

ENERGY Energy Efficiency & Renewable Energy

Pathways to Hydrocarbon Biofuels:

Update on the Office's Techno-Economic Analysis Efforts

March 25, 2015

Alicia Lindauer

Technology Manager Strategic Analysis

Jay Fitzgerald

ORISE Fellow

Conversion R&D

1 | Bioenergy Technologies Office eere.energy.gov

Overview

- Progress on pathways to hydrocarbon fuels
- Purpose of Techno-Economic Analysis (TEA) and design cases
- TEA-Sustainability Coordination
- Request for Information (RFI): Input on Biofuel Pathways
- How BETO uses the design cases to inform R&D strategy

Representative Biofuel Pathways

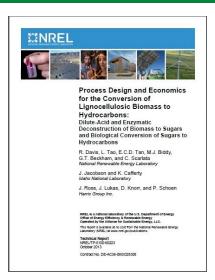
Hydrocarbon Biofuel Pathways	Category		
Whole Algae Hydrothermal Liquefaction	Wet Feedstock Conversion		
Algal Lipid Extraction and Upgrading to Hydrocarbons	vvet reedstock conversion		
Biological Conversion of Sugars to Hydrocarbons	Low Temperature Conversion		
Catalytic Upgrading of Sugars to Hydrocarbons			
Ex-Situ Catalytic Pyrolysis			
In-Situ Catalytic Pyrolysis	Direct Liquefaction		
Fast Pyrolysis and Upgrading			
Syngas to Mixed Alcohols to Hydrocarbons	Indirect Liquefaction		

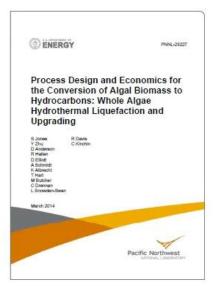
Criteria considered included:

- Data availability across the full pathway
- Feasibility of achieving cost goal of \$3/gge
- Broadly representative to encompass a range of technologies in the feedstock and conversion space

 U.S. DEPARTMENT OF LENergy Efficiency &

Renewable Energy


Techno-Economic Analysis (TEA) and Design Reports


Purpose

- Setting R&D priorities
- Guiding program direction
- Identifying technology process routes and prioritize funding
- Benchmarking and tracking progress against goals

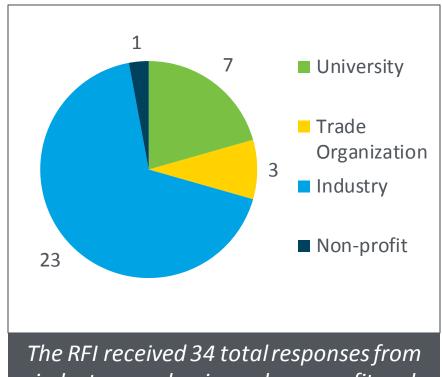
Design Case

- Target case that includes preliminary identification of data gaps and R&D needs
- Based on best available public information
- Includes an economic and environmental sustainability assessment
- Documented in a peer-reviewed Design Report
- Updated when sufficient advancements are made to the state of understanding of the process design

Pathway TEA – Sustainability Coordination

- Goal: Sustainable and economic deployment of biofuel
- Combined TEA and environmental sustainability analysis helps to facilitate biorefinery designs that are economically feasible and minimally impactful to the environment
- Sustainability has historically been an underlying theme in TEA.
- Beginning in 2013, all new design cases and state-oftechnology reports include a section on sustainability with metrics and sensitivity analysis

Design Report Environmental Sustainability Metrics				
GHG emissions	kg CO2e/GJ			
Conversion Plant Fossil Energy Consumption	MJ/MJ			
Biomass carbon to fuel efficiency	C in fuel/total input C			
Water Consumption	m3/day, gal/gal			
Fuel Yield	GGE/dry ton			


Pathway Status Update

Category	Pathway	Design Report	Peer Review Presentation	
Wet Feedstock	Whole Algae Hydrothermal Liquefaction (AHTL)	Published March, 2014	Algae, Tuesday 4:15-4:45 pm "Hydrothermal Liquefaction Model Development"	
Conversion	Algal Lipid Extraction Upgrading to Hydrocarbons (ALU)	Published September, 2014	Algae, Tuesday 3:45-4:15 pm "Algal Biofuels Techno-Economic Analysis"	
Low to Hydrocarbons		Published in October, 2013	BC, Monday 3:15-3:45 pm "Biochemical Platform Analysis"	
Temperature Conversion	Catalytic Upgrading of Sugars to Hydrocarbons	Published March, 2015	BC, Monday 3:15-3:45 pm "Biochemical Platform Analysis"	
Fast Pyrolysis and Upgrading Direct		Published November, 2013	TC, Monday 1:20-1:50 pm "Analysis and Sustainability Interface"	
Liquefaction	Ex Situ Catalytic Pyrolysis	Published March,	TC, Thursday 9:45-10:15 "Thermochemical Platform Analysis"	
	In Situ Catalytic Pyrolysis	2015		
Indirect Liquefaction	Hydrocarbons		TC, Thursday 9:45-10:15 "Thermochemical Platform Analysis"	

Request for Information: Input on Biofuel Pathways

- In May 2014, BETO issued a Request for Information (RFI) seeking stakeholder input on:
 - 1) the Office's eight representative biofuel pathways, and
 - any other pre-commercial 2) pathways the Office should consider.

industry, academia, and non-profit and trade organizations.

Category I: Input on Representative Pathways

- Respondents were asked for input on BETO's eight representative pathways, including:
 - 1. Pathway details;
 - 2. Critical barriers to; and
 - 3. Criteria that should be considered in evaluating new pathways.
- Respondents provided information on the performance of their pathways, providing an insight into industry performance of the representative pathways.
- Some respondents chose to provide proprietary information.

