QTR Chapter 8 - Increasing Efficiency and Effectiveness of Industry and Manufacturing

2015 Quadrennial Technology Review Ch. 8 Webinar - Feb. 11, 2015

<u>Chapter Leads:</u> Joe Cresko Dev Shenoy

Discussion DRAFT

Today's Webinar

- Introduce the 2015 Quadrennial Technology Review (QTR)*
- Provide an contextual overview of QTR Chapter 8 Industry & Manufacturing (~25 pages)**
- Introduce the fourteen supporting Technology Assessments (~15-30 pages each)
- Build upon outreach initiated at the Dec. 4th-5th "Cornerstone Workshop"
- Initiate a comment period for the draft versions of Chapter 8 and the associated Tech Assessments (Feb. $11^{th} 24^{th}$)

<u>Goal</u>: Provide an opportunity for subject matter experts from academia, labs, the private sector and other governmental agencies to provide comments and factual information that enable DOE to produce a more informed and improved technical basis for the Chapter and associated Tech Assessments.

^{*}More information can be found at http://energy.gov/qtr including the Framing Document which outlines all the Chapters. Follow the links for "Public Webinars" to get to Chapter 8.

2015 QTR Chapters

- 1. Energy Challenges
- 2. What has changed since QTR 2011
- 3. Energy Systems and Strategies
- 4. Advancing Systems and Technologies to Produce Cleaner Fuels
- 5. Enabling Modernization of Electric Power Systems
- 6. Advancing Clean Electric Power Technologies
- 7. Increasing Efficiency of Buildings Systems and Technologies
- 8. Increasing Efficiency and Effectiveness of Industry and Manufacturing
- 9. Advancing Clean Transportation and Vehicle Systems & Technologies
- 10. Enabling Capabilities for Science and Energy
- 11. U.S. Competitiveness and R&D Needs
- 12. Integrated Analysis
- 13. Accelerating Science and Energy RDD&D

2015 QTR Chapters

- 1. Energy Challenges
- 2. What has changed since QTR 2011
- 3. Energy Systems and Strategies
- 4. Advancing Systems and Technologies to Produce Cleaner Fuels
- 5. Enabling Modernization of Electric Power Systems
- 6. Advancing Clean Electric Power Technologies
- 7. Increasing Efficiency of Buildings Systems and Technologies
- 8. Increasing Efficiency and Effectiveness of Industry and Manufacturing
- 9. Advancing Clean Transportation and Vehicle Systems & Technologies
- 10. Enabling Capabilities for Science and Energy
- 11. U.S. Competitiveness and R&D Needs
- 12. Integrated Analysis
- 13. Accelerating Science and Energy RDD&D

Key Issues and Questions for R&D

Some Key Technology and System Assessment/Analysis Issues & Questions

- What technology and system improvements and innovations will result in the greatest <u>economy-wide</u> impacts?
- What are the most impactful opportunities to leverage abundance of domestic natural gas?
- What timely investments could potentially enable U.S. leadership and open markets?
- What is the appropriate balance between deployment of current SOA vs investment in next-generational technologies?

What's In/Out?

What is in the QTR chapter?

Manufacturing-based technologies for:

- Manufacturing systems
- Production/facility systems
- Supply-chain systems

Economy-wide impacts of these systems

What is <u>not</u> in the QTR chapter?

Regulatory and market policy recommendations

Snapshot of Industry and Manufacturing

Definitions:

- Industry: Industry encompasses manufacturing (NAICS 31-33), agriculture (NAICS 11), mining (NAICS 21), and construction (NAICS 23)
- Manufacturing: Includes 21 sectors (e.g., chemicals, paper, food, computers and electronics)
- Advanced Manufacturing: Making things in a manner such that technology provides a competitive advantage over the practices widely in use.
- Clean Energy Manufacturing: Making things such that environmental impact is reduced in the making, use, or disposal of the product made
- **Technology**: Defined by the system of interest

Key Economic Data (2012	Key Energy and Economic Data (2012)		
Manufacturing Share of GDP	13%	Industrial Energy Consumption	30.9 Quads
Manufacturing Payroll	\$594 billion	Industrial Energy Expenditures	\$226 billion
Manufacturing Exports	\$1,163 billion	Manufacturing Facilities	~300,000
Manufactured Goods Trade Balance*	-\$458 billion	Manufacturing R&D	\$201 billion
Advanced Technologies Trade Balance	-\$91 billion	Expenditures (2011)	
U.S. Manufacturing Share of World Output	18%	Manufacturing sector direct employment	12 million

Manufacturing in the United States

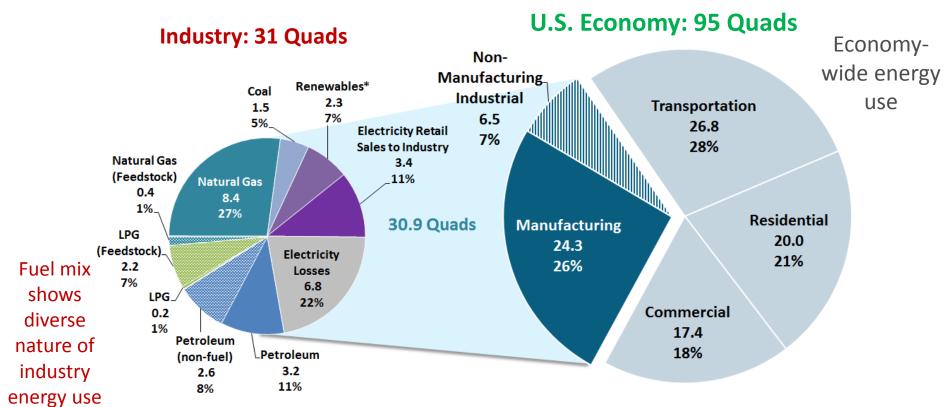
Is a key driver of our economy, energy productivity¹ and innovation.

