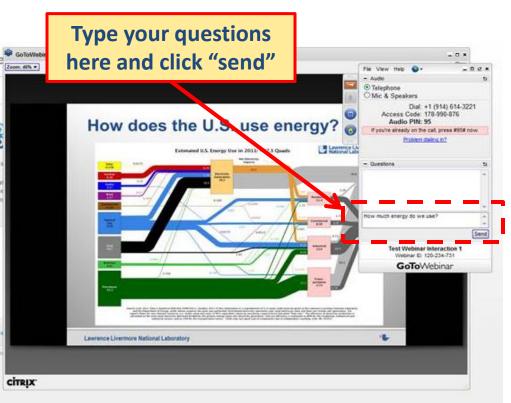


Quadrennial Technology Review-2015 Chapter 3: Energy Systems and Strategies

Public Webinar


Chapter Leads: A.J. Simon Jeffery Greenblatt

2015-03-04

Webinar Logistics

- Due to the large number of expected participants, the audio and video portions of this webinar will be a "one way" broadcast. Only the organizers and QTR authors will be allowed to speak.
- Submit clarifying questions using the GoToWebinar control panel. Moderators will respond to as many questions as time allows.
 Substantial input regarding chapter content should be submitted by email to: DOE-QTR2015@hq.doe.gov

QTR 2015 Chapter Outline

1. Energy Challenges

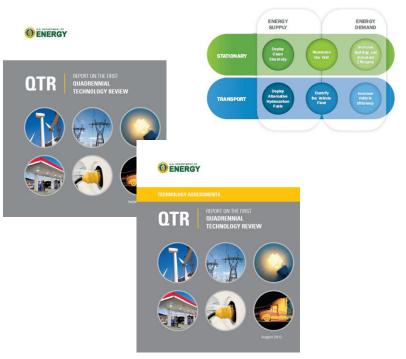
Introduction

Integrated

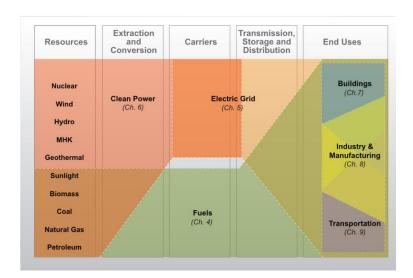
- 2. What has changed since QTR 2011
- 3. Energy Systems and Strategies

Assessillerus	 Advancing Systems and Technologies to Produce Cleaner Fuels Enabling Modernization of Electric Power Systems Advancing Clean Electric Power Technologies Increasing Efficiency of Buildings Systems and Technologies Increasing Efficiency and Effectiveness of Industry and Manufacturing Advancing Clean Transportation and Vehicle Systems and Technologies Enabling Capabilities for Science and Energy
Analysis	 11. U.S. Competitiveness 12. Integrated Analysis 13. Accelerating Science and Energy RDD&D 14. Action Agenda and Conclusions; Web-Appendices Web Appendices

