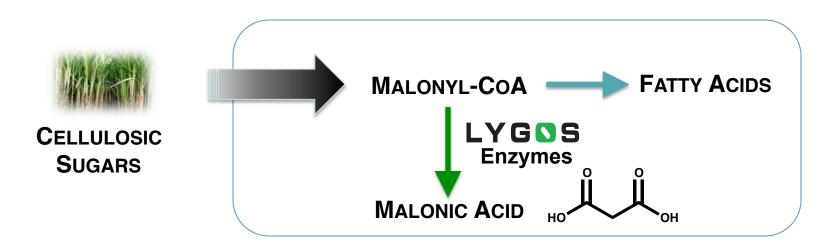

LYGS


DESIGN & OPTIMIZATION OF A BIOCHEMICAL PRODUCTION PLATFORM WITH BIOSENSOR-GUIDED SYNTHETIC EVOLUTION

March 23, 2015
DOE BETO Conversion Review

Eric J. Steen, Ph.D. Lygos, Inc.

Malonic Acid Is An Ideal Biological Product

- Malonyl-CoA lies on the carbon superhighway in biology
 - Pathway is compatible with all available, low-cost feedstocks
 - Malonyl-CoA is basis of fatty acid production (90%+ yields reported)
- Malonic acid is an ideal molecule to produce biologically
 Theoretical Yield (lb-product / lb-sugar): 1.73

$$2/3 C_6 H_{12} O_6 + 2 CO_2 \rightarrow 2 C_3 H_4 O_4$$

Goal Statement

Develop an integrated approach to biochemical pathway optimization for production of malonic acid & demonstrate path toward commercially-relevant fermentation metrics.

Relevance to US & BETO mission:

- Reduce dependence on foreign oil
 - 130 million pounds produced in foreign countries
- Increase production of fuels & chemicals from lignocellulosic feedstocks
- Decrease greenhouse gas (GHG) emissions
 - 100 million pounds of CO₂ sequestered
 - Eliminate 34 million pounds of sodium cyanide use
- Identified as Top 30 bioproduct by DOE

Quad Chart Overview

Timeline

Start: Aug 31, 2013

End: January 1, 2016

Project is 47% complete by spend (as of 12/31/15)

Budget, \$2.06MM

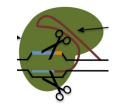
	FY 13 Costs	FY 14 Costs	Planned FY 15
DOE Funded	\$310,481	\$561,458	\$996,468
Lygos Cost Share	\$34,498	\$62,387	\$99,648

Barriers

- Bt-J: Cost effective production of bioproducts
- Productivity, yield
- Reduce cycle time for biocatalyst development
 - Design tools
 - Construction tools
- Bt-B: biomass variability

Partners

- Cellulosic sugars
- Fermentation Scaling
 - DOE-funded ABPDU


Project Overview & Technical Approach

Overarching Goal: Develop an integrated approach to biochemical pathway optimization for production of malonic acid

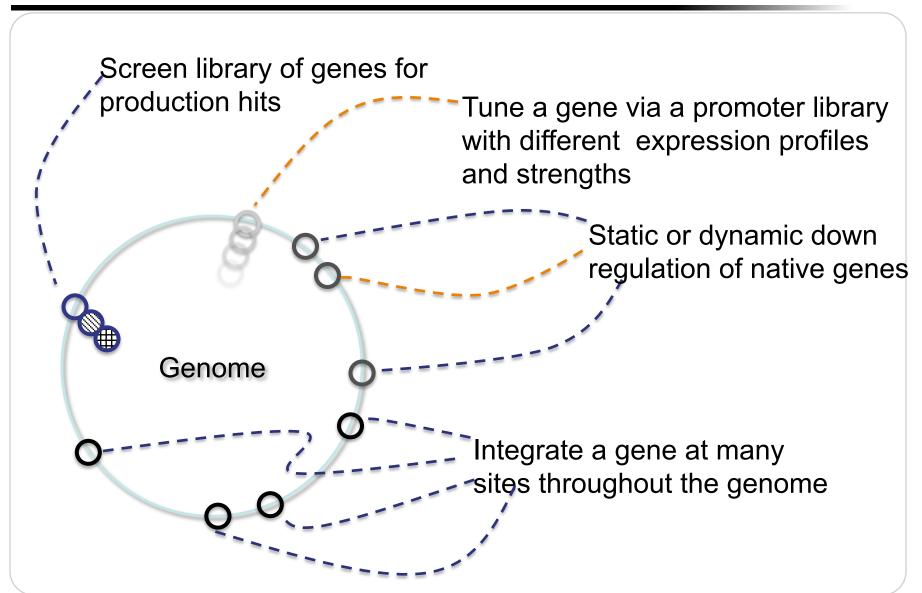
- Objective #1: Genome-scale metabolic node perturbation
 - In silico biocatalyst design & management software
 - Multiplexed biocatalyst engineering, diversity creation, & targeting tools
- Objective #2: Deploy biosensor screening method to enable faster identification of improved biocatalysts
 - Biocatalyst evaluation via biosensor screen
- Objective #3: Use statistical approach to guide biocatalyst design
- Objective #4: Translate benchtop fermentation metrics to pilot scale