"The economic evidence is increasingly clear that a strong manufacturing sector creates spillover benefits to the broader economy, making manufacturing an essential component of a competitive and innovative economy."

Gene Sperling, former Director of the National Economic Council Remarks at the Conference on the Renaissance of American Manufacturing, March 27, 2012

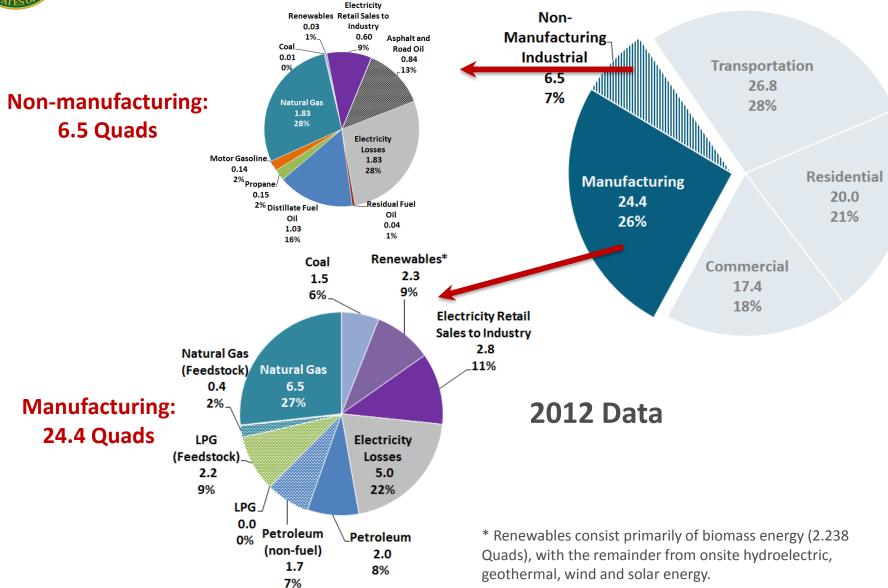
Approach:

- Efficiency opportunities through deployment of state-of-the-art technologies to existing manufacturing practices.
- Research, Development and Demonstration of new, advanced processes and materials technologies that reduce energy consumption for manufactured products and enable life-cycle energy savings²

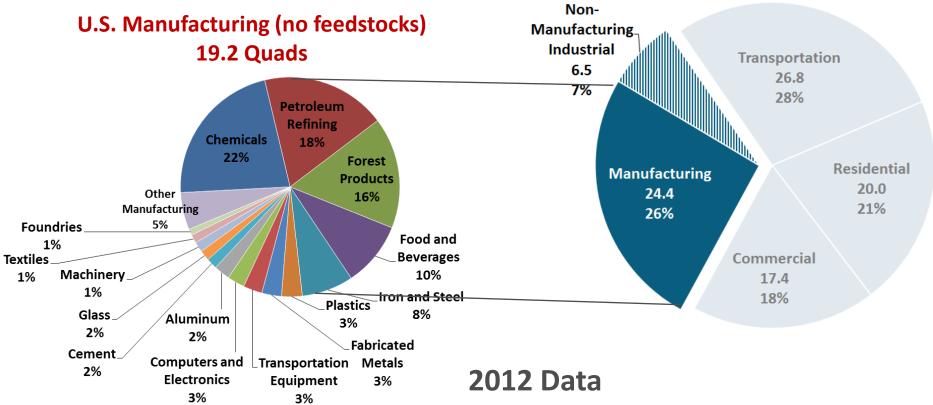

¹ Energy productivity and competitiveness issues will be addressed in more-depth in Chapter 11 of the QTR ² Historically DOE has communicated industrial energy use/opportunities in terms of site energy use; little precedent for materials flows, cross-sector impacts, economics & competitiveness.

Industry and Manufacturing Energy Use

 Before discussing U.S. economy-wide impacts, consider industry and manufacturing energy use/loss and manufacturing energy utilization (based on EIA data, years of analysis, etc.)

