PG&E's Compressed Air Energy Storage (CAES) Project

DOE ESSP Peer Review Conference Washington DC

Pacific Gas and Electric Company

September 2014

300 MW, up to 10 hours storage*, in a porous rock reservoir in CA

Three phases:

- 1. Reservoir testing, plant design (currently funded)
- 2. Permitting, interconnection, bid and plant construction
- 3. Operations, Data Collection & Technology Transfer

Project Objectives

- Verify the technical performance of advanced CAES technology using a porous rock formation as the underground storage reservoir
- Integrate intermittent renewable
 resources
- Maintain emergency spinning/nonspinning reserve and perform voltampere reactive/voltage support

Phase 1 Funding:

PG&E Customers

* Final Project size will be determined by reservoir size / definition and by testing results, subject to management & CPUC approvals.

Major Achievements - Status

Site Selection/Permitting/Monitoring

- Long term site control agreements in place
- All core drilling permits (2 sites)
- Top site selected for Air Injection Test (AIT) based on detailed diligence and environmental screening
- Environmental Assessment and FONSI issued by DOE for AIT

(http://www.netl.doe.gov/File%20Library/Library/Environmental%20Assessments/5-15-14-signed-PGE-FONSI.pdf)

EPA UIC (Underground Injection Control) permit issued for AIT (http://www.epa.gov/region09/water/groundwater/uic-permits.html)

Engineering/Testing

- Screened over 100 reservoirs for technical feasibility
- Completed core well contracting, drilling and demobilization (2 sites)
- Core results: Excellent permeability, porosity and other geology
- Preliminary engineering analysis of surface and subsurface technologies
- Established feasibility of bifurcating Energy Conversion Facility (ECF) and reservoir/well pads
- Reservoir model constructed utilizing 3D seismic data
- Engineering, procurement and site prep complete for AIT

- Geology drives key performance and development indicators
- Key drivers:
 - Field size or depth (pressure)
 - Geologic properties (core results, DOGGR, etc.)
 - Field is not in production with minimal number of wells
 - Environmental and/or public policy
 - Ownership complexity/cooperation
 - Infrastructure (proximity to gas, power, water, etc.)
 - Bifurcation of ECF site selection

Core Drilling: Start to Finish

What we were looking for and test results

- Important information learned from coring:
 Permeability flow rate of air through the porous rock medium
 Porosity measure of proportion of void space available for air storage in a given sandstone
 Other geologic properties
- Site 1 Results:
 ➤Extracted 175 feet of core
 ➤Initial core analysis indicates permeability in the range of 800-2,800 mD and porosity of 30-32%
- Site 2 Results:
 - ≻Extracted 115 feet of core
 - Initial core analysis indicates permeability in the range of 800-2,800 mD and porosity of 30-32%

©2013 Pacific Gas and Electric Company. All rights reserved.

CAES Technical Overview

- Basis: Techno-economic evaluation of available surface and subsurface technologies and site specific boundary conditions
- Surface Plant technology: Next Generation of DR Alabama technology "SmartCAES"
 - HP and LP Fired Turbo-expanders with HHP
 - Use of recuperator (air-air heat exchanger) for heat recovery
 - > Quick start capability (10 min to full load)
 - Low turndown ratio (Pmin) with minimal heat rate impact at low loads
 - Quick ramp rate (up and down)
- Subsurface Technology
 - Depleted natural gas reservoir >> 20-30 I/W wells
 - Likely water production/removal (various disposal alts)
 - >Bifurcated reservoir/storage and ECF

Major Milestones

Phase 1 (Feasibility / Testing)	Projected Completion
Select Viable Sites Based on Desktop Analysis	Completed
Site control for top 2 sites	Completed
Complete Core Drilling & Analysis for 2 Sites	Completed
Select Air Injection Site	Completed
Conduct RFPs for Injection Test Contractors	Completed
Obtain NEPA & EPA Permit / Approvals for Air Injection Testing	Completed
NEXT	
Begin Injection Test	Dec, 2014
Injection Testing Complete	March, 2015
Issue RFO for Plant Ownership, Construction & Operation	Feb, 2015
RFO Responses Due	Oct, 2015
Complete RFO Process	July, 2016
Go/No-Go Decision	2016
Phase 2 (Permitting, Engineering, Construction)	2021

- I. Air Injection Testing (AIT)
 - Build bubble at 1/10 scale
 - Use of depleted O2 air for initial test
 Followed by option for ambient air
 - Conduct injection/withdrawal tests
 - >Mimic how the reservoir would be utilized for actual CAES operation
 - Test results can be extrapolated and utilized to update the performance, operation and development cost models to be used by future developers and/or lenders
 - Measure the concentration of methane in the withdrawal stream
 > Use results of AIT to validate existing models
- II. Investigate Native Natural Gas Mitigation Solutions (for a commercial CAES project)
 - Update model with AIT results to forecast entrained native gas profiles
 - Work with DR and others to evaluate ECF technology solutions
 - Evaluate reservoir development, operational, controls/monitoring alternatives