in silico design

biocatalyst construction tools

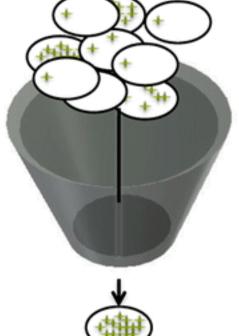
high throughput screening

scale up



Project Approach - Management

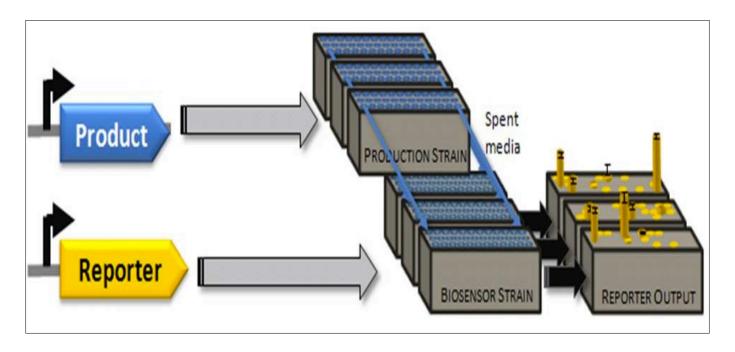
- Lygos is responsible for biocatalyst design, screening, and fermentation process development
- Leveraging expertise of partners
 - Lignocellulosic feedstocks commercial providers
 - Fermentations scale up eg., ABPDU
- Materials & facility scheduling are planned in advance
- Go/no-go decision points support objectives
 - DNA construction capacity
 - Screening capacity
 - Fermentation metrics (yield, productivity, scale)


Task A: Software tools for designing & constructing biocatalysts

Task B: Biosensor-based screening

Genetic diversity is created which results in individual biocatalysts that produce different levels of malonic acid - but we don't know which ones.

Large, diverse population

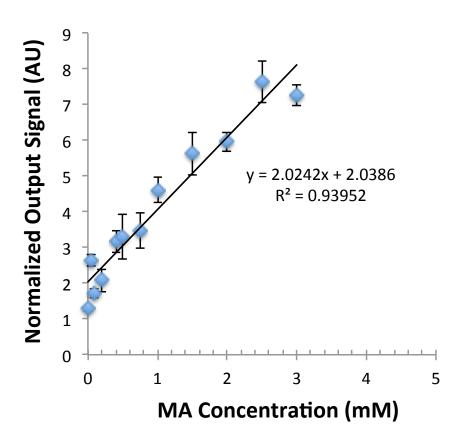

Biosensor screens can offer the most cost effective and direct measurement.

Dietrich JA et al. ACS Synthetic Biology 2013

Task B: Biosensor-based screening

Malonic acid concentration is detected via biosensor strain

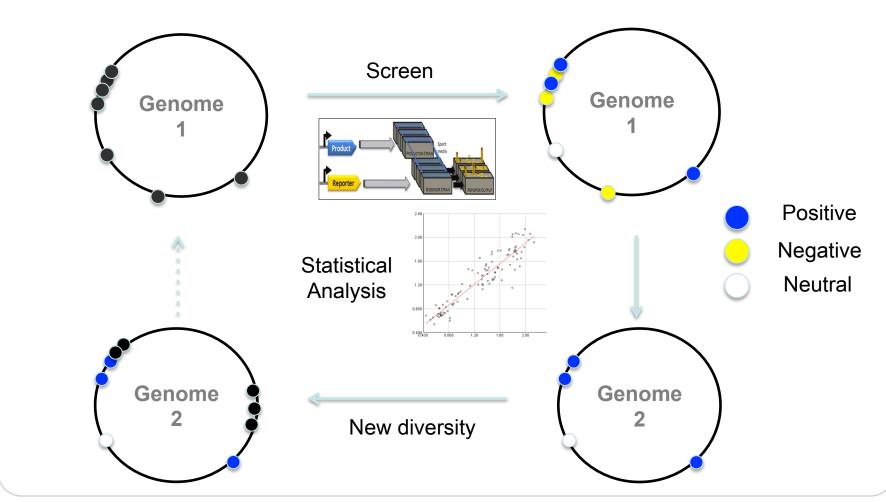
Step 1: Malonic acid (MA) producing strains are grown