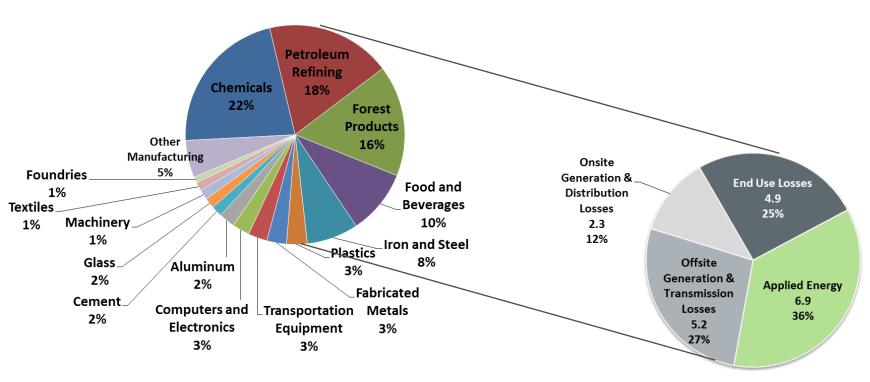

2012 Data

^{*} Renewables consist primarily of biomass energy (2.238 Quads), with the remainder from onsite hydroelectric, geothermal, wind and solar energy.



Energy Use by Fuel Type ...

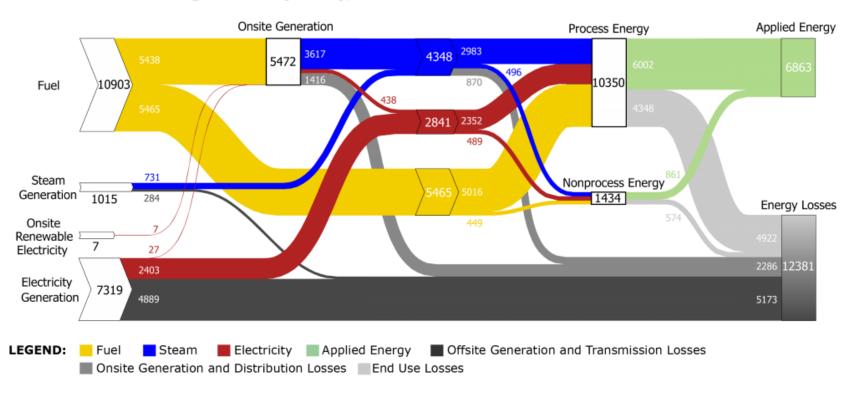
...and by Subsector...


U.S. Economy: 95 Quads

Source: EIA Monthly Energy Review, Aug 2014

...to "Applied" Energy, revealing opportunities.

U.S. Manufacturing (no feedstocks) 19.2 Quads


2012 Data

Source: EIA Monthly Energy Review, Aug 2014

System Highlights: Bottom-up assessment of technologies

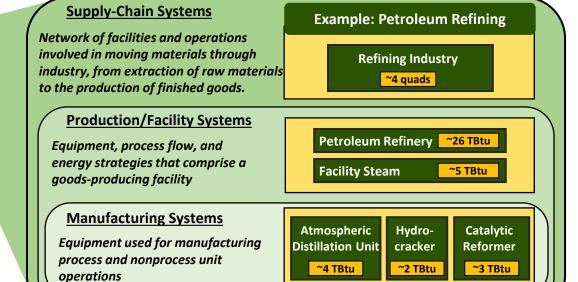
U.S. Manufacturing Sector (TBtu), 2010

Note: 1 quad = 1,000 TBtu

Energy Production

Energy Delivery

U.S. Energy Economy 95 quads

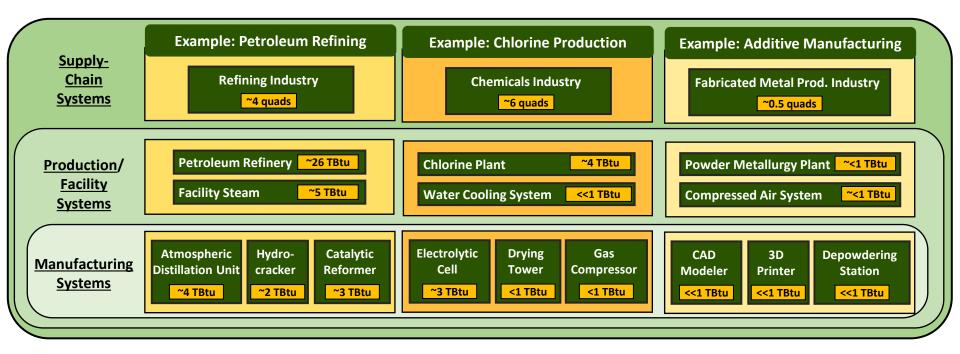

Transportation	Industrial
Sector	Sector
27 quads	31 quads
Residential	Commercial
Sector	Sector
20 quads	17 quads

Energy-efficient technologies reduce the 58 quads lost throughout the U.S. Energy Economy

System Highlights: Opportunity Space Impacted by Manufacturing

Manufacturing, facility, and supply-chain improvements reduce the 12 quads lost within the industrial sector

