

NEAC meeting Washington DC, June 5, 2014

Nuclear Energy

Advanced Modeling and Simulation for Nuclear Energy

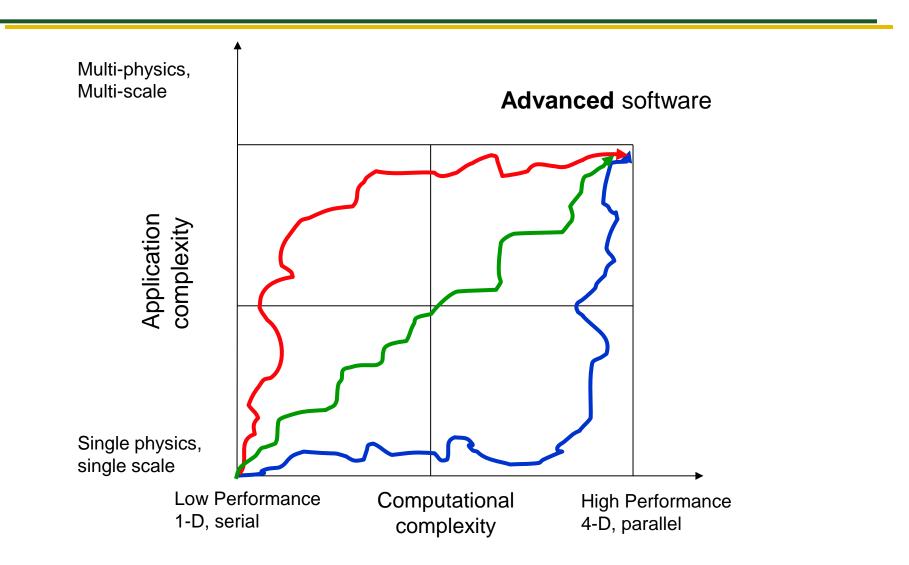
Marius Stan (NE-1), Douglas Kothe (ORNL), Alex Larzelere (NE-1), Shane Johnson (NE-4), Todd Allen (INL), and Andrew Siegel (ANL)

Models and Simulations

Nuclear Energy

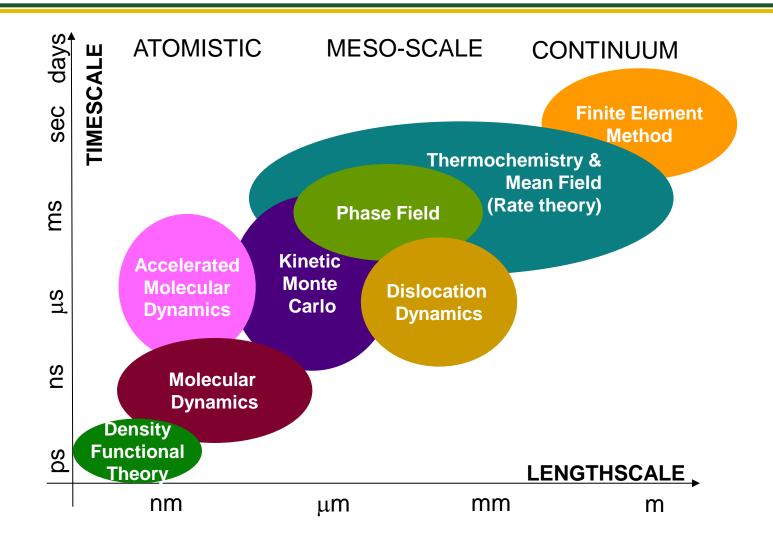
Model: A logical description of how a system performs.

- empirical (interpolation based on observation)
- theory-based (interpolation based on theory)


and: bringing together the two communities

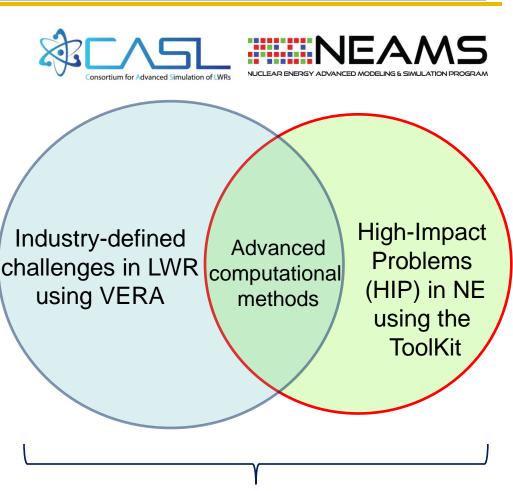
Simulation: The process of running computer programs to reproduce, in a simplified way, the behavior of a system.