Chapter Overview

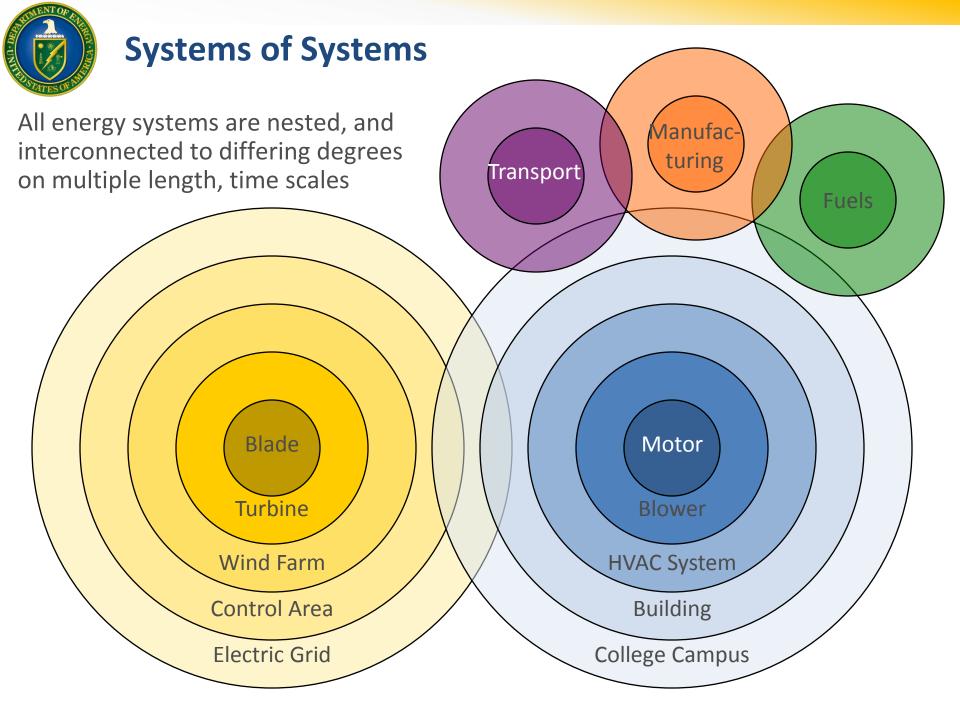

- Energy Systems Overview
- **Systems Integration** (*potentially includes: Systems-of-Systems, Interdependency, Digital Transition, Hybrid Systems*)
- **Complicated and Complex Energy Systems** (potentially includes: Electric Grid, Transportation Networks, Urban Systems, Biological Systems, Manufacturing Systems, Buildings)
- QTR-2015 Systems Approaches
 - Fuels
 - Electric Grid
 - Power Generation
 - Buildings
 - Manufacturing
 - Transportation

QTR 2011 vs. 2015


2011

- 6 Strategies + 3 Supporting Chapters
- 17 Technology Assessments
- Snapshot of Technology and DOE Operations

2015


- 6 Technical Chapters + 7 Supporting Chapters
- 50+ Technology Assessments
- Systems-oriented
- Surveys Opportunity Space

Energy Systems

Resources	Extraction and Conversion	Carriers	Trans- mission, Storage and Distribution	End Uses
Nuclear Wind	Generation	Electricity	Grid	Buildings (Residential, Commercial)
Water ⁷ Geothermal		Natural Gas	Pipelines	Industry and
Sunlight Cont Biomass	Refining	Hydrogen	0.112 1306 1477 1306 1407 1407 1407 1407 1407	Manu- Energy Service facturing
Biomass Natural Gas Petrolec Coal	0.4 55	^{0.795} Liquid Fuels	Filling Stations 24.9 24.9 20.7	Trans- portation
Petroleum				

Interdependency

Energy systems: increasingly interconnected Earth systems

- Energy-water nexus: energy requires water, water requires energy
- Climate: energy systems must adapt to changing climate
- Resources: Current energy system depends on fossil resources, clean energy depends on materials too, including critical materials

Financial markets

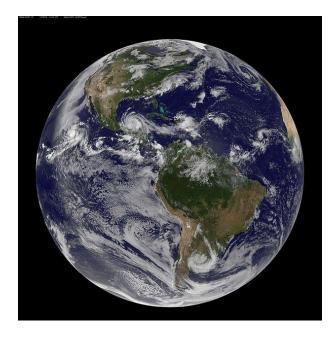
- Time-of-day rates, end user participation in markets important?
 Information Technology (IT) and the Digital Transitions
- Energy systems rapidly becoming digital and internet-accessible
 Transportation systems
- Increasingly dependent on electricity, IT, collective decision making?
- Human systems
- Political vulnerabilities, internet/social media: important effects?