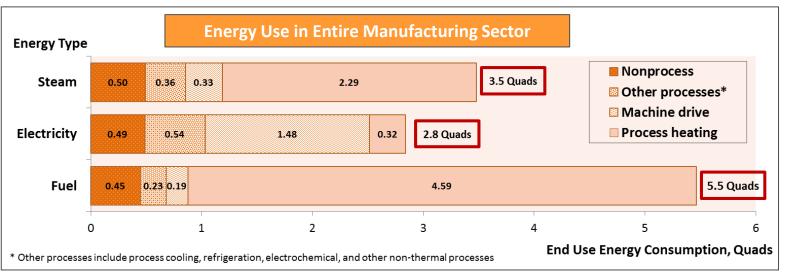
Industrial Systems
31 quads


Note: 1 quad = 1,000 TBtu

Technologies for clean & efficient manufacturing

- Technologies to improve energy use in transportation
- Technologies to improve energy use in buildings
- Technologies to improve energy production and delivery

System Highlights: Bottom-up assessment of technologies


R&D Strategy: Systems-of-Systems Approach to Manufacturing Energy Use Reveals Economy-Wide Opportunities

System Level	Examples	R&D Opportunity Examples
Manufacturing Systems Technology and equipment used for manufacturing process and nonprocess unit operations	 Composites/curing system Chemicals separation system 	 Transition from autoclave to out- of-the autoclave technology Transition from distillation to membranes Smart manufacturing equipment
Production/Facility Systems Equipment, process flow, and energy strategies that comprise a goods- producing facility	 Petroleum refinery Vehicle assembly plant Facility steam systems Enterprise computer/control systems 	 Process intensification Smart enterprise systems Advanced CHP systems Grid-friendly equipment
Supply-Chain Systems Facilities and operations involved in moving materials through an industry, from the extraction of raw materials to the production of finished goods.	 Steel industry Transportation equipment industry 	 Recyclability/design for re-use Alternative materials development Use of low-carbon fuels and feedstocks Market transformation opportunities

Transformative industrial technologies—achieved or advanced through R&D—feed into each of the system levels. Since manufactured products penetrate all sectors, **impacts are economy-wide.**

Interdependency of Manufacturing Systems and Production/Facility Systems

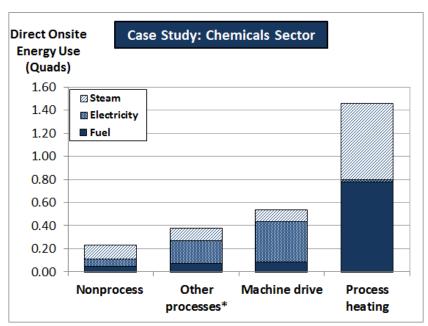
Machine-driven systems:

Pumps, fans, compressors, etc.

Process heating systems:

Furnaces, ovens, kilns, evaporators, dryers, etc.

Other process systems:


Electrochemical systems, process cooling, etc.

Nonprocess systems:

Facility HVAC, lighting, onsite transportation, etc.

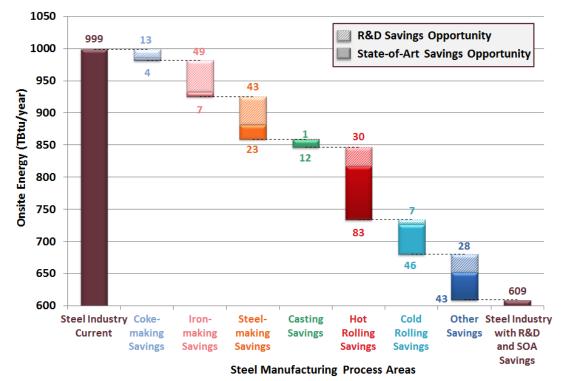
Steam systems and other onsite generation:

• Boilers, cogeneration (CHP) equipment, other onsite electricity generation (solar or geothermal)

Technology Highlights – Energy Intensity Improvements

Energy Intensity e.g.:

Process efficiency Process integration Waste heat recovery


Carbon Intensity, e.g.:

Process efficiency
Feedstock substitution
Green chemistry
Biomass-based fuels
Process changes
Renewables

Use Intensity e.g.:

Recycling
Reuse and remanufacturing
Material efficiency and
substitution
By-products
Product-Service-Systems

Technical Energy Savings Opportunities: Iron & Steel Industry

- The 2014 Iron and Steel Industry Energy Bandwidth Study explores the energy intensity of steel manufacturing by major process area
- Energy bandwidths illustrate energy savings opportunity
- Greatest savings opportunity: ironmaking and steelmaking (R&D savings);
 rolling operations (overall savings)

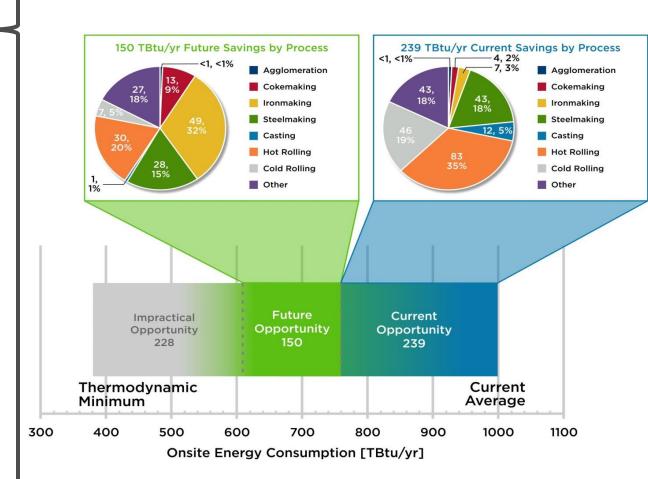
Source: DOE/AMO, Iron & Steel Industry Energy Bandwidth Study (2014)