- low performance (workstation)
- high performance (Petascale, Exascale,)



Advanced software: development paths

Multi-Physics and Multi-Scale Methods



CASL and NEAMS – Complementarity and Coordination

Nuclear Energy

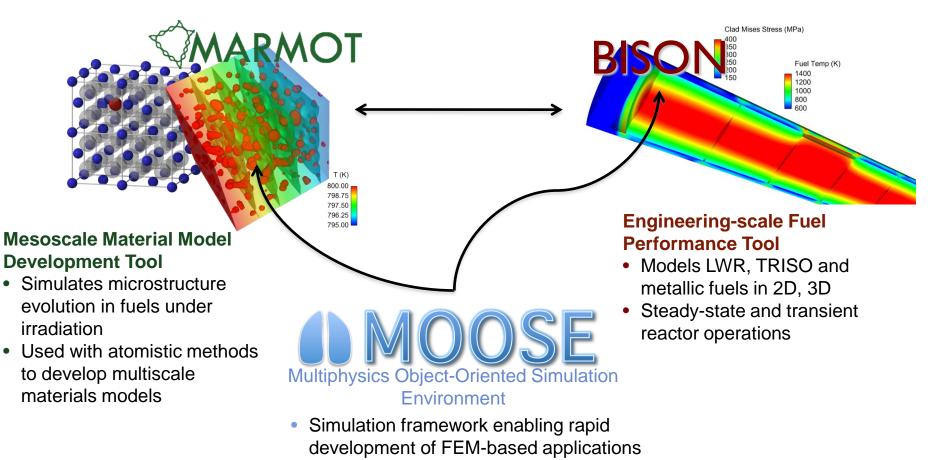
Complementarity - differences

- CASL
 - Delivers solutions to industry-defined challenges in LWR technology
 - Develops "virtual reactor" software, VERA
 - Provides <u>strength</u> to the program
- NEAMS
 - Delivers solutions to high-impact problems (HIP) in various NE technologies
 - Develops a ToolKit of computational tools
 - Provides <u>flexibility</u> to the program
- Coordination common goals
 - Improve advanced, multi-physics computational methods
 - Accelerate Innovation in NE technology
 - CASL and NEAMS coordinate activities to avoid duplication of efforts

Accelerate innovation in NE technology

Modeling and Simulation Budgets

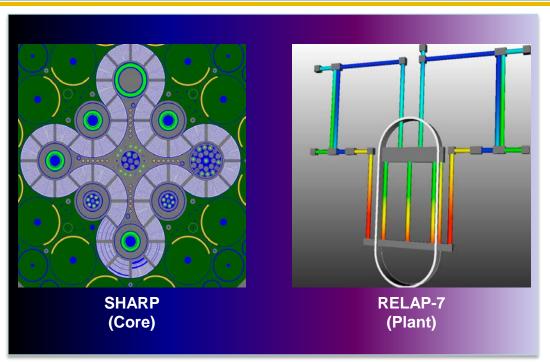
	FY-08	FY-09	FY-10	FY-11	FY -12	FY-13	FY-14	FY-15
NEAMS	7,792	20,000	26,574	40,495	15,299	17,242	9,536	21,536
HUB			22,000	22,000	23,517	24,588	24,300	24,300



The "Fuels Product Line"

Nuclear Energy

from microstructure to the fuel elements


MOOSE-BISON-MARMOT toolset provides an advanced, multiscale fuel performance capability

The "Reactors Product Line" from the reactor core to the full plant

- Seamless interoperability
- Robust, useful stand-alone products
- Enables traditional workflow but positions the toolkit for future approaches and superior predictability where needed

The survery

Nuclear Energy

Jan-March, 2014, 32 participants from NEAMS, CASL, Nat. Labs, and DOE-NE

Q1: What is good/bad with the NEAMS R&D plan?

- 1. The quality of the NEAMS software is very good
- 2. Being technology versatile is good
- 3. NEAMS must solve a problem

Q2: What CASL successful experience can be used in NEAMS?