Pathway Characteristics
Product yields
State of technology
Process economics
Near-/mid-/long-term
techno-economic
potential
Time horizon for
commercial relevance
Feedstock
availability/flexibility
Potential volumetric
impact in 2030
Environmental
performance
Co-product economics

Category I: Responses by Pathway

Category	Pathway	Number of Responses
	Fast Pyrolysis and Upgrading	0
Direct Liquefaction	Ex-Situ Catalytic Pyrolysis	1
	In-Situ Catalytic Pyrolysis	1
Low Temperature	Biological Conversion of Sugars to Hydrocarbons	4
Conversion	Catalytic Upgrading of Sugars to Hydrocarbons	2
Wet Feedstock	Whole Algae Hydrothermal Liquefaction (AHTL)	6
Conversion	Algal Lipid Extraction Upgrading to Hydrocarbons (ALU)	5
Direct Liquefaction	Syngas Upgrading to Hydrocarbons	6

Category II: Input on Additional Pathways

- Respondents were asked for information about additional pathways not included in BETO's suite of eight representative pathways, including:
 - 1. Pathway details;
 - 2. Critical barriers; and
 - Criteria that should be considered in evaluating new pathways.
- Information provided on 18 additional pathways
- Responses also included general comments on BETO's strategy and approach.

Pathway Characteristics

Product yields

State of technology

Process economics

Near-/mid-/long-term

techno-economic

potential

Time horizon for

commercial relevance

Feedstock

availability/flexibility

Potential volumetric

impact in 2030

Environmental

performance

Co-product economics

Category II: Additional Pathways

Enzymatic Conversion of Sugars to High-Yield Hydrogen	Solvent enhanced hydrothermal liquefaction
Hydrolysis and Catalytic Decarboxylation	Heterotrophic fermentation
Upgrading biogas to hydrocarbon fuels	Algae-based Photosynthetic Conversion of CO ₂
CO-rich industrial gas residues to chemical intermediates, CO ₂ gas fermentation to hydrocarbon intermediates (lipids)	Other Algae-derived non-drop in fuels
Bio-Oil Gasification	Other Algae-derived non-fuel products
Pyrolysis with Liquid-Phase Post Processing of Bio-Oils	Energy Efficient Extraction of Bio-oils from Algal Biomass
Thermochemical Conversion of Ethanol to Butanol	Hydrocarbon Biofuels from Olefins
Multi-Modal Clean Thermal Biomass Conversion – biomass heated in a pressurized reactor yielding a biomethane gas and biochar	Conversion of Biomass to High Energy Density Oxygenated Fuel Blendstocks
Hydrothermal Liquefaction of Biosolids from Wastewater Treatment	Sewage Sludge-to-Power

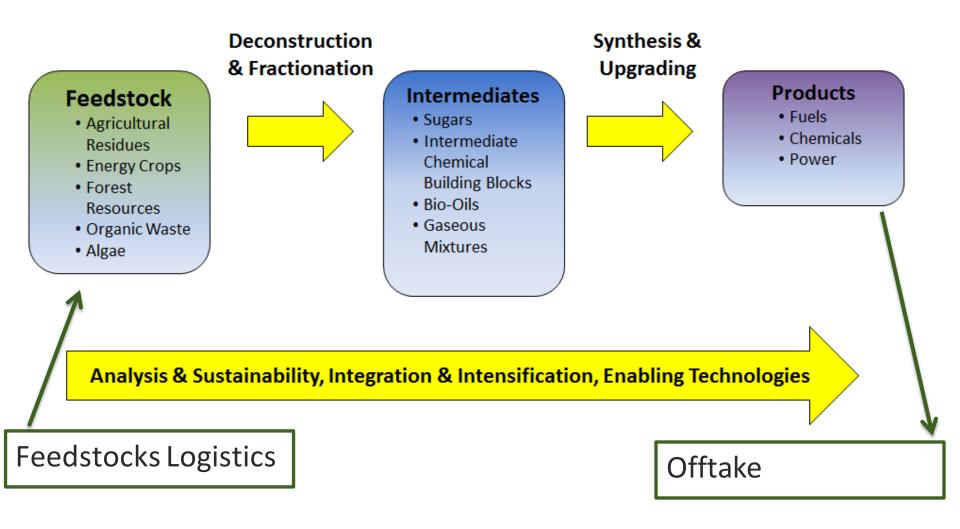
RFI: Additional Comments and Next Steps

RFI responses also touched on:

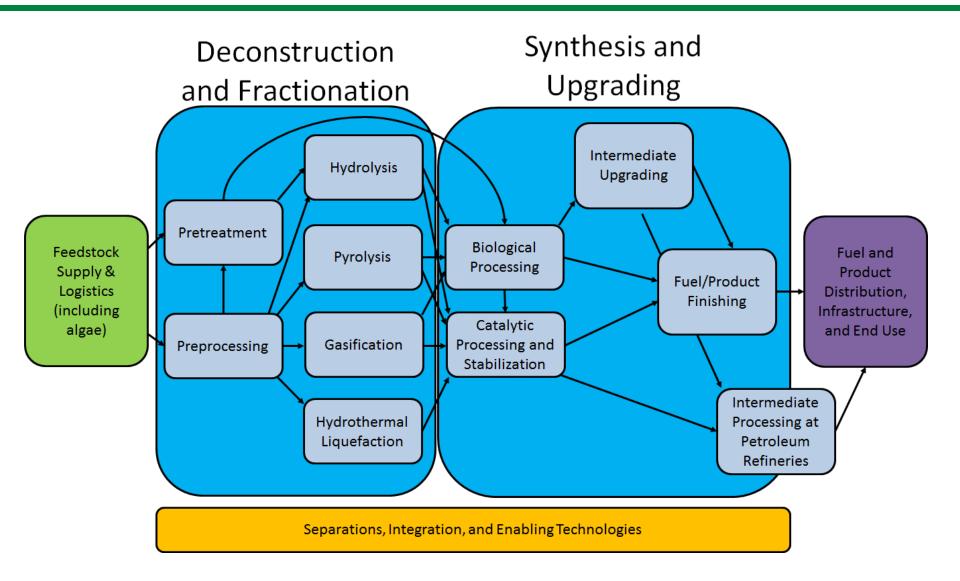
- Non-hydrocarbon biofuels
- Bioproducts/co-products
- BETO's pathway approach