Note: 1 quad = 1000 TBtu

Technology Highlights – Energy Intensity Improvements

Energy Intensity e.g.:

Process efficiency Process integration Waste heat recovery


Carbon Intensity, e.g.:

Process efficiency
Feedstock substitution
Green chemistry
Biomass-based fuels
Process changes
Renewables

Use Intensity e.g.:

Recycling
Reuse and remanufacturing
Material efficiency and
substitution
By-products
Product-Service-Systems

Technical Energy Savings Opportunities: Iron & Steel Industry

 The 2014 Iron and Steel Industry Energy Bandwidth Study explores the energy intensity of steel manufacturing by major process area

Source: DOE/AMO, Iron & Steel Industry Energy Bandwidth Study (2014)

Note: 1 quad = 1000 TBtu

Bandwidth Studies underway

Chemicals, e.g.:

- Advanced Distillation Technologies
- New Membranes (liquid, gas)
- New Catalysts

Petroleum Refining, e.g.:

- Thermal Cracking
- Progressive Distillation
- Dividing-wall Columns
- Improved Heat Integration

Pulp and Paper, e.g.:

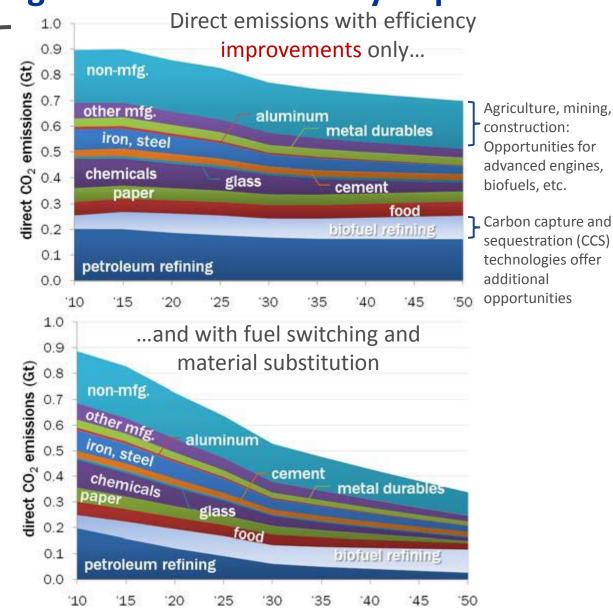
- Black Liquor Gasification
- Directed Green Liquor Utilization
- New Fibrous Fillers

Iron and Steel, e.g.:

- Heat Recovery
- Slag Recycling
- Endless Rolling
- High Temperature Insulation
 Materials

Technology Highlights – Carbon Intensity Improvements

Energy Intensity e.g.:


Process efficiency Process integration Waste heat recovery

Carbon Intensity, e.g.:

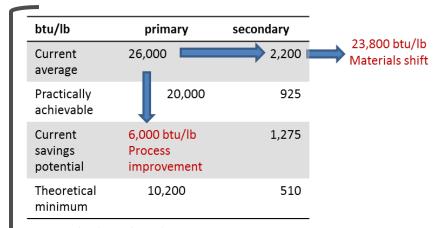
Process efficiency
Feedstock substitution
Green chemistry
Biomass-based fuels
Process changes
Renewables

Use Intensity e.g.:

Recycling
Reuse and remanufacturing
Material efficiency and
substitution
By-products
Product-Service-Systems

Technology Highlights – Use Intensity Improvements

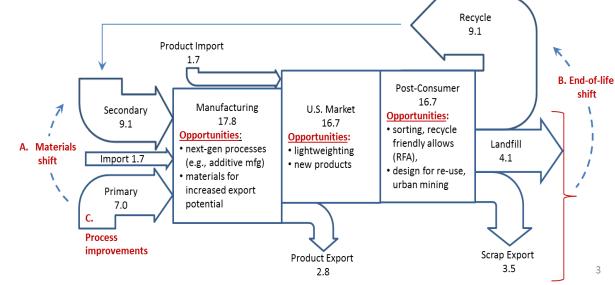
Energy Intensity e.g.:

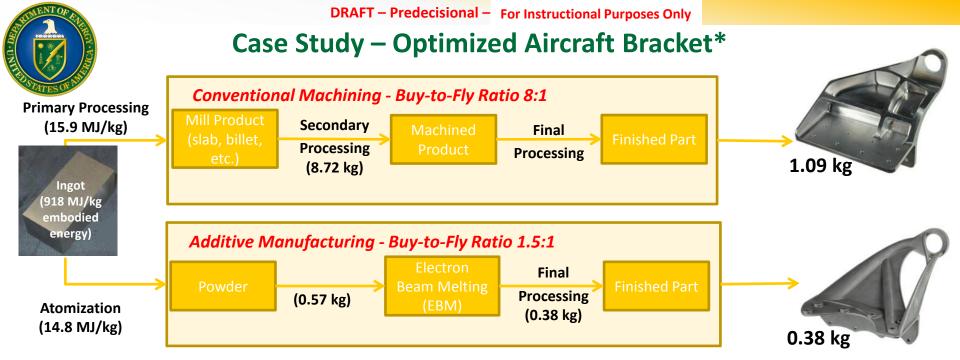

Process efficiency Process integration Waste heat recovery

Carbon Intensity, e.g.:

