process line

- 2 Critical Success Factors (cont.)
- Reduce life cycle costs of equipment
 - Increase life and reliability
 - Reduce fuel use
- Increase biomass yields
 - Efficiently collect the maximum (sustainable) amount of biomass per acre
- Maintain quality control from start to finish
 - Pays huge dividends at processing facility
- Market and Business
 - Proven performance & value (Many thousands of tons)
 - Growing demand for high-tonnage biomass supplies

3 - TECHNICAL ACCOMPLISHMENTS/ PROGRESS/RESULTS



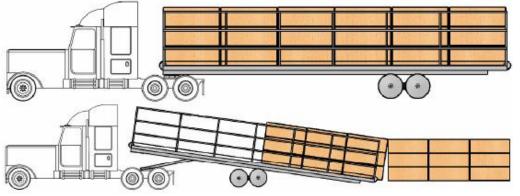
(Launch Video here)

SYSTEM ANIMATION & INITIAL DEMONSTRATIONS

We Have Come a Long Way...

Self-propelled Baler with Vermeer Basket Rake

Self Propelled Baler Progress


- Goals/Benefits:
 - Eliminate 1 or more passes through field
 - Demonstrate flexibility of SPB using
 - different header/implements
 - Bale densities from 11 & 12 lb/ft³
- Continued Development:
 - Improved Bale Density
 - Dirt removal systems
 - "Passive" gravity driven
 - "Active" air assisted
 - Windrow merging header
 - Improved reliability (baler module)

Self-Loading Trailer (SLT)

THEN . . .

FDC Enterprises Grasslands

Services

NOW . . .

Fundamental Load / Unload Times (~5 minutes) and operation confirmed. Field demonstrations are ongoing.

Goals/Benefits:

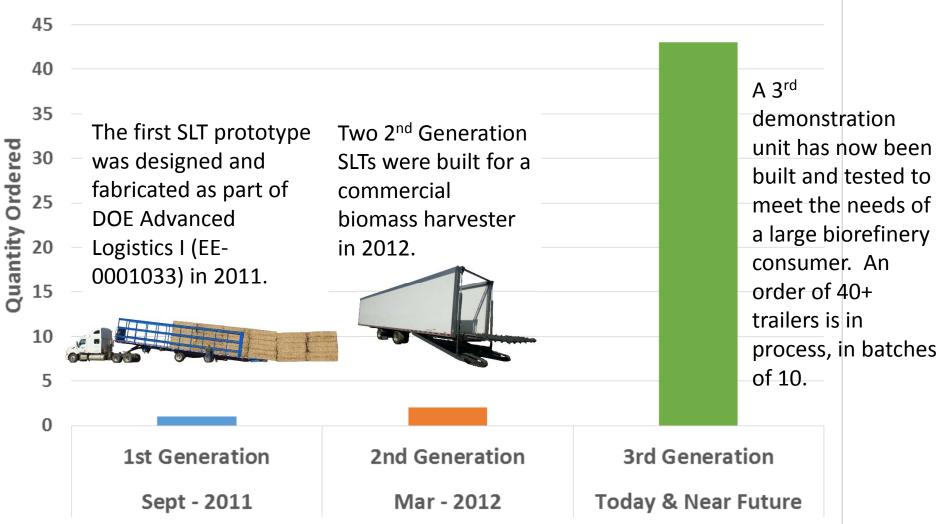
NTARES Group Incorporated

Load/unload one "module" in

MacDon

- 5 8 minutes
- Remove the need for additional loading/unloading equipment (some cases)
- Continued Development
 - 2nd generation SLT
 - Walking floor
 - Improved pickup
 - Lower loading angle
 - Low-friction solid walls
 - Backhaul capability for DDGs, treated feed

2nd GenerationSLT :



Company FDC Enterprises Grasslands Services

Example of Early Commercialization

Orders for Self Loading Trailers (SLTs) Over Time

FDC Enterprises Grasslands

Services

Field demonstrations are ongoing.

Bale Picking Truck (BPT) Progress

The

- Preliminary tests have shown that it will provide considerable cost reductions in roadsiding operations
- Goals/Benefits:
 - Fewer trips through the field
 - Packages 36 to 42 bales into one
 "module"
 - Direct transfer to SLT fieldside
- Continued Development
 - Continued testing and demonstration is ongoing
 - Fundamental re-design to add stacking capabilities

Heavy Crop Header (MacDon)

Group Incorporated * MacDon Kelderman

MacDon has fully developed and demonstrated the prototype header and knows what needs to be done to take the next development step.