- 1. The focus concentrated effort to solve a problem
- 2. The synergy industry is a partner
- 3. The stability funding, personal, work scope

Hubification: Using the positive experience of a hub (CASL) to improve a program (NEAMS)

High-Impact Problems (HIP)

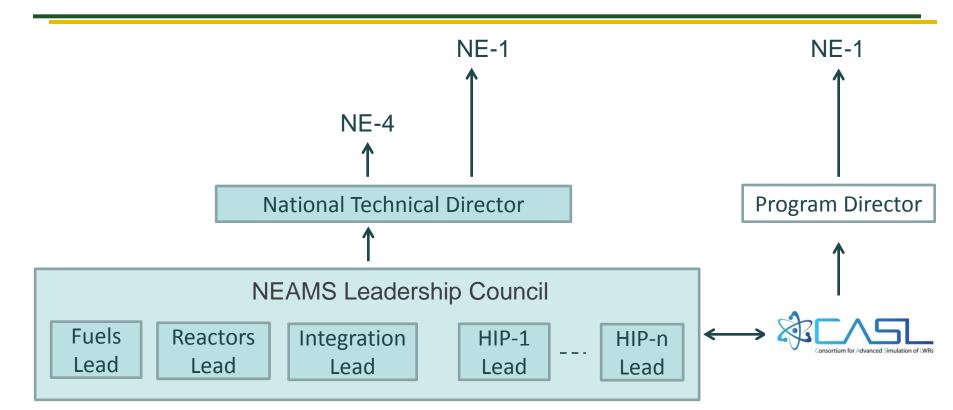
Nuclear Energy

High-Impact Problem: a problem that has a solution which significantly improves, in a short period of time, an application of exceptional importance for the customer.

- Participates in problem definition
- Leads the scientific and engineering approach (\$5 mil/year for 3 years)
- Demonstrates the high-impact

Customer

- States the high-impact level of the problem
- Provides technical support, validation data, experiments, etc.
 (> 20% NEAMS funding, in-kind)
- Certifies the high-impact

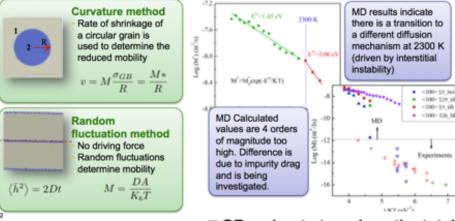


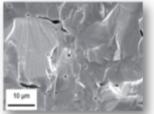
Leadership and Management

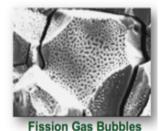
Nuclear Energy

Management philosophy:

- Build upon what works well
- Encourage innovation, take risks
- Build and maintain a community of passionate people




Highlight: New model for the average grain size in UO₂ fuel using atomistic and mesoscale simulations


Nuclear Energy

 The GB mobility was calculated using two molecular dynamics methods for three GB types as a function of temperature.
 Ongoing work is determining the impact of impurity drag.

Two distinct distributions of porosity exist within the fuel

Initial Porosity (from sintering)

- Neither can be accurately represented with Zener's model
 Existing models from the literature exist for the sintered porosity
- Mesoscale modeling will be used to develop a model for the fission gas bubbles

GBs migrate to reduce the total free energy of the system

Driving forces include

- Reduction in GB energy (curvature driving force))
- · Reduction in elastic energy
- · Reduction in defect energy
- (Temperature gradient)

Curvature driving force:

- Results in an increase in the average grain size.
- Is well understood:

$$P_{DF} = \frac{\sigma_G}{R}$$

- GB energy has been calculated using MD.
- An existing phase field model has been verified by

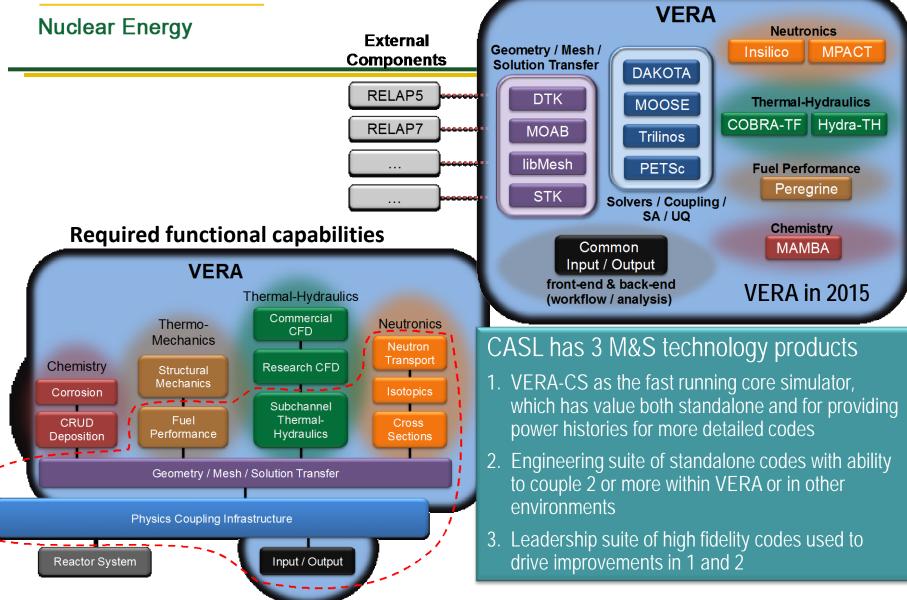
Temperature gradient driving force:

