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Goal Statement

Goal: develop strains to produce fuels and co-products for the 2017 and 2022
Biochemical Conversion Platform cost target goals of $5/gge and $3/gge

» Fatty acids as fuel precursors, succinic acid as an example product, both aligned with TEA targets
» “Bioproducts are on the Critical Path” — DOE BETO

NTH H2i04 Enzymes
: Solid . . Solid : Solid | CHP or Lignin
Biomass I Alkaline | Mild Acid | ; Enzymat!c » Upgrading in
Pretreatment Pretreatment Hydrolysis 5002
lLignin-rich Liquor lCS-rich Liquor l C6-rich Liquor
WWT/Boiler Anaerobic Biological
or Upgrading Fermentation Conversion
in 2022 l l
Separations/ Separations/
Cat. Upgrading Cat. Upgrading
C5-derived C6-derived
Platform Chemicals HC Fuels

HC fuels alongside co-products will be a major benefit to the US biorefinery infrastructure

» Conduct TEA/LCAto identify cost drivers and data gaps and to refine process options

» Collaborate with industry and academics for joint development of strains and process demonstrations
* Outcome: demonstrated, robust strains for producing HC fuels and co-products in the biorefinery
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Quad Chart

Timeline

« New Project

« Start date: October 2014
 End date: September 2017
 Percent complete: 10%

Barriers

« Bt-I Catalyst Efficiency

« Bt-J Biochemical Conversion Process
Integration

« Bt-H Cleanup/Separation

Budget

Total
Planned
Funding

(FY16-
Project End
Date)

DOE

T $1,800,000 $4,200,000

Partners and Collaborators

Industry partners: in talks with industrial entities regarding
collaborations around both HC and co-product development

NREL BETO Projects: Biochemical Platform Analysis, Bench-
Scale Integration, Separations Development and Application,
Catalytic Upgrading of Sugars, Pretreatment and Process
Hydrolysis, Pilot Scale Integration, Biochemical Process
Modeling and Simulation, Strategic Analysis Platform

BETO-funded National Lab Projects: Ongoing discussions
with PNNL efforts in strain development

Academic collaborators: University of Pretoria, MIT, UC Davis
Phaff Yeast Culture Collection, currently in talks with other
groups for collaborations around both HC and co-product
development

NATIONAL RENEWARBLE ENERGY LABORATORY



Project Overview

History: HC fuel R&D primarily began at NREL in the Nat’l Adv. Biofuels Consortium
» TEA suggests chemicals are essential to cost-effective HC production E.% NABC

» NREL began developing plans after the 2012 ethanol demonstration to y%gigmgggzgfggm
meet 2017 and 2022 cost targets for HC fuels at $5/a0e and $3/aae

$15.00 | ¢1397
$10.14 Balance of Plant

Context: Going “beyond ethanol” to
produce a broad portfolio of biofuels

* Produce direct replacements or blendstocks
for gasoline, diesel, jet fuel markets

$5.03

$10.00 Lignin Utilization

Recovery/Upgrading

$3.00

$5.00 B Cellulase Production

Minimum Fuel Selling Price ($/GGE)

« Move closer to petroleum refinery models w00 I] " er&socomenion
with fuel and chemicals production together ® Pretreatment
» De-risk capital investments in fuels via co- e ® Feedstock
product manufacturing ——
. . . L 2014 2015 2016 2017 2022 Total
PrOJ ect Objectlves SOoT Projection Projection Projection Projection

- Develop industrially-relevant strains for fatty acids and an example co-product to meet
2017 and 2022 cost targets

- Focus efforts towards titer, rate, and yield targets set by TEA/LCA modeling

- Rapidly test strains with Bench-Scale Integration Project to identify and solve problems in
scaling and integration

Davis et al., NREL Design Report, 2014
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Technical Approach

Aim 1: Develop a robust oleaginous strain Aim 2: Develop robust succinic-acid strain

Approach: Approach:

» Target: 0.4 g/L/hr rate, 60% lipid content, and a  Target: 2.0 g/L/hr rate, 0.795 g/g yield on C5-
0.27 g/g yield on C6-enriched sugars enriched sugars

» Screen natural oleaginous yeast strains » Evaluate natural strains on C5-hydrolyzates

» Evolve strains to increase lipid yields » Adapt strains to tolerate pretreatment inhibitors

» Engineer select strains for high lipid yields » Engineer a strain for higher SA yields

Primary challenges and success factors: Primary challenges and success factors:

* High yield and productivity of lipids * Overcoming hydrolyzate toxicity

 Availability of genetic tools in strains for * Increasing carbon flux to SA over side products

metabolic engineering

?ﬂﬁl@
Y
\.