Process efficiency
Feedstock substitution
Green chemistry
Biomass-based fuels
Process changes
Renewables

Use Intensity e.g.:


Recycling
Reuse and remanufacturing
Material efficiency and
substitution
By-products
Product-Service-Systems


Expanded Technology Opportunity Space:

- Materials Shift To enable increase of secondary aluminum by manufacturing
- End-of-life shift To enable greater capture and use of landfill + scrap export

• Systems-wide— Materials & product design, manufacturing, use and re-use.

Aluminum Materials Flows - U.S. and Canada, 2009 Billions of Pounds

*"Average" conventional bracket 1.09 kg, "average" AM bracket 0.38 kg

Process	Final part kg	Ingot consumed kg	Raw mat'l MJ	Manuf MJ	Transport MJ	Use phase MJ	End of life	Total energy per bracket MJ	Total energy per (120 brackets) MJ
Machining	1.09	8.72	8,003	952	41	217,949	Not considered	226,945	27.3 MM
EBM (Optimized)	0.38	0.57	525	115	14	76,282	Not considered	76,937	9.2 MM

Key assumptions:

- Ingot embodied (source) energy 918 MJ/kg (255 kWh/kg)^[5]
- Forging 1.446 kWh/kg^[5], Atomization 1.343 kWh/kg^[6,7,8], Machining 9.9 kWh/kg removed^[9], SLM 29 kWh/kg^[10,11], EBM 17 kWh/kg^[10]
- 11 MJ primary energy per kWh electricity
- Machining pathway buy-to-fly 33:1^[15], supply chain buy point = forged product (billet, slab, etc.)
- AM pathway buy-to-fly 1.5:1, supply chain buy point = atomized powder
- Argon used in atomization and SLM included in recipes but not factored into energy savings in this presentation

Source: MFI and LIGHTEnUP Analysis

Technology Highlights – Use Intensity Improvements

Additive Manufacturing

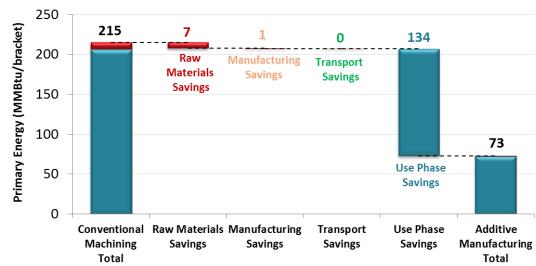
Applications in Multiple Sectors

- **Lightweight components** for the transportation sector
- Advanced tooling for manufacturing
- Custom products and smallbatch production
- Accelerated design cycles for rapid product development

R&D Challenges

- Fabrication of large products
- Distributed manufacturing
- Time-quality optimization
- Materials efficiency

Energy, cost, and environmental impacts (throughout life cycle) are application dependent.


Case Study: Optimized Aircraft Bracket

- 65% weight reduction
- 81% reduction in buy-to-fly ratio
- 66% energy savings
- Most savings occur in use phase

Life-Cycle Energy Savings for Additive Manufactured Aircraft Bracket

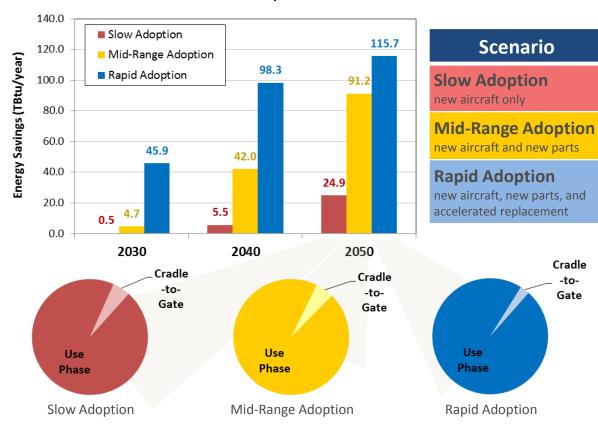
Source: MFI and LIGHTENUP Analysis **Note:** 1 quad = 1×10^9 MMBtu