Hybrid Systems: Examples

Opportunities for savings, challenges of increased complexity Within sector hybrids:

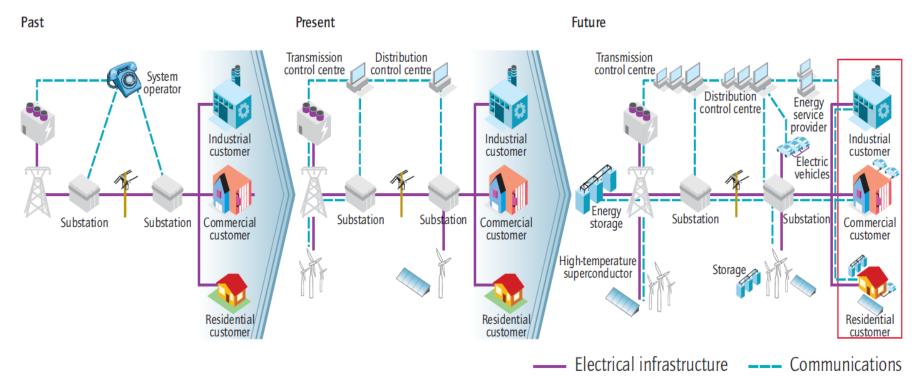
- Buildings: Combined HVAC and water heating systems?
- Vehicles: Gasoline-electric hybrids, links to public transit?
- Fuels: Gasoline-ethanol blends, coal-biomass co-gasification?
- Industry: Waste product utilization (industrial ecology)?
- Grid: Dual-fuel combustion turbines, wind-storage hybrids? Cross-sector hybrids:
- Building-Grid: Demand response, grid-connected appliances, cogeneration?
- Vehicle-Grid: 1- and 2-way EV charging?
- Fuel-Grid: Fossil/CCS (or biomass) fuel-electricity cogeneration?
- Industry-Fuel-Grid: Above with co-product chemicals?

Complicated and Complex Systems


Complicated Systems

- Multi-component, multi-domain, multi-scale and/or multidimensional
- Challenging to simulate and/or control

- Many individual components
- Non-linear interactions
- Emergent Properties/Behaviors


Example: Electric Grid

Complicated

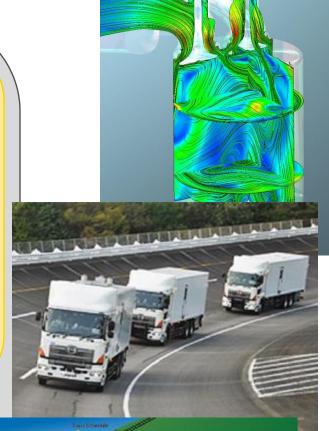
- Thousands of generators
- Millions of customers
- Sub-second *physical* balance

Complex?

- Interacting autonomous controllers
- Cascading failure
- Simultaneous *physical*, *computational*, *market* balance

Example: Transportation Systems

Conventional Vehicles (Complicated)


- Prime Mover (physics of combustion, electrochemistry, etc.)
- Human Behavior / Traffic Flow
- Freight Shipment / Logistics

Connected Vehicles (?)

- Route Optimization
- Platooning

Autonomous Vehicles (Complex?)

- Collision Avoidance
- Shared Use / Logistics

Potential Example: Urban Systems

Overlapping Infrastructures

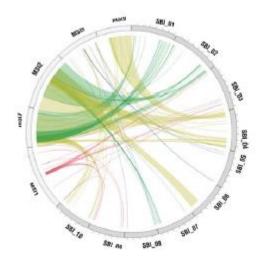
- Transportation (private, public, multi-mode)
- Energy (electricity, fuels)
- Communications, Food, Water, Finance, ...

Multi-scale

 Minutes (emergency response) to multi-decades (planning)

Competing Objectives

- Energy / Emissions
- Sustainability
- Quality of Life


Potential Example: Biological Systems

Organism Level

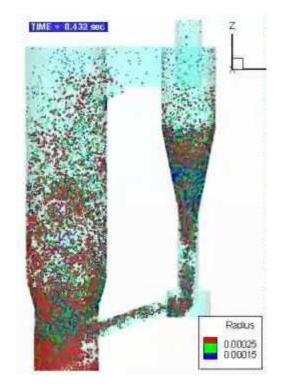
- Genetic Transcription / Translation networks
- Genotype / Phenotype
- Environmental Interactions (drought tolerance, etc.)