Image from W. Nicol
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Management Approach and Outline

Experienced task leads in
fermentation, microbiology, and

Milestones prioritized to down-

Biological Upgrading select single fuel and co-product

of Sugars

metabolic engineering

strains for 2017 deployment

Fuel Precursor

Strain Evaluation
(Nancy Dowe)

Fuel Precursor Strain
Development
(Jeffrey Linger)

Co-Product

Co-Product Strain

Strain Evaluation
(Davinia Salvachua)

Development
(Michael Guarnieri)

Fuel Precursors: 3-pronged

strategy to mitigate risk
Natural + Evolved + Engineered
Strains Strains Strains

v

Bench-Scale Integration
Project for Advanced
Fermentation Testing
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Develop/impro
ve genetic
tools

Apply genetic
tools for strain

engineering

Adapt/probe
tolerance
mechanisms

Evaluate
strains on C5-

hydrolyzate

T

v

Bench-Scale Integration
Project for Advanced
Fermentation Testing




Natural

Self-consistent screening of oleaginous yeast Strains

» Obtained oleaginous yeast collection
* Pursuing self-consistent screening results

Species being screened : * Rhodosporidium sphaerocarpum
» Cryptococcus curvatus * Rhodosporidium toruloidies (6)

» Cryptococcus wieringae * Rhodotorula glutinis (2)

» Kurtzmaniella cleridarum * Rhodotorula glutinis “like”

* Leucosporidiella creatinavora
* Lipomyces starkeyi (3)

* Rhodosporidium babjevae (4)
* Rhodosporidium dibovatum

* Rhodosporidium paludigenum

Sporopachydermia opuntiana
Tremella encepala
Trichosporon guehoae
Yarrowia lipolytica (10)

80

B %FAME in rich media

70 - . .. .
O%FAME in N-Deficient media

60 -
50 -
40 ~

% FAME

30 A

20 A

10 f

L. starkeyi L. starkeyi L. starkeyi R.babjevae R.glutinis R.glutinis T. guehoae
11557 12659 78-23 05-736 62-106 05-613 60-59
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Evaluation of oleaginous yeast S

Lipid production by L.

.. 140 - 90
starkeyi in shake flasks Glucose Cell Density 50 —
_ 120 S
< 70 8§
2 100 - 60 %
_ . c Qa
Lipid production S g0 50 O

- =

by L. starkeyi in £ 60 - Dry Cell Weight 40 2
small fermentors S 20 ©
== —BSI Early Work S 07 20 S
| 20 + 10 O

| 0 0

0 20 40 60 80 100

Time (h)

Metric Pure Sugar - Pure Sugar - C6 Biomass
Flasks Fermentor Sugars from Enz
Hyd.- Fermentor
Glucose utilization

Lipid content 59% 60% 57%

Volumetric
oroductivity (g/L-r) at IRk 0.18 (batch 0.29 (batch

72 h culture) culture) culture)
Lipid process yield

(total sugar-to-product 0.07 0.13 0.20
,9/9)
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. . volved
Strain evolution efforts Straire

» [B-ketoacyl-acyl carrier protein synthases (KS) regulate FA synthesis and are
inhibited by cerulenin

» Cells can overcome this inhibition by increasing FA synthase production Tapiaetal. 2012,
AMB Express

Cerulenin Condensation Transition State

“0_ ,S-ACP
BEASY HN Phe 392

_ Oxyanion W
e 392
/O Hole Phe 3

"HN Cys 163

Acyl Acyl

Chain Chain .