Next Steps:

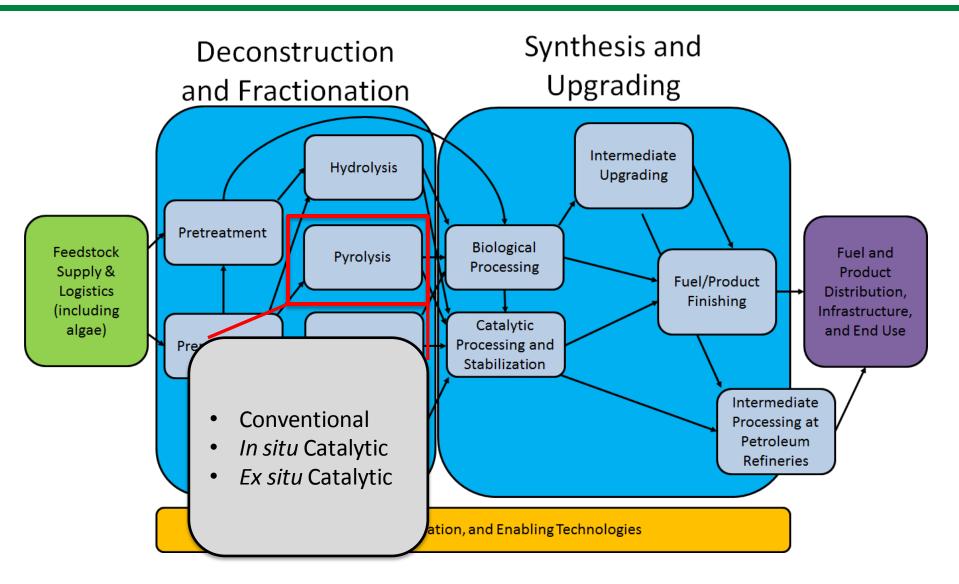
Plan to issue similar RFI on a recurring basis

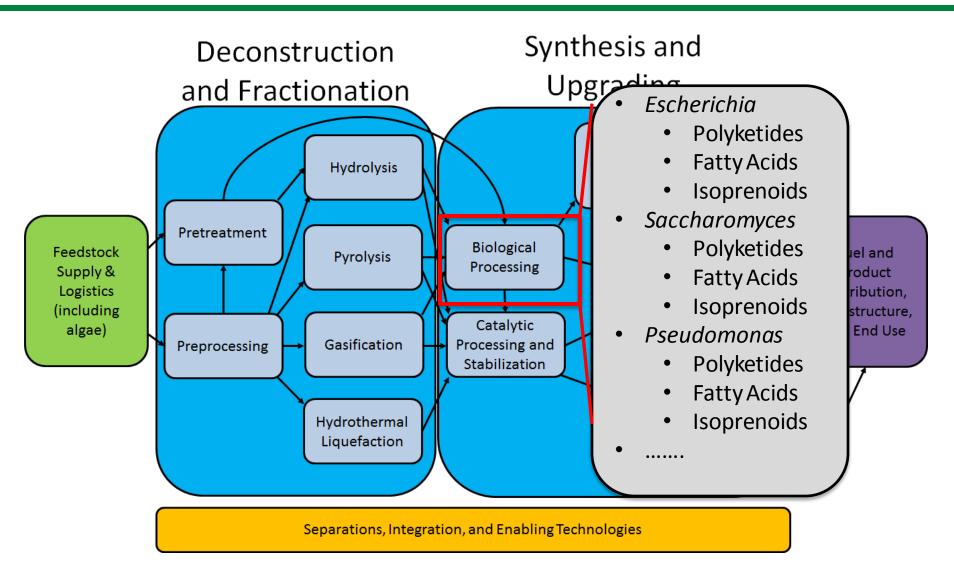


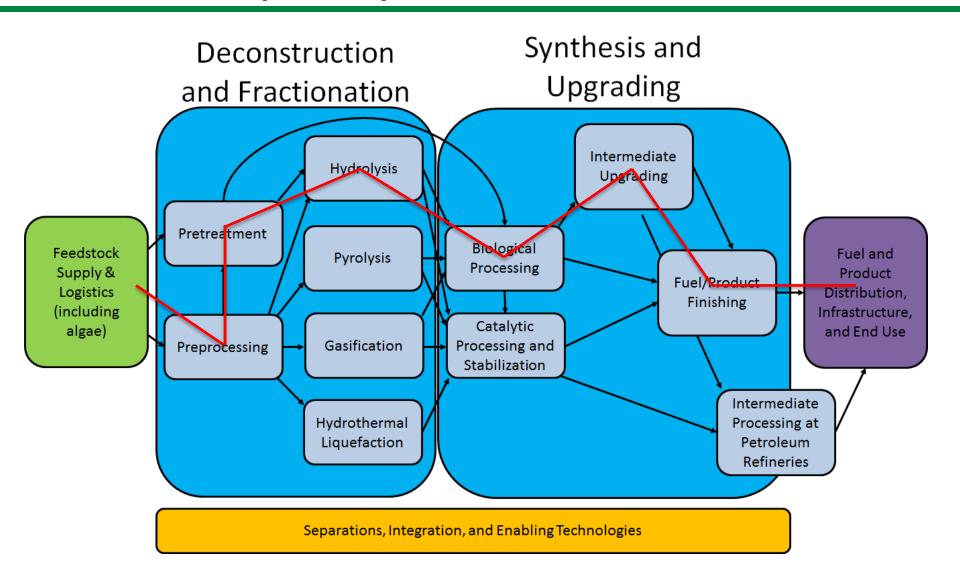
Pathways, Design Cases and Conversion


Two take away questions:

- What is BETO's R&D approach and how do design cases and pathways map on to that approach?
- How do the results from design cases help to inform Conversion R&D?


