University of California – San Diego - Microgrid and Energy Storage Projects

Bill Torre, Byron Washom, Jan Kleissl, and Andu Nguyen

September 17, 2014

/ Increasing Renewables in California and Need for Energy Storage

Solar energy will become a main source of energy in the future.

- Germany has 36GW of installed PV (>50% of power demand).
- In California, PV production is contributing to 15% of peak demand.
- U.S. Solar Industry is a \$11.5 Billion market with the growth of 34% in 2012.

Hourly Average Breakdown of Renewable Resources

UCSD **Goal**: To test and demonstrate various types of energy storage to support integration of high penetration of renewable generation for microgrid operations.

Summary of Energy Storage Research at

• 30 kw, 30 kWh Sanyo/Panasonic Li-Ion battery energy storage system, integrated with 30 kW PV

- 35 kW, 35 kWh MCV Energy, Community Energy Storage
- 10 kW, 25 kWh Flywheel, Amber Kinetics, CEC
- 108 kW, 180 kWh BMW, demonstration of application of 2 nd use EV batteries, coupling to PV, and EV charging

Peak load shaving control with Short-term Solar Forecast for Storage System

Control with Sky Imager Solar Forecast was developed for a 31kW PV tied to a 31 kWh Li-ion at Hopkins parking structure at UCSD, CA. The solar forecasts was used to optimize the charge/discharge cycling for peak load shaving and battery life longevity. The strategy for peak load shaving is "Time-of-use Energy Cost Management Plus Demand Charge Management" (Eyer and Corey, 2010).

- Energy storage is needed to ensure resource adequacy due to the variability and uncertainly of dispatch
- Capture of PV solar mid-day can be used to reduce the evening peak and increase overall efficiency and flatten the "duck" curve.
- Energy Storage coupled with solar forecasting can be used to improve dispatch-ability of renewables and unit commitment.

Growing need for flexibility starting 2015

Impact of Solar and Wind Generation on

batteries

ideas for life

its lifetime a 31 kWh		Control operation on Nov 7, 2012
1		Off-Peak/On-Peak without PV Power Output and Load Forecast
33,20	00	30,500
212)	365
14.	2	8.2
5.7	,	6.2
281,()00	60,000
	a 31 kWh Optimization wi Power Output a Forecast 33,20 212 14.2 5.7	a 31 kWh Optimization with PV Power Output and Load

UCSD Campus Load and Generation

OSIsoft

23

2nd Life

Battery

Stand

BMW

B2U 108

kW/ 180 kWh

Maxwell 28

kW Ultra

Caps

EV