§ § Price et al. 2001,
Hydrophobic Hydrophobic J BlOI Chem

Pocket Pocket

» Approach rapidly led to cerulenin-
resistant mutants

.HN Phe 392
" Oxyanion
Hole

Mut WT Mut :
» Testing these mutants for enhanced

lipid production currently

»  Will work with JGI to pinpoint genetic

M changes if positive hits are found (to
ut

make changes permanent)
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Engineering increased lipids ‘E”sg!?a?ﬁfd\

Chose L. starkeyi as initial strain for engineering

» Very high lipid productivities and titers

» Strain NRRL Y-11557 genome sequenced (Tom Jeffries/JGI)
* DNA Transformation established (Calvey et al. 2014)

Simplified metabolism for triacylglycerol production

RED lines represent initial
focal points for engineering

Overexpression of native
Fatty Aczl CoAs [ | biosynthetic genes and
heterologous expression of
a phosphoketolase to
increase acetyl-CoA
(AcCoA) pools

___Glycerol-3-P

& Lipid Bodies
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Leveraging S. cerevisae for rapid gene identification | Zgyere

Strains

Hyper-
sensitive

CY LA M I TY LYl mutant
000000 90000 Slightl
000000 goco00 RN
000000 g2 o000 :St-";n‘t’e
00000 SO EY Y o |
YIXXX, ..0.00 @ | Intrinsically
: ".’.’1". ."""l~‘ '.,f | _!.‘. - (5 o 7, weak

e — P _— | e =¥ mutant

me
Hypersensitive mutants 77
Sensitive mutants 63
Intrinsically weak mutants 23

» Leverage single gene deletion and single gene overexpression collections developed
In S. cerevisiae

» Developed, validated HTP method to screen for enhanced lipid production

» Currently screening ~5,000 single gene deletion strains and ~5,000 single gene
overexpression strains to identify genes whose alteration increases lipid production

» Leverage these results to apply to more process-relevant but less genetically
malleable strains, e.g., L. starkeyi
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Why a C5-derived co-product? Why succinic acid?

$15.00 | 412,97

$10.14 Balance of Plant

$7.43 s
5.03
$10.00 11 Lignin Utilization

Recovery/Upgrading
$3.00

[
$5.00 - EE 1B ' B Cellulase Production
| ]
I I ! EH & Bioconversion
$0.00
B Pretreatment
P B Feedstock

 C5 Coproduct

Minimum Fuel Selling Price ($/GGE)

-$10.00
2014 2015 2016 2017 2022 Total

SoT Projection Projection Projection Projection

Direct and functional replacement markets for SA
- Potential for 4 MM tons/year (Top Ten Report)

Disseminated results will aid industrial transition from
starch to lignocellulosic sugars

- Similar to track record with ethanol demonstration
Acid functionality common to products of interest
- Broadly applicable insights in integrated process
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Significant industrial interest
already in this molecule

HO/W
1, 4 - Butanediol
g-Butyrolactone \ N Succinidiamide
O NH

Tetrahydmfumn
1,4- Diaminobutane

\.L i /\/CN

- Pyrmi: e Succinic Acid
Succinonitrile
o l \
b 4

4 4 Bionolle
NMP (polyester)

(o]

CH;
CH3/ o

O DBE

Top-Ten Value Added Chemicals
from Biomass, Vol. 1, 2004

Robust strains exist, enabling an
aggressive timeline to an
integrated 2017 demonstration

Image from BASF
12




Strain down-selection

Species examined from the literature S“Cinoge”es | B. S“CC'”'C'prOduce”S
 Anaerobiospirillum succiniciproducens MR Ve =
» Bacteroides fragilis

* Enterococcus faecalis RKY1

» Succinivibrio dextrinosolvens

» Fibrobacter succinogenes

« Mannheimia succiniciproducens

» Actinobacillus succinogenes

» Basfia succiniciproducens

0.5 L fermentors

DCS-hydrolyzate 7.6 13.1 93.4 15.8 0.26

» Three strains were Biosafety Level 2 (in blue), two strains did not consume xylose (in red),
and M. succiniciproducens is not publically available

» Rapidly down-selected to B. succiniciproducens and A. succinogenes
* Initially screening strains in batch reactors on C5-rich hydrolyzates
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Evaluate