What does a conversion pathway look like?


Pathways are collections of technologies and interfaces


Within each technology area multiple variations exist

And can be quite granular...

What does a pathway look like in this context?

The goal of this R&D approach

- Diversify R&D in recognition that ultimately industry will decide which pathways are the most viable
- Enable progress in one technology to have effects across multiple different pathways
 - A new preprocessing technology might enable cost reductions in all pathways
 - A new hydrolysis technology would enable multiple low-temperature deconstruction pathways
- Recognize that different pathways involve technologies at various levels of development (components with different TRLs)

Design cases evaluate TEA for full pathways and enable LCA

Biological Renewable Diesel Blendstock (RDB) Process Engineering Analysis

Dilute Acid Pretreatment, Enzymatic Hydrolysis, Hydrocarbon (FFA) Bioconversion, Hydrotreating to Paraffins (RDB)

All Values in 2011\$

Minimum Fuel Selling Price (MFSP): MFSP (Gasoline-Equivalent Basis):

> Contributions: Feedstock Enzymes

> > Non-Enzyme Conversion

RDB Production RDB Yield

Bioconversion Metabolic Yield Feedstock + Handling Cost Internal Rate of Return (After-Tax)

Equity Percent of Total Investment

\$5.35 /gal

\$5.10 /GGE

\$1.85 /gal (\$1.76/GGE)

\$0.39 /gal (\$0.37/GGE)

\$3.11 /gal (\$2.96/GGE)

31.3 MMgal/yr (at 68 °F) (32.9 MM GGE/yr)

43.3 gal / dry U.S. ton feedstock (45.4 GGE/ton)

0.284 kg FFA/kg total sugars (79% of theoretical)

\$80.00 /dry U.S. ton feedstock

10%

40%

Manufacturing

Feedstock + Handlin Sulfuric Acid Ammonia (pretreatm Caustic Glucose (enzyme pro Hydrogen Other Raw Materials Waste Disposal

Net Electricity

Fixed Costs

Process Design and Economics for the Conversion of Lignocellulosic Biomass to **Hvdrocarbons:** Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Biological Conversion of Sugars to

Hydrocarbons R. Davis, L. Tao, E.C.D. Tan, M.J. Biddy, G.T. Beckham, and C. Scarlata National Renewable Energy Laboratory

J. Jacobson and K. Cafferty Idaho National Laboratory

J. Ross, J. Lukas, D. Knorr, and P. Schoen Harris Group Inc

Capital Costs				
Pretreatment	\$51,400,000			
Neutralization/Conditioning	\$2,200,000			
Enzymatic Hydrolysis/Conditioning/Bioconversion	\$75,400,000			
On-site Enzyme Production	\$12,400,000			
Product Recovery + Upgrading	\$26,600,000			
Wastewater Treatment	\$60,100,000			
Storage	\$3,400,000			
Boiler/Turbogenerator	\$76,000,000			
Utilities	\$8,800,000			
Total Installed Equipment Cost	\$316,300,000			

Conital Coats

Design cases evaluate TEA & enable LCA for full pathways

Biological Renewable Diesel Blendstock (RDB) Process Engineering Analysis

Dilute Acid Pretreatment, Enzymatic Hydrolysis, Hydrocarbon (FFA) Bioconversion, Hydrotreating to Paraffins (RDB)

Minimum Fuel Selling Price (MFSP): MFSP (Gasoline-Equivalent Basis):

> Contributions: Feedstock Enzymes

> > Non-Enzyme Conversion

RDB Production RDB Yield

Biocon ersion Metabolic Yield Feedstock + Handling Cost Internal Rate of Return (After-Tax) Equity Percent of Total Investment

\$316,300,000

\$5.35 /gal

\$5.10 /GGE

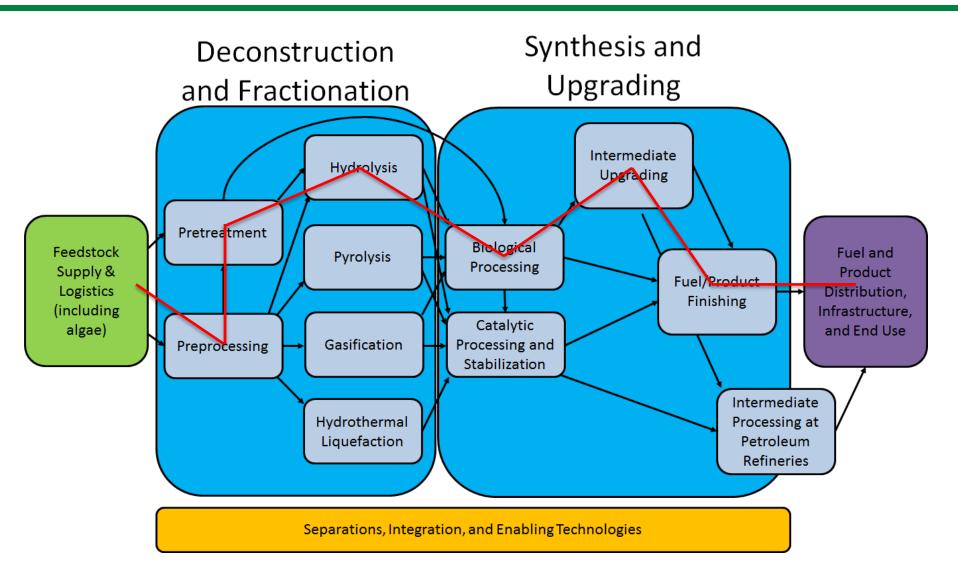
\$1.85 /gal (\$1.76/GGE) \$0.39 /gal (\$0.37/GGE) \$3.11 /gal (\$2.96/GGE)

