Synthetic Metabolic Pathways for Bioconversion of Lignin Derivatives to Biofuels/

WBS: 2.3.2.104

March 25, 2015

Technology Area Review: Biochemical Conversion

Principal Investigator: Adam M. Guss

Organization: Oak Ridge National Laboratory

Goal Statement

 Goal: Develop microbial biocatalysts to convert lignin-rich streams into value-added products

 Relevance: Adding value to the lignin fraction of plant biomass will improve the economics of biorefineries to enable a bioeconomy

Quad Chart Overview

Timeline

- Project start date: March 2014
- Project end date: September 2017
- Percent complete: 28%

Budget

	Total Costs FY 10 – FY 12	FY 13 Costs	FY 14 Costs	Total Planned Funding (FY 15- Project End Date
DOE Funded	\$0	\$0	\$205k	\$1.2 MM

Barriers

- Barriers addressed
 - Bt-I. Catalyst Efficiency
 - Bt-F. Hydrolytic Enzyme Production

Partners

 Collaboration and shared milestones with Dr. Gregg Beckham at National Renewable Energy Laboratory BETO-funded project "Lignin Utilization" WBS 2.3.4.100

Project Overview

History:

- Started as ORNL internal investment (LDRD project) to engineer E. coli to catabolize aromatic compounds and convert them into value-added products
- BETO Seed project starting in FY14

Context:

- Lignin accounts for ~25% of plant biomass but is underutilized during biofuel production
- Primary current use is for process heat and electricity

Project Objectives:

- Identify best microbial platform for deconstruction of lignin and catabolism of aromatic compounds from biomass
- Develop the genetic tools needed for bioengineering novel microbes
- Develop a biological platform for production of fuels and chemicals from lignin-rich streams

Technical Approach

Task 1: Identify the best lignin-depolymerizing microbes and develop into bioengineering platform

Approach:

- Screen putative lignin-degrading organisms for the ability to reduce the molecular weight of lignin in alkaline pretreated liquor (APL)
- If better candidate(s) than Pseudomonas putida are found, develop genetic tools to allow rational engineering
- Genetically modify selected organism(s) to make value-added products directly from polymeric lignin

Challenges:

- May not find sufficiently ligninolytic organism
- Development of genetic tools is often timeconsuming

Task 2: Engineer *Pseudomonas putida* to produce value-added chemicals such as polyhydroxyalkanoates (PHAs) from APL

Approach:

- Delete and/or insert genes to redirect carbon and electron flux to product (PHAs, others)
- Measure product formation during growth on APL
- Combine beneficial genetic modifications

Challenges:

 Control of metabolic flux to achieve high yield, titer, and rate → productivity

Management Approach

Critical success factors

- Integration with TEA (Mary Biddy, NREL) to identify top product targets
- Maintaining or improving production rate and titer as yield increases

Potential challenges

•It is unclear if better lignin-depolymerizing strains exist

Management approach

- Regular calls with BETO TPM first Joyce Yang, now Bryna Guriel
- Regular interactions with Gregg Beckham (NREL)
 - MTA and NDA in place
 - Site visits, phone calls, data sharing, strain exchanges

Technical Accomplishments - Overview

- Initial work focused on engineering E. coli to catabolize aromatic compounds
- Further engineering the E. coli strain to make value added products, laying the groundwork for work in other organisms
- Possible inhibition of modified E. coli by APL and complex lignin-degradation pathways led to a shift to ligninolytic microorganisms that can thrive in APL
- Pseudomonas putida progress
 - Identified top targets for modification
 - Have begun metabolic engineering

 Initially targeted E. coli for proof of principle. Introduced nine gene 3,4 ortho protocatechuate (PCA) degradation pathway

$$PCA + O_2 + CoA + H_2O \rightarrow CO_2 + succinate + acetyl-CoA + H^+$$

- Plasmid-based expression allowed for E. coli utilization of PCA as sole carbon and energy source
- Growth on glucose was slower than control strain
- Stably integrated the pathway genes into the chromosome
- Chromosome-based expression allowed for faster utilization of PCA and normal growth on glucose

 Further modification of the PCA-degrading E. coli strain allowed for flux to be directed toward the product of interest, but at the expense of growth rate and robustness

E. coli is unlikely to be deployed for lignin conversion

- Complexity of funneling reactions
- Difficulty in simultaneous expression of dozens of pathways
- Low tolerance to aromatics

- Identified need for a better organism
 - Identifying organisms that depolymerize lignin and catabolize many of the aromatic compounds present in Alkaline Pretreated Liquor (APL)
 - Established collaboration and strain sharing with NREL (Beckham)
 - P. putida has been shown to grow on APL and depolymerize lignin (Beckham)

Identification of lignin-deconstructing microbes

- In collaboration with Gregg Beckham at NREL, we are screening putative lignin-depolymerizing microbes to identify the best for lignin depolymerization and catabolism of aromatic compounds
- Have sent 16 putative lignin-degrading strains to NREL for characterization

Pseudomonas putida engineering

- We have identified the highest priority mutations for increasing mcl-PHA production and producing another target molecule from APL
- We have begun engineering P. putida to improve production of these compounds

Pseudomonas putida engineering

Relevance

- A mature cellulosic biofuels industry will produce an estimated 300 million tons of lignin-rich material
- Adding value to the lignin fraction of biomass will be critical to meeting cost targets
- Biological lignin conversion will require robust biocatalysts, which are currently lacking
- Tech transfer Early in the research project.
 - Near term Intellectual property and publications.
 - Will work with tech transfer and NREL as technology matures to move technology to industrial partners

Future Work

The next 18 months will focus on improving product yield in *P. putida* and identifying the best lignin-degrading strains for further development

Milestones:

- FY15 Q3 (Task 2) Implement at least three metabolic engineering strategies for increasing product yield from APL
- FY15 Q4 (Task 2) Demonstrate at least 20% increase in yield of target product
- FY16 Q2 (Task 1) Go/No-Go Point. Identify a lignin-degrading organism that demonstrates at least 15% greater lignin depolymerization and catabolism
- FY16 Q4 (Task 1) demonstrate genetic modification of the top lignindegrading organism
 - Will leverage technologies developed within the BioEnergy Science Center

Summary

 Goal: Convert polymeric lignin and aromatic compounds into valueadded products using engineered microorganisms

Approach

- Identify the best lignin deconstructing and catabolizing microbe
- Engineer it to convert the lignin into higher value products

Technical Accomplishments

- Engineered E. coli to consume the aromatic compound PCA and produce a fuel product at 22% of theoretical yield
- Sent putative lignin-deconstructing strains to NREL
- Begun engineering P. putida to produce value added products from lignin-rich streams

Relevance

- Lignin valorization needed to improve economics of biorefinery
- Biological upgrading of lignin can provide this value

Future work

- Increase product yield in P. putida from lignin and aromatics in APL
- Identify best lignin-deconstructing strains; begin metabolic engineering

Acknowledgements

<u>ORNL</u>

- Raquel Auwae
- Sonya Clarkson
- Tom Rydzak

NREL

- Gregg Beckham
- Mary Biddy
- Chris Johnson
- Davinia Salvachua

Abbreviations

- APL Alkaline Pretreated Liquor
- mcl-PHA Medium chain length Polyhydroxyalkanoate
- MTA Material Transfer Agreement
- NDA Non-Disclosure Agreement
- NREL National Renewable Energy Laboratory
- PCA Protocatechuate
- TEA Techno-Economic Analysis
- TPM Technical Project Manager