Two leading strains for SA production strains on CS-
hydrolyzate

Glucose,,

A. succinogenes ' B. succiniciproducens

Glc *
PEP ATP Biomass Glucose-6P 2 5 GRD-
0994-6:2.7.1.69 J 1504, 0131 B84 2.7.1.: ‘ Gluconate
Pyr NADPH NADPH CO, o
GEP P — Rbu5P. ¥ 2
0227, (0228; 0232 s
1425:53.1.8] 11149 21.1.31  1.1.1.44 1870, 1580 ;mi“_ép < » Pentose-5P"
ATP vep ™ 5318 . Erythrose-4P Blomass
.fasr( i S7P  RboSP B N
27111 5 0218 i
Fi,6p 0™ S8 1 Fructose-1,68P v L
6P, 2212 5131
3131 221.2 2211 Sedo- * Oxolsocaproate,.
0687;4.1.2.13 . R
- E4P  GIP X5P e heptulose-75 > Acetoin,
DHAP +—G3P v * Isobutyrate,,
DETT, 1575, - D|h‘-dw|\|-< s ’ Glycer- * = Leucine,,
o — 1601;53.1.1 m;‘;\?ﬂ S 0265,0170-1; 22.1.1 acetone-P - ;|¢,|=d,.gp i —
+ . 241 :
NADP* " NADPH G1,3P 1 £89 =+ Butantiol,
1021-2; 1.6.1.2 0535_2‘,”]\“p N
COy+ HCOy - ruvate,,
H s PG Biomass 3P-Glycerate
1199; 4.2.1.1 VST 5421 . a ' =+ Lactate,
QOH 1831
. kM 2PG _ ﬁ Formate,,
e 12051 42111 €O+ H*

co; PEP PEP — T — MQM-EM_ ) — Acetate,,

0221;4.1.1.49 MP 1404-8; |~ NADH Pyruvate " T a1 = Ehanol,,
il \Q 27140 1212
NAD* 0301-3:4.1.1.3 "
P N y

0AA

Pyr For
1612; 1.1.1.37 | .
' Citrate
= ] 09424, NADH \ 0207, Oxaloacetat
osse; Mal “ 42 :\ co, |23154 \-’ Malate
sz12f 23112 1.814 : 1 )
Fum 0305, 1194-6,1198; AcCoA v %
4136 1662 v
aTp” | 1010 3081 thV \ NAD* Fumarate,, <00 :::- Fumarate Slowene eshInE
Suc cit
1566.7,0044 f;“l'%f Agh Loy Al
! 1.24.2 & 1661;
SucCoA .. leit 2721 o
m ‘4‘ ATP NAD Succinate 2-Oxoglutarate
P
"“DHCD} aKG Ace E1OH . .
McKinlay JB, et al. (2010) BMC Genomics Becker, J. et al (2013) Biotechnol Bioeng.

- Facultative anaerobe, CO, fixer - Facultative anaerobe, CO, fixer

- Produces formate, acetate, ethanol - Produces formic, acetic, ethanol, lactate

- Does not have oxidative TCA cycle branch - Produce SA via oxidative TCA cycle branch
- Forms biofilm - Does not form biofilm

- Extensive information - Limited information about this bacterium
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] ] L ] ] Adapt/probe
Testing inhibition in A. succinogenes e
mechanisms
Tolerates sugar Reasonable yield and rate on C5-rich
concentrations up to 80 g/L hydrolyzate with significant lag phase
120 60 -
_ ] ——40 g/L xylose n Yield= 0.66 g/g
i 100 - ——60 g/L Xy|ose d 50 Max. rate = 0.95 g/L/h
2 2
.5 80 80 g/L xylose S 40
E 60 100 g/L xylose T 30
S =
8 40 8 20
o S
S 20 - O 10
]
(@)
(?) 0 T —T— 0 — f g L 4 T i
0 15 30 45 60 75 0 20 40 60 80 100 120 140 160
Time (h) Time (h)
e Early work in BSI in FY14
« Furfural and HMF reduction correspond to lag | _ 8'? —
~ 0.
« Transferred to BSI Project for continuous 2 8-2
fermentation to obtain high yield and rate S 04
| : limitati T 03 - —e—Furfural DCS
» Cleanup ongoing to overcome rate limitations £ 02 —e—Furfuryl alcohol DCS
« Ongoing: transcriptomics, proteomics, o 01+
. - . 0.0 T I ’ I ﬁ 4 I. 1
metabolomics, metabolic flux analysis S 0 20 40 60 80 100 120 140 160
« Similar work ongoing in B. succiniciproducens Time (h)
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Metabolic Engineering for Improved SA Biosynthesis