31.3 MMgal/yr (at 68 °F) (32.9 MM GGE/yr) 43.3 gal / dry U.S. ton feedstock (45.4 GGE/ton)

0.284 kg FFA/kg total sugars (79% of theoretical)

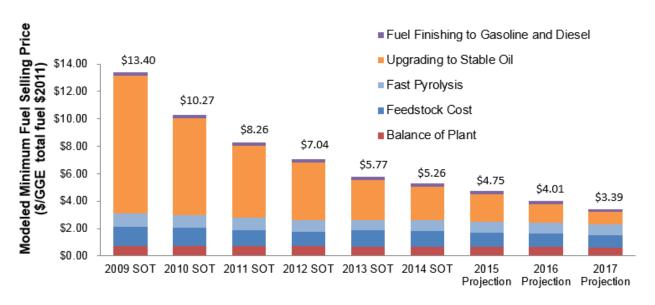
\$80.00 /dry U.S. ton feedstock

10% 40%


Capital Costs	
Pretreatment	\$51,400,000
Neutralization/Conditioning	\$2,200,000
Enzymatic Hydrolysis/Conditioning/Bioconversion	\$75,400,000
On-site Enzyme Production	\$12,400,000
Product Recovery + Upgrading	\$26,600,000
Wastewater Treatment	\$60,100,000
Storage	\$3,400,000
Boiler/Turbogenerator	\$76,000,000
Utilities	\$8.800.000

O-------

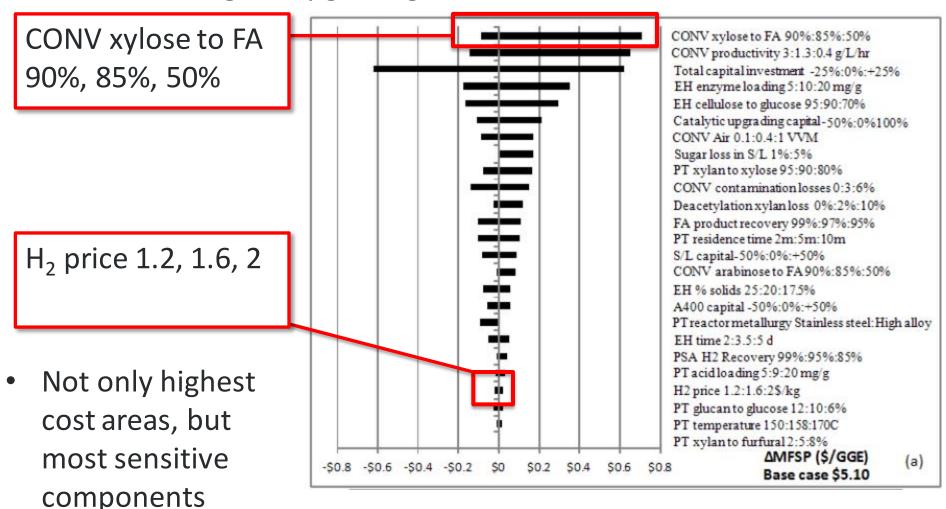
Dilute Acid Pretreatment, Enzymatic Hydrolysis, Hydrocarbon (FFA)
Bioconversion, Hydrotreating to Paraffins


Total Installed Equipment Cost

Mapping a representative pathway within conversion

Using a single design case to inform R&D

Take the Fast Pyrolysis and Upgrading case



- Allows us to focus R&D on the areas which contribute most to production cost
- Allows us to show progress from year to year in a relevant metric (MFSP)

Using a single design case to inform R&D - Sensitivity

Take the Biological Upgrading case:

Related design cases can show overlapping R&D needs

Current Design Cases

Ex Situ Catalytic Pyrolysis

In Situ Catalytic Pyrolysis

Fast Pyrolysis and Upgrading

Syngas to Mixed Alcohols to Hydrocarbons

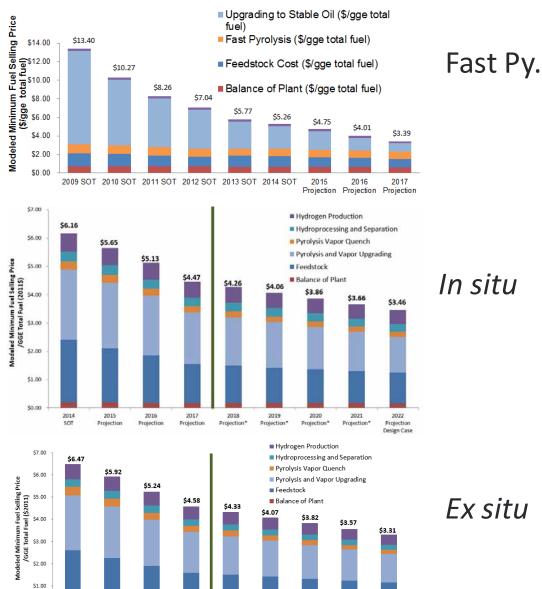
Biological Conversion of Sugars to Hydrocarbons