A Division of Allied Systems Company

FDC Enterprises Grasslands

Services

Heavy Crop Header Progress

- Goals/Benefits:
- Heavy crop header can operate at 4 to 6 mph while conditioning crop well for efficient baler pick-up
- Continued Development
 - Implement design improvements into new prototype
 - On hold pending demonstrated market pull

Mac Don

The harvesting specialists

Overview of Miscanthus Harvest Locations

Miscanthus Harvest Field Summaries

Pennsylvania	New Jersey
Ohio Illinois Oaktown, IN Smithfield, KY Virginia	Dere ave
Russellville, KY North Carolina	The second
Memphis, TN South Carolina	Yield (tpa)
Louisville, MS Alabama Mississippi	• No Data • 0 - 1.14 • 1.15 - 1.17
Tifton, GA	1.18 - 3.60
Cairo, GA	3.61 - 7.09
isiana)	

	Bale			Yield
Location	Count	Tons	Acres	(tpa)
Russellville,				
KY	672	461	65	7.1
Smithfield,				
KY	99	59	9	6.5
Oaktown, IN	28	18	5	3.5
Louisville,				
MS	44	28	24	1.2
Memphis,				
TN	13	8	7	1.2
Cairo, GA	34	8	N/A	N/A
Tifton, GA	N/A	N/A	N/A	N/A

Single-Pass Harvest System (FDCE)

Data Collection Activities

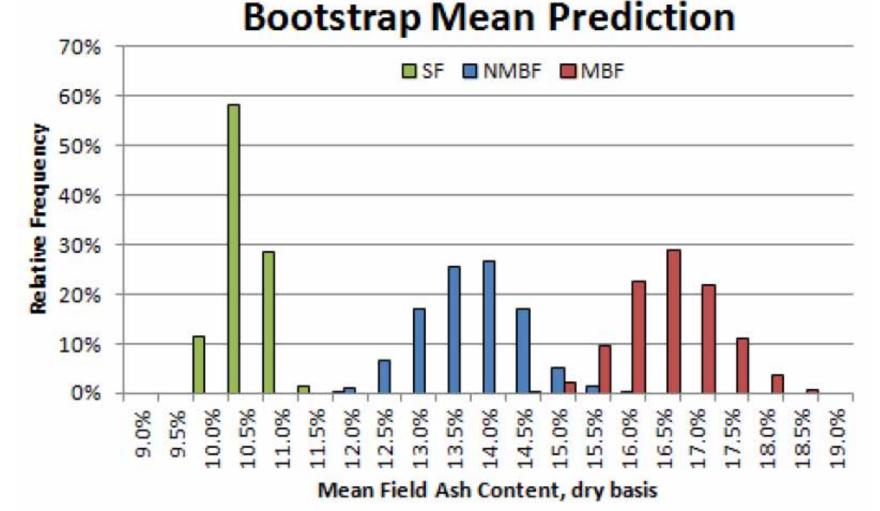
- Multiple rake / tractor / baler combinations
 - Field rates per operation
 - Time, labor, fuel requirements per operation
 - Maintenance issues / costs (including downtime)
- Bale properties (~10% of bales)
 - Ash (biomass + dirt)
 - Moisture
- GIS-Based System Development
 - Inventory mgt, chain of custody, GHG tracking, sustainability tracking & reporting

Detailed Cost & Performance Data Collection

• Labor, Fuel, Equipment, Parts, Travel, Freight, Field Rates

Quality & Sustainability Data Collection

Ash and moisture sampling for all harvest operations



 Active participation in sustainability standard development and trial implementation

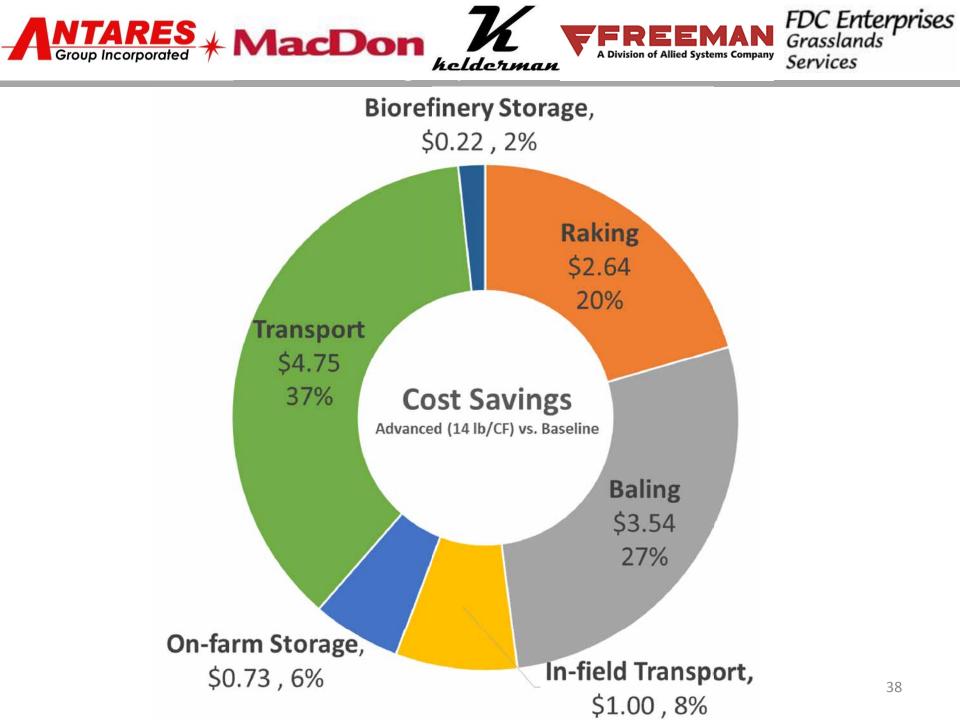
INL Ash Analysis

• 2011 Corn Stover harvest, Kansas

Antares Group Incorporated * MacDon Kelderman FREEMAN Kelderman FREEMAN A Division of Allied Systems Company FDC Enterprises Grasslands Services