Technology Highlights – Use Intensity Improvements

Additive Manufacturing

Applications in Multiple Sectors

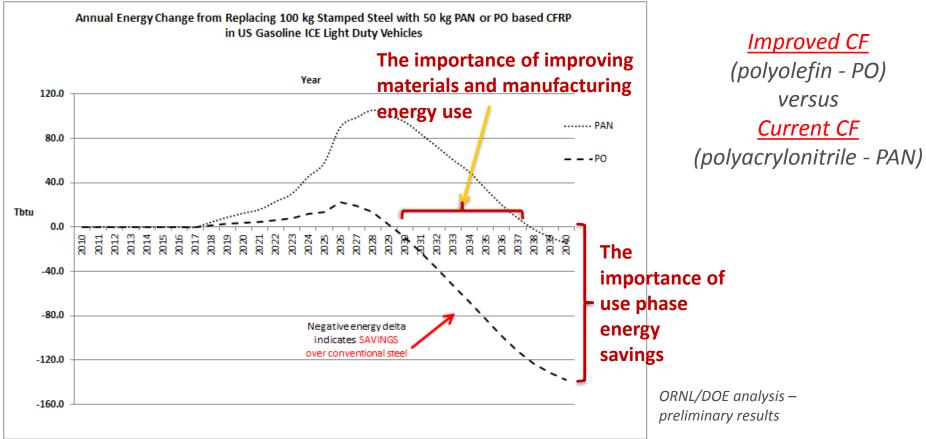
- Lightweight components for the transportation sector
- Advanced tooling for manufacturing
- Custom products and smallbatch production
- Accelerated design cycles for rapid product development


R&D Challenges

- Fabrication of large products
- Distributed manufacturing
- Time-quality optimization
- Materials efficiency

Energy, cost, and environmental impacts (throughout life cycle) are application dependent.

Impacts from Aircraft Fleet-Wide Adoption of Additive Manufacturing


Annual Energy Savings for Fleet-Wide Adoption of Additive Manufactured Components in Aircraft

Energy Savings Breakdown: Over 95% of savings occur in use phase

Life Cycle Energy Consumption Savings from Lightweighting Carbon Fiber Reinforced Plastics (CFRP) vs. Steel

- Carbon Fiber (CF) is currently ~ 5x more energy intensive than steel: savings accrue in the use phase
- Improved CF is ~ ½ energy intensity than PAN: 11,300 MJ/vehicle (PO) vs. 20,200 MJ/vehicle (PAN)
- Per vehicle savings over 13 yr, 250,000 km: 11,500 MJ per PO vehicle, 2600 MJ per PAN vehicle
- <u>Penetration into US LDV fleet</u> Net energy impact of PO (dashed line) vs. PAN (dotted line):
 <u>Significantly improved materials and manufacturing energy investment improves net energy footprint</u>

Examples of Topics Addressed in Ch. 8

Introduction & Context

- Drivers for Industry & Manufacturing
- Industrial Energy Use & Greenhouse Gas Emissions
- Opportunity Space: Industrial Energy Efficiency
- Opportunity Space: Economy-Wide Impacts of Manufactured Products
- DOE's Role in Strengthening U.S. Manufacturing

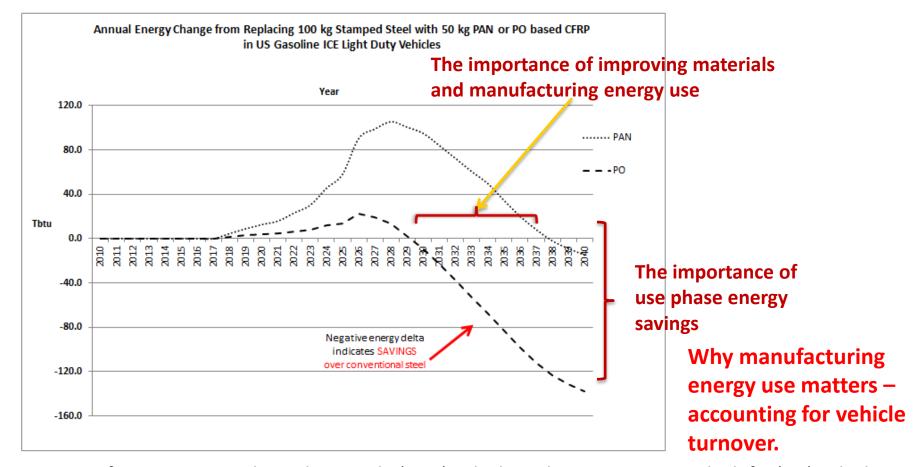
Systems: Manufacturing Systems

- Process heating systems
- Motor driven systems
- Steam systems and onsite generation
- Other process and nonprocess systems

Systems: Production Systems

- Industry bandwidth studies
- Process intensification and system integration
- Industrial demand-side management
- Industrial carbon capture and storage
- Efficient use of delivered energy

Systems: Supply-Chain Systems


- Minimizing materials use
- Alternative and functional materials
- Materials genome, computational manufacturing
- Recyclability & design for re-use
- Low-Carbon, domestic fuels & feedstocks
- Water/energy systems

Technologies

- Additive Manufacturing
- High-Efficiency Separations
- Roll-to-Roll Processing
- Wide Bandgap Power Electronics and Motor Drive
- Waste Heat Recovery
- Advanced Metrology for Real-Time Process Improvement
- Smart Manufacturing
- Composite Materials
- Energy Conversion Technologies

Life cycle, cross-sector example - Energy Consumption Savings from Lightweighting 50 kg Carbon Fiber Reinforced Plastics (CFRP) replacing 100 kg Steel; Improved CF (polyolefin) vs. current CF (polyacrylonotrile)

- Savings of 2600 MJ per polyacrolynonitrile (PAN) vehicle and 11,500 MJ per polyolefin (PO) vehicle
- Net energy impact of PO (dashed line) in US LDV fleet also compared with PAN (dotted line)
- Significantly greater materials and manufacturing energy investment with PAN net energy savings temporally delayed and lesser magnitude