Catalytic Upgrading of Sugars to Hydrocarbons

Whole Algae Hydrothermal Liquefaction

Algal Lipid Extraction and Upgrading to Hydrocarbons

High-temperature deconstruction to a bio-oil intermediate


High-temperature deconstruction to gaseous intermediates

Low-temperature deconstruction to sugar/organic intermediates

Upgrading of wet feedstocks

Using multiple design cases to inform R&D

2019

Projection*

2020

Projection*

2021

Projection*

2022

Projection Design Case

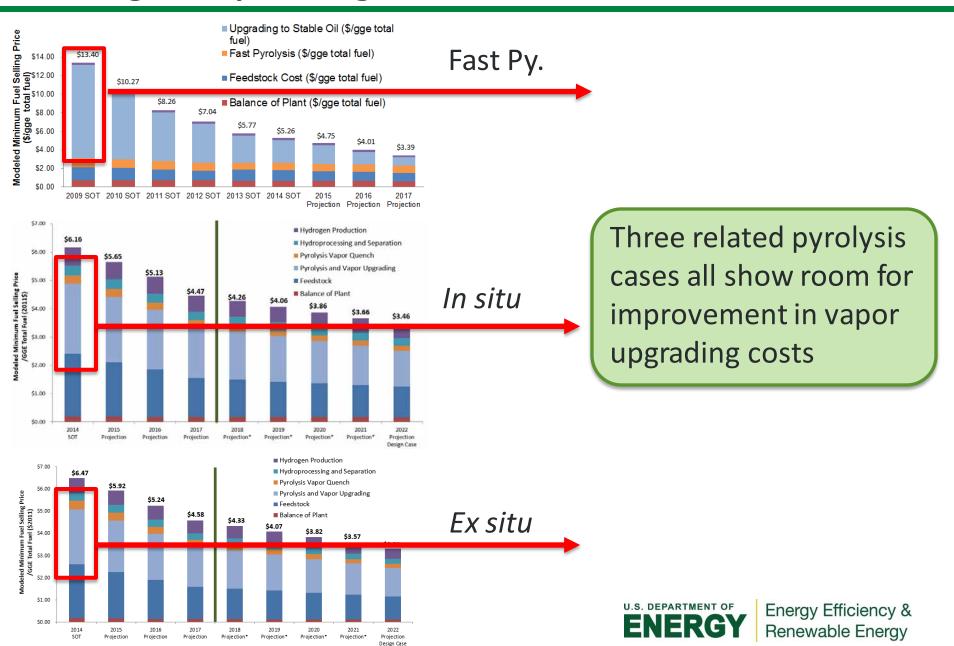
\$0.00

2014

2015

Projection

Projection


2017

Projection

Projection*

Using multiple design cases to inform R&D

Takeaway messages contribute to FOA development

CHASE (Carbon Hydrogen and Separations Efficiency)

Efficiencies in High-Temperature Processes

BCU (Biochemical Upgrading)

- Deconstruction costs down due to cellulosic ethanol progress
- Bring down upgrading costs to hydrocarbon fuels/biochemicals

Pathways, Design Cases and Conversion Conclusions

How do the results from design cases help to inform Conversion R&D?

- Allows us to focus R&D on the areas which contribute most to production cost
- Allows us to show progress from year to year in a relevant metric (MFSP)

Summary and Next Steps

- TEA is critical for guiding program direction, setting R&D priorities, and tracking progress towards goals
- In 2013, eight representative technology pathways to hydrocarbon fuels were identified
- Effort leveraged ongoing work at DOE National Labs and NABC
- Design reports have been published for 6 hydrocarbon biofuel pathways
- Representative pathways allow a technology focus guided by TEA

Next Steps

Continue to explore new pathway options (ongoing)

More information can be found on the BETO website: http://www1.eere.energy.gov/biomass/technology_pathways.html

Backup

Relevant Presentations This Week (1/2)

Platform	Day	Time	Title	Organization	PI
Terrestrial Feedstocks	Monday	10:00	Feedstock Supply Chain Analysis	INL	Jacobson
Algal Feedstocks	Tuesday	3:45	Algal Biofuels Techno- Economic Analysis	NREL	Davis
	Tuesday	4:15	Hydrothermal Liquefaction Model Development	PNNL	Jones
	Monday	1:10	Biochemical Conversion Feedstock Supply Interface	NREL	Nagle
	Monday	3:15	Biochemical Platform Analysis	NREL	Davis
Biochemical Conversion	Tuesday	11:15	Waste-to-Energy Life-Cycle Analysis, Waste-to-Energy Techno-Economic Analysis	ANL	Han
	Tuesday	3:45	Catalytic Upgrading of Sugars	NREL	Johnson
	Wednesday	1:00	Biological Upgrading of Sugars	NREL	Beckham

Relevant Presentations This Week (2/2)

Tuesday

3:40

Platform	Day	Time	Title	Organization	PI
Thermo-	Monday	1:20	Analysis and Sustainability Interface	PNNL	Jones
	Monday	4:15	Thermochemical Feedstock Interface	NREL	Carpenter
chemical Conversion	Tuesday	10:15	Biological Pyrolysis Oil Upgrading	NREL	Beckham
Conversion	Tuesday	2:00	Catalytic Upgrading of Pyrolysis Products	NREL	Shaidle
	Thursday	9:45	Thermochemical Platform Analysis	NREL	Dutta
	Tuesday	1:00	Strategic Analysis and Modeling	NREL	Biddy
Analysis & Sustain- ability	Tuesday	1:45	High-Level Techno-Economic Analysis of Innovative Technology Concepts	PNNL	Jones
	Tuesday	3:20	Integration of Sustainability Metrics into Design Cases and	NREL/PNNL	Biddy/ Snowden-

State of Technology Assessments

GREET Development and Biofuel

Pathway Research and Analysis

Swan

Wang

ANL

Pathways Development Timeline

March 2012

Working group convened, suite of potential pathways identified, subset selected to move forward with initial analysis

September 2012

PNNL/NREL completed joint milestone report detailing analysis effort

October 2013

Design report completed for Biological Conversion of Sugars to Hydrocarbons pathway

November 2013

Updated design report completed for Fast Pyrolysis and Hydrotreating Bio-oil Pathway

March 2014

Design report completed for Whole Algae Hydrothermal Liquefaction and Upgrading pathway