Apply genetic
tools for strain
engineering

% Glucose

[NADH]

Phosphoenolpyruvate

pykA Lactic acid
(PykF, ptsG)
[INADHE— gha
Pyruvate Formic acid
=
,.‘......Coz = ® pfiB (pfiD, tdcE)
[NADH}I
i Acetyl-CoA
fumC e (pOXB.).l ,,
(fumA, fumB) M. [Ub;:o‘2 ll*]i (Hes ) 2[NADH]
iquino ATP=-; pta
Fumarate | /, ® ackA (:g::g' ;ih%
[Menaquinol] < * | 4 ( tdeD) P
frdABCD Acetic acid ATP
(sdhABCD) | Ethanol
4
|| Succinic acid ||

Image from S. Vaswani, 2010
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Genetic tools will enable two
parallel approaches to
enhance flux to succinate:

» Overexpression of succinate
biosynthetic components (green
arrows)

 Down-regulation and/or
knockout of competitive
fermentation pathways: lactate,
acetate, formate, and ethanol
(red arrows)




Relevance

This project is essential for 2017 HC fuel cost targets of $5/gge

Key MYPP areas targeted by the Biological

Upgrading of Sugars Project:

Catalyst Efficiency

- Developing efficient bio-catalysts
to produce advanced fuels and
chemicals

- Improvement in titer, rate, yield
key to economic viability

Biochemical Conversion Process

Integration

- Coupling process considerations
with organism development

- Working with BSI task to iterate
on fermentation needs and
organism modifications/evolution

Cleanup/Separation

- Elucidating inhibitor effects on
biocatalysts and downstream
processing

Key Stakeholders and Impacts:

- Industrial and academic research focused on
carbohydrate utilization in both HC fuel
production and co-product manufacturing
including chemical and polymer precursors
from biomass

- Will enable demonstration of C5-rich stream to
chemicals in a scalable manner

- Co-products impact the “Whole Barrel of Oil”

- Portfolio of chemicals will diversify and
accelerate development of the biomass value
chain

- Significant amounts of peer-reviewed science and
IP will be generated from this work

- Methods to upgrade sugars to organics acids can
be leveraged well beyond succinic acid

NATIONAL RENEWARBLE ENERGY LABORATORY




Future Work

Fatty Acid Production Succinic Acid Production
» Define 2-3 strains by end of FY15 with BSI * Down-select strain by end of FY15 with BSI
» Target a “final” strain by end of FY16 » Target a “final” strain by end of FY16
* 0.4 g/L/hr rate, 60% lipid content, and a 0.27 » Target: 2 g/L/hr, 0.795 g/g yield on C5-
g/g yield on C6-enriched sugars enriched sugars
NaOH H2SO4 Enzymes
2017 Demonstration
. Solid : . Solid . Solid [ CHP or Lignin . .
Biomass — Prglrlgirr]neent > PrZ;:gggint > E;éilgllyast:(s; > Upg;gc;igg in Sugars ngnln
+ Lignin-rich Liquor C5-rich Liquor C6-rich Liquor
WWT/Boiler Anaerobic Biological
or Upgrading Fermentation Conversion
in 2022
\ 4 \ 4 .
Separations/ Separations/ FueIS Chem|CaIS M
Cat. Upgrading Cat. Upgrading 1 |
l l WA )
C5-derived C6-derived
Platform Chemicals HC Fuels
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Future Work

Fatty Acid Production Succinic Acid Production
» Define 2-3 strains by end of FY15 with BSI * Down-select strain by end of FY15 with BSI
» Target a “final” strain by end of FY16 » Target a “final” strain by end of FY16
e 0.4 g/L/hr rate, 60% lipid content, and a 0.27 » Target: 2 g/L/hr, 0.795 g/g yield on C5-
g/g yield on C6-enriched sugars enriched sugars
LA Enzyme )
— f;:"ﬁ: Production Wash Water 2017 DemonStratIOn
" L | Sugars Lignin
|om_ass_ Alkaline Solid N?:fhmaff;; Slurry | Enzymatic Sturry | g dtiquid || CHP/Lignin
Pretreatment S Hydrolysis Separation Upgrading
Lignin-rich Liquor C5 and C6-rich Liquor
WWT/Boiler Sloogal
and Lignin ARG
Updgrl..aging Conversion
‘ Fuels Chemicals _
Separation_mr ‘ .
Cat. Uplgradlng u;“:: A J, 4
€5 and Cs- Towards 2022
: Fuels/Chemicals SugaI’S ngnln
Towards 2022 demonstration
« Emphasize step changes in lipid recovery through cell
wall engineering and improved carbon flux
» Explore fuel precursors with higher C-efficiency pathways
» Divert more carbon to fuels through more efficient strains Fuels Chemicals
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Summary