- Causes GBs to migrate to higher temperatures
- Is defined by (Gottstein and Shvindlerman, 1999):

$$P_{DF} = \frac{\Delta S w_{GB}}{\Omega} \nabla T$$

- This equation is unreferenced and so was investigated using MD.
- Relative importance was determined using phase field modeling.

 $\dot{D} = 2M (P_{DF} - P_{p})$


Nuclear Energy

Highlight: MAX – Validation of CFD simulations

VERA: Virtual Environment for Reactor Applications CASL's evolving virtual reactor for in-vessel LWR phenomena

Nuclear Energy

Highlight: VERA Analysis of Watts Bar Unit 1 Hot Full Power

Purpose

- First large-scale coupled multi-physics model of operating PWR reactor using Components of CASL's Virtual Environment for Reactor Applications (VERA)
- Features resolved are based on the dimensions and state conditions of Watts Bar Unit 1 Cycle 1: geometry for fuel, burnable absorbers, spacer grids, nozzles, and core baffle

Execution

- Common input used to drive all physics codes
- Multigroup neutron cross sections calculated as function of temperature and density (SCALE/XSPROC)
- SPN neutron transport used to calculate power distribution (DENOVO)
- Subchannel thermal-hydraulics in coolant (COBRA-TF)
- Rod-by-Rod heat conduction in fuel rods (COBRA-TF)
- Simulation ran in 14.5 hours on Titan using 18,769 cores over 1M unique material (fuel/coolant/internals) regions resolved

Next Steps

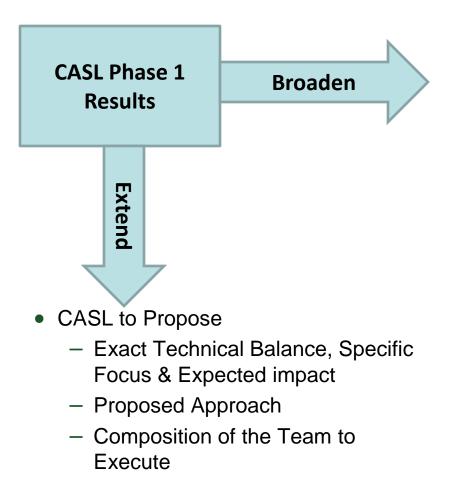
- Add fuel depletion and core shuffling
- Compare results to plant measured data

Remarkable resolution of physics and

geometry

Thermal Flux Profile in Reactor Core

NE Hub Phase 2 Considerations

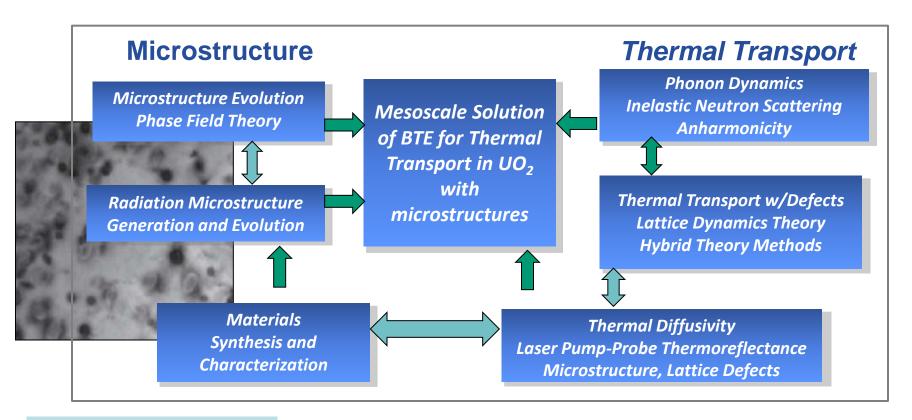

(Renewal Application Due by July 1, 2014)

Plans for Phase Two

Nuclear Energy

Phase One Performance

- Technical Performance
 - Successful completion of planned milestones
- Annual Reviews
 - Meeting criteria of the NE Hub Oversight Plan
- Impact on Science and Engineering
 - Significant number of publications and invited presentations
- Technology Deployment
 - Substantial evidence of technology transfer.