Step 2: Spent media is transferred to a standalone biosensor strain culture

Step 3: Biosensor strain grows proportionally to MA concentration

Task B: Biosensor-based screening

Output of the biosensor screen demonstrates a linear range of malonic acid detection



Improved biocatalysts are identified

Task C: Metabolic hotspot ranking

Metabolic hotspots are ID'd & ranked via statistical analysis in order to more efficiently identify subsequent engineering targets

Task C: Metabolic hotspot ranking

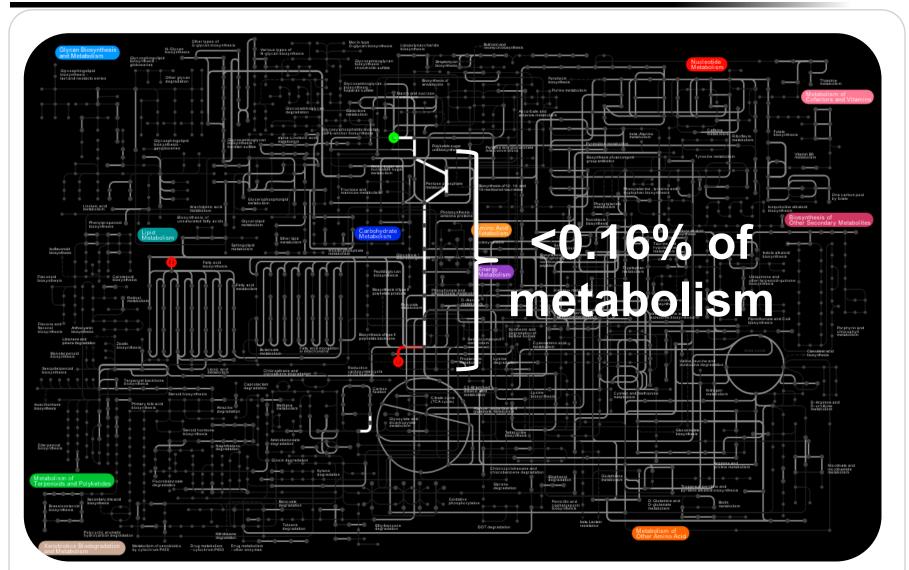
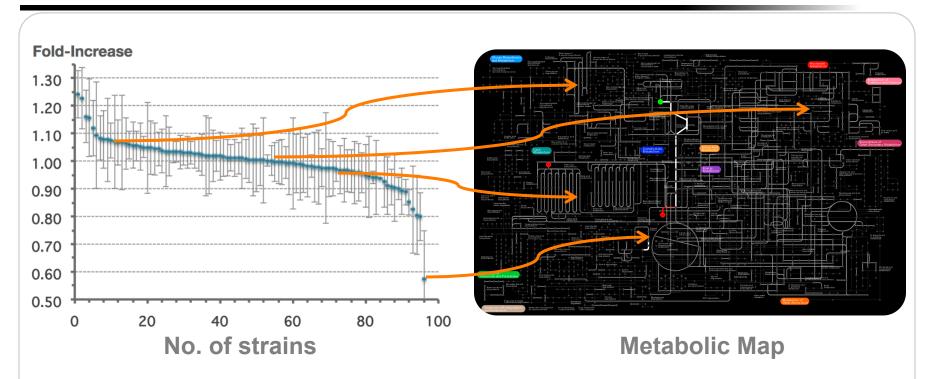
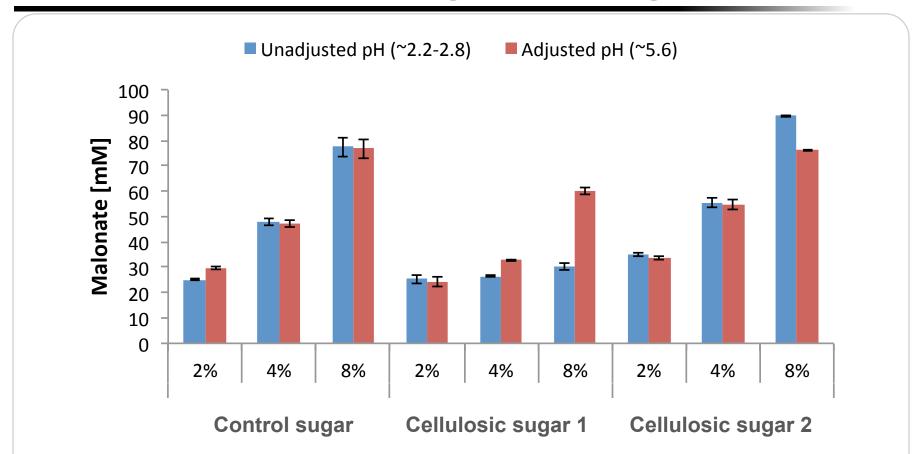