Accomplishments to Date

- All equipment fabricated and demonstrated
 - SPB: Removed one pass through the field
 - BPT: Required fewer trips through the field (vs. baseline) and packages 36 – 42 bales into one "module"
 - SLT: Loaded/unloaded a bale "module" in 5 8 minutes and removed the need for additional loading/unloading equipment
 - Heavy Crop Header: Operated at 4 to 6 mph in dense energy crops while conditioning crop well for efficient baler pick-up
- Collected performance/cost/quality data on all operations
- Measured baseline and advanced harvesting costs and performance
- Met cost reduction target (\$13.00/ton) (modeled results)
- +~15,000 acres of corn stover and grasses harvested & extensive data collection & sampling



Results of Independent Analysis

	Baseline		Advanced (11.5 lb/ft3)		Advanced (14 lb/ft ³)	
Operation	Cost by operation (\$/dry ton)	Cumulative cost (\$/dry ton)	Cost by operation (\$/dry ton)	Cumulative cost (\$/dry ton)	Cost by operation (\$/dry ton)	Cumulative cost (\$/dry ton)
Combine	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Shredding	\$3.98	\$3.98	\$3.98	\$3.98	\$3.98	\$3.98
Raking	\$3.96	\$7.94	\$1.32	\$5.29	\$1.32	\$5.29
Baling	\$12.82	\$20.76	\$9.90	\$15.20	\$9.28	\$14.58
In -field transportation	\$2.93	\$23.70	\$2.28	\$17.48	\$1.93	\$16.50
On-farm Storage	\$3.23	\$26.93	\$3.12	\$20.60	\$2.50	\$19.00
Transportation (inc. loading/unloading)	\$8.60	\$35.53	\$4.46	\$25.06	\$3.85	\$22.85
Biorefinery storage	\$0.77	\$36.30	\$0.67	\$25.73	\$0.55	\$23.40
Grinding	\$14.48	\$50.78	\$14.48	\$39.55	\$14.48	\$36.76
TOTAL COST	\$50.78		\$40.21		\$37.89	
COST IMPROVEMENT				\$10.56		\$12.89

Disclaimer: IBSAL model is generalized for high-level (supply shed) modeling and is not designed for detailed analysis.

Source: Webb et al. (2013). Simulation of the DOE High-Tonnage Biomass Logistics Demonstration Projects. Oak Ridge, TN: Oak Ridge National

4 - Relevance

- The project's objectives align with the BETO's goals to provide biomass feedstocks at or below \$80/DT.
 - The equipment developed under this project has demonstrated potential to help reach this goal.
- Independent modeling (IBSAL) verified that potential cost reduction goals (\$13/DT) were accomplished.
 This aligns with BETO's goals for "Terrestrial Feedstocks"
- Demonstrated ability to meet typical refinery quality specs for delivered bales
 - And some configurations that will *not* meet specs
- Tech Transfer/Marketability
 - Large initial order for trailers being filled now
 - Manufacturers own IP, will market and build

5. Future Work

- All critical project milestones have been accomplished. The project is now in the final data analysis and reporting stage and will officially end in June 2015.
- Final deliverables include:
 - Final performance/cost analyses and reporting
- Equipment OEMs will continue to upgrade and improve the equipment to meet the needs of the industry.
 - Will be a function of demonstrated performance, supplemental R&D funding availability, market demand
 - Part of another on-going DOE project

Summary

MacDon

1. Approach:

- Design, build, test, improve, re-test. Measured performance & costs.

C Enterprises

Services

- 2. Accomplishments:
 - All equipment developed and demonstrated, improvements ongoing
 - Significant equipment performance and biomass quality data collection
- 3. Relevance:
 - Significant cost reductions and reliability improvements are needed in feedstock delivery systems—primary focus of this project.

4. Success Factors and Challenges

- Success Factors: Market pull/growth, proven value on many tons, More R&D
- Challenges: More heavy crop acres needed, more demonstration activities needed, continued refinement of equipment, continued efforts to reduce dirt
- 5. Future Work/Technology Transfer
 - All project objectives have been satisfied
 - Final project tasks include final performance/cost analyses and reporting
 - Equipment manufacturers are undergoing commercialization
 - Rate will be a function of demonstrated performance, supplemental R&D funding availability, market demand