Human Behavior, Standards and Tools to ImproveDesign & Operation2014 Building Technologies Office Peer Review

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Tianzhen Hong, thong@lbl.gov Lawrence Berkeley National Laboratory

Project Summary

Timeline:

Start date: 10/1/2012 planned, 1/1/2013 actual Planned end date: 9/30/2015

Key Milestones

- 1. Behavior data mining and models; 6/28/2013
- 2. Behavior framework; 12/20/2013
- 3. IEA EBC Annex 66 launched; 11/14/2013

Budget:

Total DOE \$ to date: \$380K (FY13 + FY14) Total future DOE \$: \$220K, FY15 estimated

Target Market/Audience:

- Office and residential buildings
- New constructions and existing buildings
- Architects, engineers, operators, occupants, policy makers, energy modelers

Key Partners:

U.S. Partners	China Partners
Bentley Systems	Tsinghua University
C3 Energy	Center of Building Standards
	Center of EEB

Project Goal:

- 1. Deep understanding of energy-related occupant behavior in buildings
- 2. Development of a framework and XML schema to describe human behavior
- 3. Development of a software module of human behavior models
- 4. Integration with EnergyPlus to enable modeling of behavior impact on building performance

Problem Statement:

- Technologies alone not necessarily guarantee low energy use in buildings.
- Human behavior plays an essential role in building design and operation, but it is not well understood and usually over-simplified or ignored!
- Strong needs of data, methods, tools and case studies to address the behavior dimension in the building life cycle.

Target Market and Audience:

- Office & residential buildings; new constructions & existing buildings; 24 Quads
- Architects, engineers, operators, occupants, policy makers, energy modelers

Planned Contribution to Energy Efficiency:

- 1. New methods and tools to model behavior and simulate its impact on building technologies and performance
- 2. Case studies and workshops to demonstrate the use of behavior tools to improve building design and operations to reduce energy use

Approach

Approach:

- Identify, understand and describe energy-related human behavior by data analytics (Data-driven)
- Develop a framework to standardize the description of behavior (Standards)
- Develop and integrate behavior models in whole building performance simulation (Robust modeling)
- Evaluate the impact of behavior on building energy use and performance of building technologies (Provide insights)

Key Issues:

- Simplified human behavior in energy modeling during building design and retrofit
- Lack common methods to analyze and model human behavior

Distinctive Characteristics:

- Use data mining methods to discover behavior patterns
- A framework and XML schema to describe human behavior
- A software module to model human behavior
- ⁴ Enhancement to EnergyPlus to enable modeling

Progress and Accomplishments

Discoveries:

- Privacy concerns to share behavior data
- Lack good data
- Perceived complexity and usefulness of research

Accomplishments:

- Developed behavior models for occupancy and windows opening/closing
- Evaluated impact of occupant behavior on energy use in buildings
- Developing a software tool of behavior models
- Developing a framework and XML schema for human behavior
- Enhancing EnergyPlus to model occupant behavior

Project Contribution to Energy Efficiency:

• Potential energy savings from 5 to 50% can be achieved, based on better tools to consider and integrate human behavior in the building design and retrofit

Awards/Recognition:

• Co-founding and leading the IEA EBC Annex 66 on occupant behavior research

Project Integration and Collaboration

Project Integration:

- Actively engage industry partners in the project
- Public workshops and stakeholder meetings
- Leverage on international effort

Partners, Subcontractors, and Collaborators:

- A project under the U.S.-China CERC program
- U.S. partners: Bentley Systems, C3 Energy
- China partners: Tsinghua University, CEEB of MoHURD, CBS

Communications:

- 5 public workshops: LBNL 7/17/2013; ISHVAC, China 10/21/2013; IEA HQ, 8/23/2013; Hong Kong, 3/13-14/2014; LBNL summer 2014.
- ASHRAE seminar: energy-related occupant behavior in buildings, Seattle
- Presentations at conferences: BECC, ACEEE, ASHRAE, IBPSA
- Publications: 1 report, 5 conference papers, 5 journal articles

Next Steps and Future Plans

Next Steps:

- Refine the behavior schema
- Complete the behavior software tool
- Enhancement to EnergyPlus
- Public workshops

Future Plans:

- 1. Case studies to demonstrate the use of the behavior tools
- 2. Leverage on the international effort under the IEA EBC Annex 66
- 3. Feed results to BTO programs: Analysis Tools, CBI, RBI, ET
- 4. Synergy with related behavior research and programs: utilities, ASHRAE, ACEEE, code and standards, energy benchmarking and rating
- 5. Built upon the DOE/CERC research outcomes, pursuit new funding sources to develop a behavioral guide for practitioners

A Project of CERC-BEE (US-China Clean Energy Research Center Building Energy Efficiency Consortium)

Pioneering U.S. – China Innovation for Widespread Adoption of Very Low Energy Buildings Through Partnerships and Real World Impact

Background

- Technologies alone not necessarily guarantee low energy use in buildings.
- Human behavior plays an essential role in building design, operation and maintenance, but it is not well understood and usually over-simplified or ignored!
- Behavior changes, usually no or low cost, has demonstrated 5 to 30% energy savings in buildings, but potential savings can be > 50% in very low energy buildings.