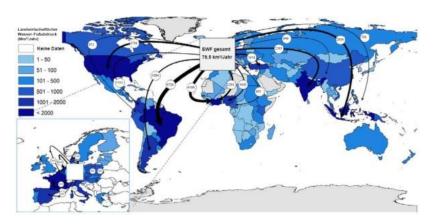
Biota Communities

- Polycultures
- Microbial community

Potential Example: Manufacturing Systems

Unit Operations


Multi-scale, multi-physics (eg. fluidized bed reactors)


Facility Systems

- Heat and materials integration
- Dynamic Operations
- Process Intensification

Industrial Ecosystems (Supply Chain)

- Just-in-time vs. resilience
- Interdependence with other systems (transportation, communications, financial)
- Sustainability (virtual or displaced energy, emissions, water, etc.)

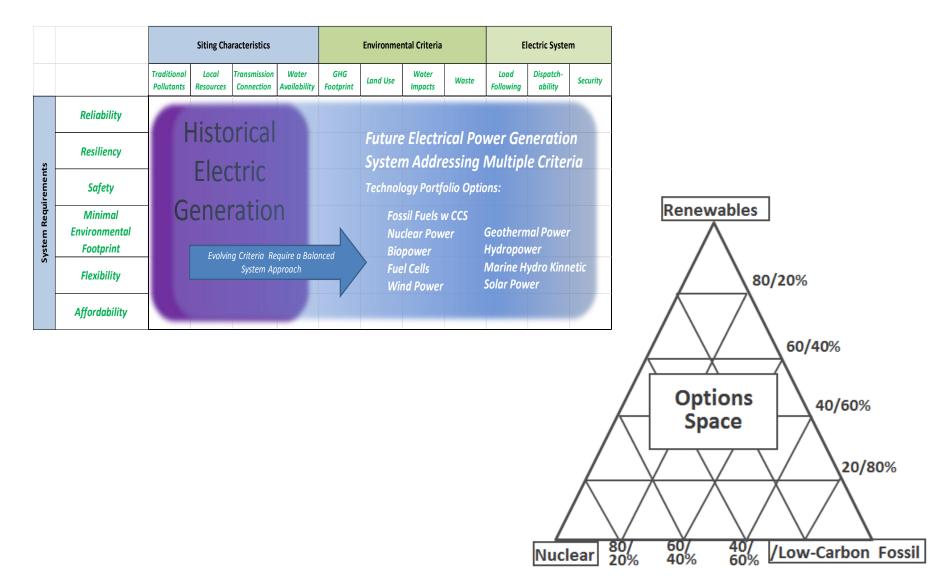
Potential Example: Buildings

- Dynamic: Diurnal, Seasonal, Extremes
- Multi-objective, highly sensitive, human factors (*multi-occupant, air flow and quality, lighting*)
- Increasingly automated and connected

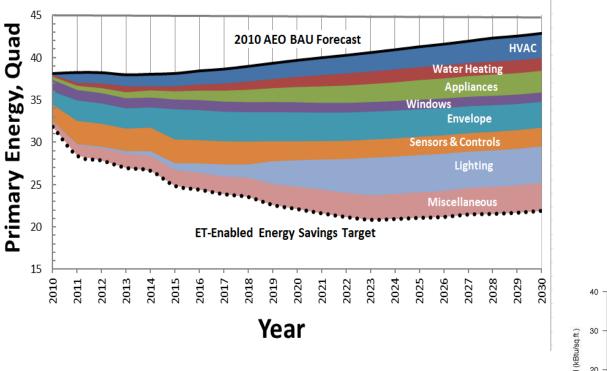


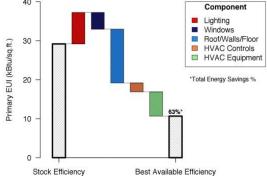
Systems Approach: Fuels

	Resources	Extraction and Transport	Conversion and Synthesis	Distribution and Use
Fossil				
Biological				
Hydrogen				
Other				
	Environmental Impacts			