Center for Materials Science of Nuclear Fuels (CMSNF)

Nuclear Energy

EFRC focused on understanding the effects of microstructure on thermal transport in irradiated nuclear fuels (UO₂ as a model)

Nuclear Energy

Highlight: Thermal Transport at Different Phonon branches

12 Expt Sim Total thermal conductivity (WK⁻¹, m^{-1}) $\sim \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$ 295 K $LO2(\Delta)$ 1200 K (C) (d) 60 $TO2(\Delta_c)$ TO2(Σ1) $LO1(\Lambda_2)$ E (meV) .01(Σ, το1(Λ_) 30 TO1(Σ, 20 10 TA(Λ, 0.2 0.4 0.6 0.8 0.8 0.6 0.4 0.2 0 0.1 0.2 0.3 0.4 0.5 1 (**00**ζ) Κ (ζζ0) 295 1200 295 Reduced wave vector coordinate ζ (r.l.u.) Temperature (K)

Phonon branches: <u>inelastic neutron scattering</u> (symbols) vs <u>DFT modeling</u> (lines) DFT overestimates k at low T, underestimates at high T.

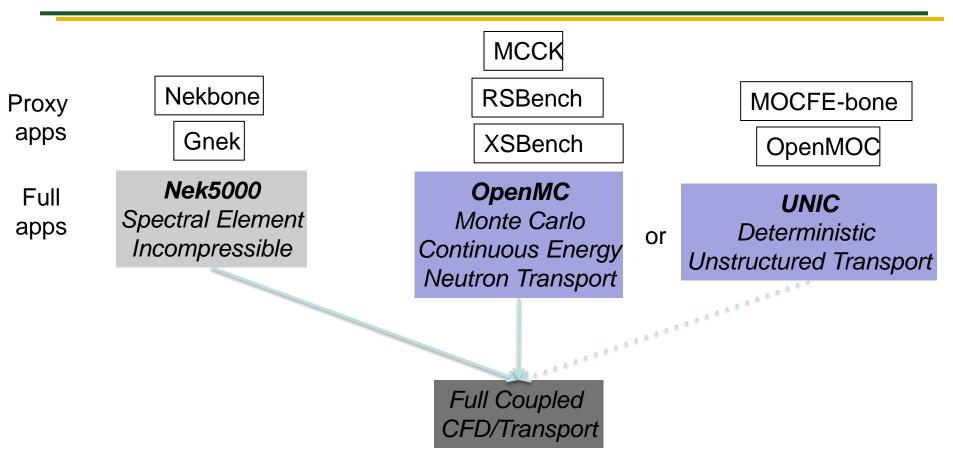
- Understand thermal transport at the level of phonon
- "5f electron" problem in DFT causes the discrepancy Scope in renewal proposal
- A good example of using experiments to validate modeling

Pang et al., Physical Review Letters 110, 157401 (2013).

Center for Exascale Simulation of Advanced Reactors (CESAR)

Nuclear Energy

Exascale co-design center


Mission: Work with industry and DOE research partners to influence the design of future hardware architecture, system software, and applications based on the key algorithms underlying computational nuclear engineering.

Software: CFD + neutron transport optimized in parameter regime relevant to nuclear reactor simulation

Objective: Develop a new generation of underlying algorithms that enable the solution of significant outstanding nuclear engineering problems by leveraging exascale resources.

CESAR Highlight: Proxy Apps

- In CESAR, proxy applications (PAs) are the main vehicle of collaboration with vendors
- PAs abstract key performance characteristics of full applications
- Suitable for testing with architectural simulators, new programming models/algorithms

Conclusions

- CASL and NEAMS complement each other and coordinate their activities. CASL provides strength while NEAMS provides flexibility.
- NEAMS is undergoing a transformation that builds upon successful fuel and reactor simulation software and adds solutions to high impact problems.
- Validation is integrated in software development.
- CASL is preparing for the renewal process
- The Office of Nuclear Energy and the Office of Science fund a spectrum of NErelevant programs that go from fundamental science to advanced computation.
- In addition to engineering solutions, the programs deliver exciting scientific results.