July 2012

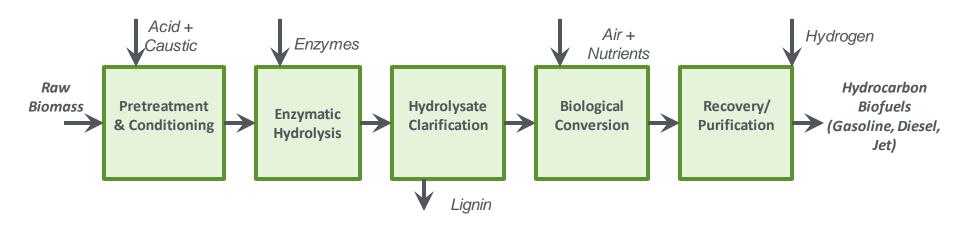
8 representative pathways selected from original suite

Preliminary TEA on proposed pathways performed by NREL and PNNL with input from other labs

April 2013

Technical memos published for 7 pathways to hydrocarbon biofuels

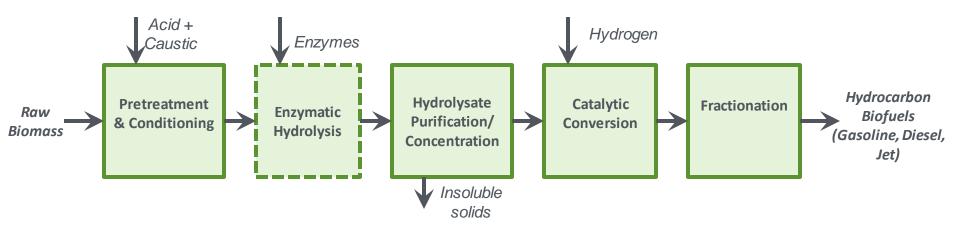
September 2014


Design report completed for Algal Lipid Extraction and Upgrading to Hydrocarbons pathway

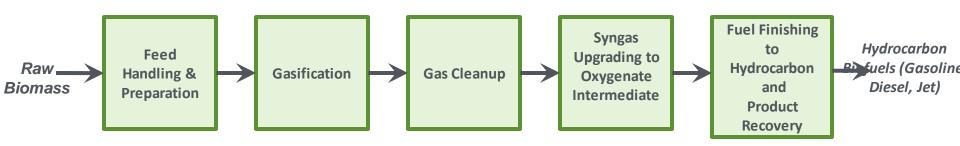
March 2015

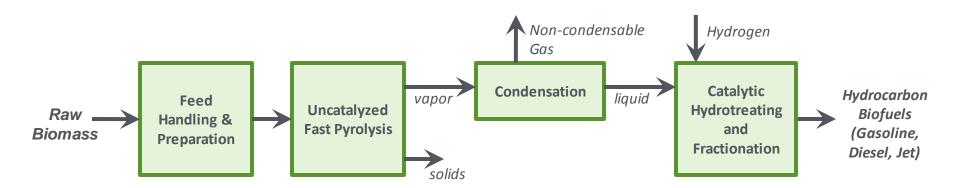
Full design cases completed for ex situ and in situ Catalytic Pyrolysis, Catalytic Upgrading of Sugars to Hydrocarbons and Syngas Upgrading

Biological Conversion of Sugars to Hydrocarbons

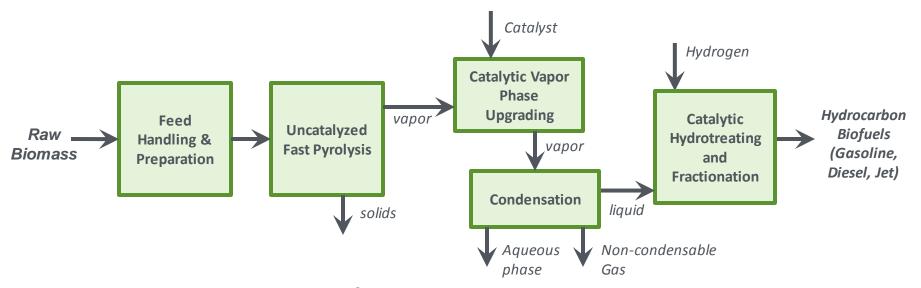


Status


- Design Case published in FY13
- http://www.nrel.gov/docs/fy14osti/60223.pdf

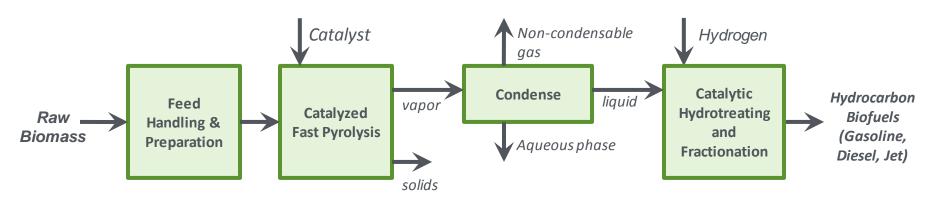

Catalytic Upgrading of Sugars to Hydrocarbons

Syngas Upgrading to Hydrocarbon Fuels

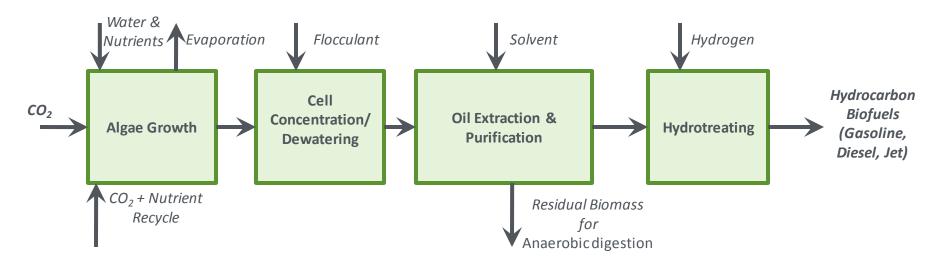


Fast Pyrolysis and Upgrading and Hydroprocessing

Biomass is rapidly heated in a fluidized bed reactor to yield vapors, which are condensed into a liquid bio-oil. This bio-oil is subsequently hydroprocessed to produce hydrocarbon biofuel blendstocks.

