LED Lighting Off the Grid

Peter Alstone
DOE SSL R&D Workshop 2015
January 27 2015

From IPCC AR5 Impacts Summary

Pace of electrification is fast but fails to be universal

Alstone, P., Gershenson, D. & Kammen, D. M. Decentralized energy systems for clean electricity access. *Nature Climate Change* accepted, in press, (2015).

Off-Grid Status Quo: Fuel Based Lighting

Expensive, Unhealthy, and Inefficient

Black Carbon (BC)

Reproduced from Lam, et al., 2012

Pico-power ($\sim 0.1 - 10$ Watt solar PV) and solar home systems (10-100 W)

Fast-growing market for packaged off-grid solar energy systems

Alstone, P., Gershenson, D. & Kammen, D. M. Decentralized energy systems for clean electricity access. *Nature Climate Change* accepted, in press, (2015).

Superefficiency in action: pico-solar cost declines

Phadke, A., Jacobson, A., Park, W.Y., Lee, G.R., **Alstone, P**., and Khare, A. *Super-Efficient Appliances Can Enable Expanded Energy Access Using Off-grid Solar Power Systems* (in preparation for early 2015)

Superefficiency in action: solar home systems

Source: ibid Retail Price by Component (\$ US)

Achieving Universal Access

LED R&D Needs for off-grid power:

- Continued improvements in efficacy, cost, and durability
- Backlighting efficiency in TVs and devices increasingly important

Extra slides

Simultaneous progress possible on access and climate?

Alstone, P., Gershenson, D. & Kammen, D. M. Decentralized energy systems for clean electricity access. *Nature Climate Change* accepted, in press, (2015).

Opportunity for universal electrification with clean power.

New Connections: Potential 2030 Scenario

IEA Grid Expansion
(New Policies
scenario covers
population growth
and additional persons)

Mini-grids

Household Systems

2010

2030

Transitions to modern power (on- or off-grid) improves on both **climate and equity** dimensions

10x reduction possible in GHG emissions intensity (20 year GWP, including black carbon)

Significant improvements in equal access to service

<u>Black Carbon estimates</u> from: Lam, N. L. et al. Household light makes global heat: high black carbon emissions from kerosene wick lamps. Environmental science & technology 46, 13531–13538 (2012).

Alstone, P., Gershenson, D. & Kammen, D. M. Decentralized energy systems for clean electricity access. *Nature Climate Change* accepted, in press, (2015).