1) Approach:
— Develop oleaginous yeast for lipid production for renewable diesel blends from C6-rich streams
— Develop example co-product train (succinic acid) from C5-rich streams from dilute-acid pretreatment

2) Technical accomplishments (4 months of work thus far)
— Screening large collection of oleaginous yeast in a self-consistent manner
— Demonstrated ability to rapidly evolve L. starkeyi strains towards higher lipid production
— Developed a HTP method for screening for gene candidates for lipid production in a model system
— Demonstrated high yields of succinic acid on process-relevant hydrolysate
— Identified multiple inhibitors that cause a lag phase in A. succinogenes growth and SA production
— Metabolic engineering in progress for both FA and SA industrial production hosts

3) Relevance
— Directly impacts the 2017 and 2022 HC fuel cost target demonstrations through strain development
— Addresses Whole Barrel of Oil Initiative and bolsters the biomass value chain

4) Critical success factors and challenges
— Economic and sustainable production of co-products, high yields of FAs and products needed

5) Future work:

— Continue all fronts towards down-selection of strains for 2017 demonstration, partial transition of efforts
to 2022 targets in mid- to late-FY16

6) Technology transfer:
— Initiating contact with industry to build commercialization path for both fuel and co-product trains
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Acronyms

 FA: Fatty Acid

« LCA: Life-Cycle Analysis

« NHEJ: Non Homologous End Joining
e SA: Succinic Acid

 TEA: Techno-Economic Analysis
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Engineered

L. starkeyi: Initial strain for engineering Strains

Strain Highlights :

» Very high lipid productivities and titers

« Strain NRRL Y-11557 genome sequenced (Tom Jeffries/JGI)
* DNA Transformation established (Calvey et al. 2014)

Initial Genetic Tool Development goals:
* Increasing the genetic engineer-ability: Disruption of Ku70/80 genes should increase the
efficiency of gene targeting by eliminating NHEJ for DNA repair

« Currently screening hundreds of transformants to identify ku70 deletion mutants

. I §
|| HEngineered DNA'

Reusable selectable/counter-selectable marker: Generated random mutant ura3
auxotrophic strains and are screening transformants for “clean” deletions to enable marker
recycling:

Transformation Selection Counter Selection

Hﬁf_i Ura3 | "’
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Develop/impr

Genetic Tool Development in A. succinogenes ove geneic
0o0ls
Replicative plasmid (pLGZ920) -

obtained for facile gene
expression

- Complete plasmid re-sequenced to
facilitate construct design

Efficient electroporation
transformation method developed
- 9 x 104 cfu/ug plasmid

- Sufficient for plasmid transformation
and good starting point for linear
DNA transformation (for gene
knockout)

Similar tools in place for B.
succiniciproducens
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Nru 15234
BsaB 15220
Al 5117

//BamH 1 1184
BsaB 11189
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promoter(Ac) é‘!
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Nco 13873
EcoRI 3752

Hind T 1400

Apal.13433
Xmn I 3365
Sca13246

BstX 13104

HindII 1950

Image from JG Zeikus et al.




A. succinogenes -omic Analyses

Develop/impr
ove genetic

strain-engineering targets

Comparative analyses between
solution state and biofilm
(production) state

* ldentify novel targets for induction

of biofilm formation and temporal
regulation of succinate biosynthesis
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CRF

RMA expression level

.

il . Exonic reads

Base-resolution expression profile

tools
[AAAARARA| RINA
!
ldentify promoters across an _ ==
array of expression levels ey
« Facilitate fined-tuned expression of | s

Short sequence reads

=[N
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