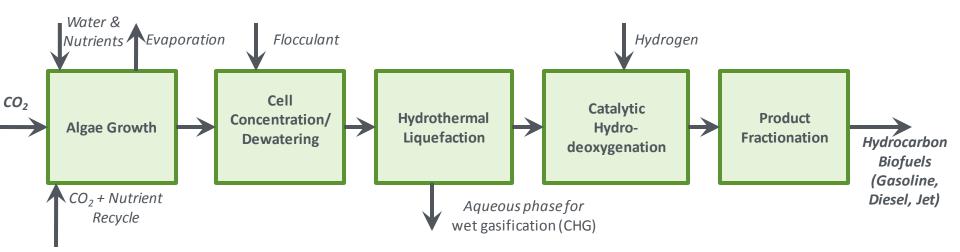

Ex situ Catalytic Fast Pyrolysis

Biomass is rapidly heated in a fluidized bed reactor containing a catalyst to yield vapors, which are catalytically modified and condensed into a partially stabilized and deoxygenated liquid bio-oil. This stable bio-oil is subsequently upgraded to produce hydrocarbon biofuel blendstocks.



In situ Catalytic Fast Pyrolysis

Biomass is rapidly heated in a fluidized bed reactor containing a catalyst to yield a partially stabilized and deoxygenated bio-oil vapor. The vapor is condensed into a liquid bio-oil and subsequently upgraded to produce hydrocarbon biofuel blendstocks.


Algal Lipid Upgrading (ALU)

Lipids are extracted from wet algal biomass via high-pressure homogenization and a hexane solvent; the algal oil can then be hydrotreated to produce advanced hydrocarbon fuels.

Whole Algae Hydrothermal Liquefaction (AHTL)

Whole algae cells are treated with heat and pressure to create bio-oil that can be hydrotreated and converted to advanced hydrocarbon fuels.

Category I: Responses by Pathway

Technology Area	Pathway	Number of Responses
Thermochemical	Fast Pyrolysis and Upgrading	0
Conversion:	Ex-Situ Catalytic Pyrolysis	1
Bio-Oils	In-Situ Catalytic Pyrolysis	1
Biochemical	Biological Conversion of Sugars to Hydrocarbons	4
Conversion	Catalytic Upgrading of Sugars to Hydrocarbons	2
Almaa	Whole Algae Hydrothermal Liquefaction (AHTL)	6
Algae	Algal Lipid Extraction Upgrading to Hydrocarbons (ALU)	5
Thermochemical Conversion: Gasification	Syngas Upgrading to Hydrocarbons	6

Pathway TEA and Sustainability Coordination

HISTORY

- TEA is a long established tool used to assess technical progress.
 Sustainability has always been an underlying theme.
- Sustainability moves to the forefront with respect to TEA, and efforts were made to integrate the two to support more optimized designs:
 - 2011: sustainability discussed in detail in the MYPP
 - 2012: began to identify appropriate indicators and metrics
 - 2013: all new design cases and SOT reports include section on sustainability, including metrics and sensitivity analysis

CONTEXT

Sustainable and economic deployment of biofuel

OBJECTIVE

 Combined TEA and environmental sustainability analysis of emerging pathways helps to facilitate biorefinery designs that are economically feasible and minimally impactful to the environment.

Pathway TEA-Sustainability Coordination

Process Models Chemcad AspenPlus Economic Models Excel

Data

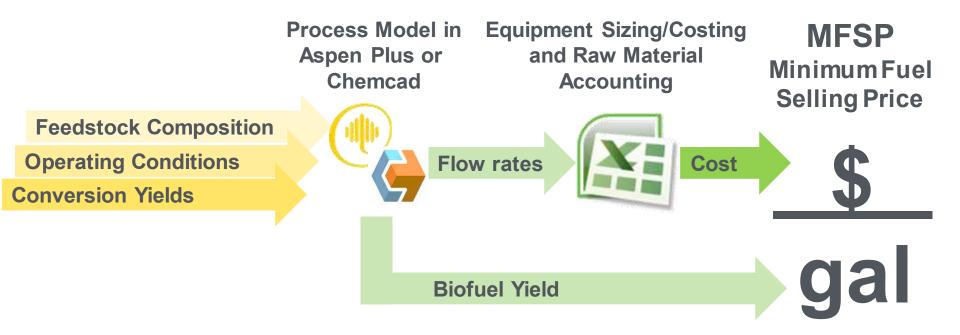
Lab researchers, Industry, Universities, Literature

Sustainability

Water usage Fossil inputs Mitigation methods

GOAL

Guide research
Track progress
Reduce costs


- Approach Consistent use of BETO technical, financial assumptions; set of defined sustainability metrics
- Critical Success Factors
 - Identify cost reduction strategies
 - Help set research goals
 - Quantify sustainability impacts
 - <u>Potential Challenges</u> risk and uncertainty:
 - Sensitivity studies to identify high cost and sustainability impact areas
 - Conclusion uncertainties risk management:
 - External peer review
 - Interaction with industry
 - Multi-lab collaborations
 - Makes per part ment of transfor refficiency & Renewable Energy

Background

- In March 2012, BETO formally initiated an effort to identify pathways to hydrocarbon fuels and intermediates
- In 2013, at the BETO Project Peer Review, BETO reported on this effort and unveiled eight representative pathways to hydrocarbon fuels chosen to help benchmark progress and guide R&D
- In May 2014, BETO issued a Request for Information seeking stakeholder input on Biofuel Pathways

Approach to Techno-Economic Analysis

- Modeling is rigorous and detailed with transparent assumptions
- Assumes nth-plant equipment costs
- Discounted cash-flow ROR calculation includes return on investment, equity payback, and taxes
- Determines the minimum selling price required for zero NPV