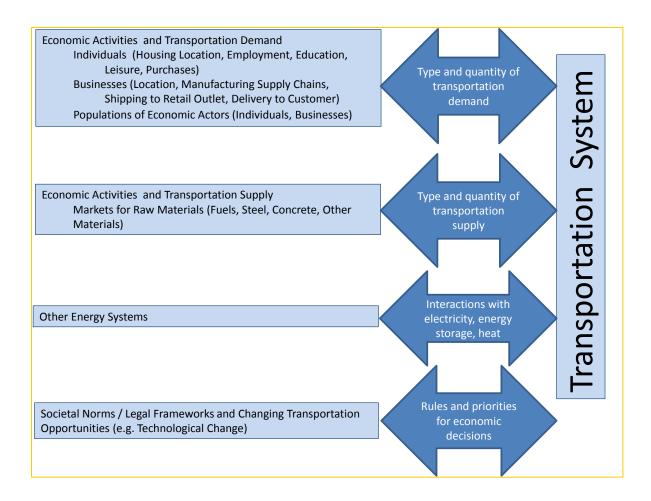


Systems Approach: Grid




Systems Approach: Clean Power

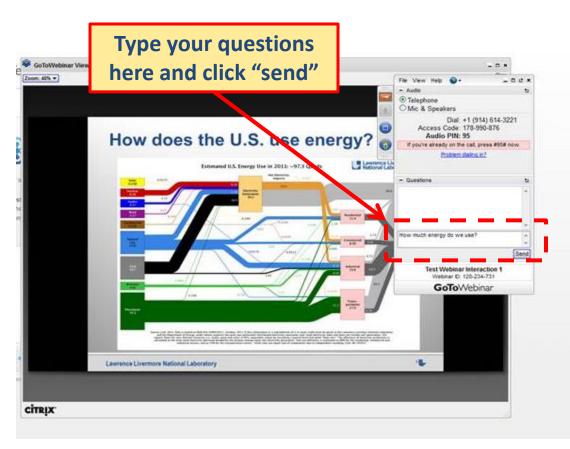
Systems Approach: Buildings



	Syste	ms Appr	oach: Industry
Energy Production Energy Delivery U.S. Energy Economy		ergy	Manufacturing, facility, and supply-chain improvements reduce the 12 quads lost within the industrial sector Industrial Systems
		•	31 quads
	95 qu sportation Sector 7 quads	Industrial Sector 31 quads	Supply-Chain Systems Example: Petroleum Refining Network of facilities and operations involved in moving materials through industry, from extraction of raw materials to the production of finished goods. Refining Industry ~4 quads Production/Facility Systems Production/Facility Systems
	esidential Sector 0 quads	Commercial Sector 17 quads	Equipment, process flow, and energy strategies that comprise a goods-producing facility Petroleum Refinery ~26 TBtu Manufacturing Systems/ Unit Operations Facility Steam ~5 TBtu Equipment used for manufacturing Atmospheric Distillation Unit
		Technolog Technolog Technolog	ICe process and nonprocess unit <u>~4 TBtu</u> <u>~2 TBtu</u> <u>~3 TBtu</u>

Systems Approach: Transportation

 $\frac{GHG\ Emissions}{Fuel} \quad X \quad \frac{Fuel}{Transport} \quad X \quad \frac{Transport}{Activity} \quad X \quad Activity = GHG\ Emissions$


Energy Systems

Resources	Extraction and Conversion	Carriers	Trans- mission, Storage and Distribution	End Uses
Nuclear Wind	Generation	Electricity	Grid	Buildings (Residential, Commercial)
Water ⁷ Geothermal		Natural Gas	Pipelines	Industry and
Sunlight Cont Biomass	Refining	Hydrogen	0.112 1306 1477 1306 1407 1407 1407 1407 1407	Manu- Energy Service facturing
Biomass Natural Gas Petrolec Coal	0.4 55	^{0.795} Liquid Fuels	Filling Stations 24.9 24.9 20.7	Trans- portation
Petroleum				


Public Input

You are encouraged to submit questions using GoToWebinar's "Questions" functionality. The moderators will respond, via audio broadcast, to as many appropriate questions as time allows.

 If you have questions or comments that cannot be addressed during the webinar, email them to <u>DOE-QTR2015@hq.doe.gov</u>

Quadrennial Technology Review-2015

Public Webinar

2015-02-18