Characteristics of Key Technologies

Opportunity for DOE to Invest in Technologies that are:

- Transformative: Result in significant change in the life-cycle impact (energetic or economic) of manufactured products
- Pervasive: Create value in multiple supply chains, diversifies the end use/markets, applies to many industrial/use domains in both existing and new products and markets
- Globally Competitive: Represent a competitive/strategic capability for the United States
- Significant in Clean Energy Industry: Have a quantifiable energetic or economic value (increase in value-added, increase in export value, increase in jobs created)

1. Thermoelectric Materials, Devices, and Systems

- Thermoelectric materials (bismuth telluride, lead telluride, etc.), including high-ZT materials
- Waste heat recovery equipment
- Thermoelectric generation of electricity

2. Wide Bandgap Power Electronics

- Opportunities for silicon carbide (SiC) and gallium nitride (GaN) to replace silicon (Si) in power electronics
- Applications including AC adapters, data centers, and inverters for renewable energy generation

3. Composite Materials

- Advanced composite materials, e.g. carbon fiber reinforced polymers
- Structural composite materials for lightweighting, including automotive, wind, and gas storage applications
- Forming and curing technologies for thermosetting and thermoplastic polymer composites

4. Critical Materials

- Permanent magnets for wind turbines and electric vehicles
- · Phosphors for energy efficient lighting
- Supply diversity and global material criticality

5. Roll-to-Roll Processing

- Roll-to-roll (R2R) applications such as flexible solar panels, printed electronics, thin film batteries, and membranes
- Deposition processes such as evaporation, sputtering, electroplating, chemical vapor deposition, and atomic layer deposition
- Metrology for inspection and quality control of R2R products

6. Process Heating

- Fuel, electricity, steam, and hybrid process heating systems
- Sensors and process controls for process heating equipment
- Process heating energy saving opportunities, e.g. waste heat recovery, non-thermal drying, and low-energy processing

7. Combined Heat and Power

- CHP use in the manufacturing sector
- Bottoming and topping cycles
- R&D opportunities for CHP, such as advanced reciprocating engine systems, packaged CHP systems, and fuelflexible systems

8. Additive Manufacturing

- 3-D printing technologies including powder bed fusion, directed energy deposition, material extrusion, vat photopolymerization, material jetting, and sheet lamination
- Material compatibility for additive manufacturing technologies, including homogenous (e.g., metals) and heterogeneous materials (e.g., reinforced polymer composites)

9. Advanced Sensors, Controls, Modeling and Platforms

- Smart systems and advanced controls
- Advanced sensors and metrology, including power/cost sensors and component tracking across the supply chain
- Distributed manufacturing
- Predictive maintenance
- Product customization
- Cloud computing and optimization algorithms

10. Flow of Materials through Industry (Sustainable Manufacturing)

- Supply chain issues, from resource extraction to end of life (life cycle analysis)
- Mechanisms for reducing material demand, such as lightweighting, scrap reduction, recycling, and increased material longevity
- Design for re-use / recycling

11. Process Intensification

- Process intensification equipment and methods
- Application areas where process intensification could provide solutions to energy, environmental, and economic challenges
- Feedstock use and feedstock conversion technologies
- Focus on the energy-intensive chemical sector

12. Waste Heat Recovery

- Waste heat recovery technologies, including recuperators, recuperative burners, stationary and rotary regenerators, and shell-and-tube heat exchangers
- Major waste heat sources such as blast furnaces, electric arc furnaces, melting furnaces, and kilns
- Opportunities for low, medium, and high-temperature waste heat recovery

13. Materials for Harsh Service Conditions

- Materials for extreme environments including high temperatures, high pressures, corrosive chemicals, heavy mechanical wear, nuclear radiation, and hydrogen exposure, e.g.:
- Phase stable alloys for ultrasupercritical turbines and high-temperature waste heat recovery
 - Corrosion-resistant materials for pipeline infrastructure
 - Irradiation-resistant materials for nuclear applications
 - Functional coatings for aggressive environments

14. Next Generation Materials and their Manufacture

- Emerging processes for production of advanced materials, such as magnetic field processing, plasma surface treatments, atomically precise manufacturing, powder metallurgy, and advanced joining technologies for dissimilar materials
- Materials Genome as related to materials design for Clean Energy Manufacturing
- Computational Manufacturing
- Technologies to accelerate the development of key materials with important use-phase attributes (e.g., lightweighting, corrosion resistance), including manufacturing, secondary processing, and recycling

Technology Assessment Comment Form

Tech Assessments **Comment Form** (with instructions) will be posted on the website.

http://energy.gov/downloads/webinar-qtr-chapter-8-industry-and-manufacturing

- Comment Period for Chapter 8 Technology Assessments: Feb. 11th Feb 24th.
- Comments to be entered on the Comment Form (attached).
- Comment Forms to be sent to this email address: QTR Chapter8@ee.doe.gov
- Comments will not be accepted after Feb. 24th.

NOTE: THE DEADLINE GIVEN IN THE WEBINAR RECORDING IS INCORRECT!

Thanks for your participation!