Photo credit: Arkin et al. http://glamm.lbl.gov/

Task C: Metabolic hotspot ranking – transcription factors



- New target identification
- Perturbation refinement
- Metabolic hotspot ID & rank

Guiding iterative metabolic engineering

Task C: Plate Performance Using Cellulosic Sugars

- Obtained samples from Commercial Suppliers
- Similar strain performance between glucose and cellulosic sugars
- Model organisms do not grow (data not shown)

Task D: Translate plate screening metrics to pilot scale

Addressing barrier to translating small scale experiments to relevant fermentation process

Successful initiation of process development & scaling to 300-L; Achieved 90% of metrics across scales

Relevance

The work in this project promotes:

- Tools for cost effectively building and validating biocatalysts
- Replacing petro products with lignocellulosic-derived products
- Technoeconomic analysis suggests that upon successful commercialization could result in production cost of \$1.60/lb; down from project initiation of >\$600K/lb
- The potential to reduce carbon dioxide emissions related to petroleum produced malonic acid
- Identification of pathway targets may aid in development of other bio-products & fuels
- Synthetic evolution process could be applied to other products

Future Work

- Package & distribute automated design tools
- Further expansion of biocatalyst construction & screening capacity & workflow
 - Key milestone (10-20 plates up to 100 plates)
- Achieve plate and tank fermentation metrics
 - Key milestone in plates (yield, titer, productivity)
 - Key milestone in 300-L (yield, titer, productivity)
- Downstream purification process (beyond scope of project)
- Benchtop Process Integration (beyond scope of project)
 - Scale up integration risks
 - Feed & Process variation effects
 - Integration of biomass process
- Derivative Product Development (beyond scope of project)

Summary

- Overview: designing & constructing biocatalysts to consume cellulosic sugars to produce bioproducts (malonic acid)
- Approach: deploying synthetic biology techniques to accelerate the path toward commercialization (eg., design tools, screening tools, and validation).

Technical Accomplishments:

- Design software & tools; Biosensor screen
- Continuously improved strains are being developed (Y,T,P)
- Successful initiation of pilot scale fermentations

Relevance

- Bt-J Cost effective production of bioproducts (\$1.60/lb)
- Future Work
 - Attain YTP milestones; expand workflow capacity

Acknowledgements

DOE BETO

- Jeffrey Dietrich
- Jay Keasling (SAB)
- Leonard Katz (SAB)
- Azadeh Alikhani
- Mario Ouellet
- Kristy Hawkins
- Will Holtz
- David Melis
- Tina Mahatdejkul-Meadows
- Clayton McSpadden

- Eric Gates
- Karl Fisher
- Clem Fortman
- Jacinto Chen
- Paul Bryan
- Neil Renninger
- ABPDU
- Todd Pray

Additional Slides

Responses to Previous Reviewers' Comments

Project has not previously been reviewed

Publications, Patents, Presentations, Awards, and Commercialization

Patents:

None published relating to this grant, but we are developing inventions previously described in PCT Pub. No. <u>2013/134424</u> in work supported by the grant.

Presentations:

- Steen EJ. Synthetic biology for brewing. Synbiobeta Lecture: Synthetic Biology for Computer Programmers. October 8, 2013, San Francisco, CA.
- Steen EJ. An industrial perspective on synthetic biology. Synbiobeta Lecture: Synthetic Biology for Computer Programmers. November 31, 2013 San Francisco, CA.

Commercialization:

- Financing seeking capital for reaching next TRL
- Offtake early discussions for use in a number of markets
- Internal product development effort