2008 NBI Study of LEED NC certified buildings

Homestead Cohort: Virtually identical Homes & Efficiencies...

- ... but 3x Variation in Energy Use
- Even greater differences at end-use level
- End-use data extremely valuable for forensic accuracy assessment

Complexity of Human Behavior

- Inherent uncertainty
- Multi-disciplinary
- Various driving factors:
 - Individual: culture, lifestyle, habit, environmental awareness
 - Temporal: time of the day, day of the year
 - Spatial: office, home,...
 - Indoor and outdoor environmental conditions
- Very limited data to help us understand

Steps Taken by Building Operators to Address Thermal Complaints

IFMA 2009 HVAC Survey of IFMA members in US and Canada with 452 responses from 3357 samples

A Framework to describe human behavior in buildings

The XML Schema - obXML

Applications of the framework and schema:

- 1. Building energy modeling
 - Improve evaluation of building technologies and designs
 - Better predict actual energy use in buildings
- 2. Energy policy
 - Energy benchmarking and performance rating
 - Codes and standards
 - Incentive programs
- 3. Long term can be part of BIM

Modeling and Simulation of Occupancy in Buildings

Four types of occupancy models:

Building level – # of occupants

• How many occupants are there in a building?

Space level – occupied status

• Is a space occupied?

Space level – # of occupants

• How many occupants are there in a space?

Occupant level - individual tracking

• Where, in which space, is an occupant?

A Software Module of Behavior Models

- Run stand-alone as an executable file
- Called by other tools as a DLL
- Used as co-simulation with energy modeling tools, e.g. EnergyPlus

Impact of Occupant Behavior on Energy Use in Private Offices

Data Mining and Statistical Methods -

Occupant Behavior of Window Opening/Closing

Dataset and Results

- 16 offices of a natural ventilated building
- 5-minute interval data over two complete years
- measured indoor and outdoor physical parameters
- measured behavior and energy use

Outdoor Indoor Solar radiation [W/m²] Room air temperature [°C] Occupancy [0/1]* Rain – amount [l/m²] Surface temperature [°C] Rain - event [yes/no] Ceiling slab temperature [°C] Light intensity- horizontal [lx] CO₂ concentration [ppm] Light intensity - South [lx] Light intensity - East [lx] Light intensity - North [lx] Light intensity - West [lx] Outdoor temperature [°C] Wind - velocity [m/s] Wind - direction [°] CO₂ content in air [ppm] Outdoor humidity [%rH]

Behavior and Energy Use

Window contact [0/1 ; Reed contacts]* Top light control [0/1; Reed contacts]* Sun protection [% of closure: 0% = open to 100% = closed] Electricity consumption [kWh]

Average Window state Patterns of window State

■ open ■ close

Average Window Changes Patterns of window changes

Project Budget

Project Budget:

2013: \$160K

2014: \$220K

2015: \$220K estimated Variances: None Cost to Date: 2013: 100%; 2014: 10% Additional Funding: None so far

Budget History								
1/1/2013 — FY2013 (past)		FY2 (cur	014 rent)	FY2015 — 12/31/2015 (planned)				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
\$160K	\$250K	\$220K	\$300K	\$220K	\$300K			

Project Plan and Schedule

Project plan:

- Start date: planned 10/1/2012, actual 1/1/2013
- Completion date: projected 9/30/2015

Project Schedule												
Project Start: 1/1/2013		Completed Work										
Projected End: 9/30/2015		Active Task (in progress work)										
		Milestone/Deliverable (Originally Planned)										
		Milestone/Deliverable (Actual)										
		FY2013 FY2014 FY2015					015					
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work												
Q1: Evaluation of energy impact of behavior in		•										
private offices												
Q2: Occupancy models and simulation												
Q3: Behavior software module												
Q4: Public workshops												
Q1: Behavior framework, XML schema												
Current/Future Work												
Q3: Data mining of windows opening/closing												
Q4: New features in EnergyPlus												

Appendix Slides

Occupant Behaviors in Private Offices

Behavior	Austerity Lifestyle	Standard Lifestyle	Wasteful Lifestyle	
Cooling Setpoint (°C)	26	24	22	
Heating Setpoint (°C)	18	21	23	
HVAC Operation Time (Cooling and Heating)	9:00am - 4:00pm	8:00am - 5:00pm	6:00am - 10:00pm	
Occupancy Control	If unoccupied Lighting: off Plug-load: 30% off HVAC: off 	Scheduled	If unoccupied Lighting: on Plug-load: on HVAC: on 	
Cooling Startup Control	Cooling starts when T _{zone,} _{air} ≥ 28°C during occupied hours, once started maintains the cooling setpoint; Cooling off during unoccupied hours.	Follow fan schedule & cooling thermostat during 8:00am - 5:00pm	Cooling always on during 6:00am - 10:00pm	
Daylighting Control	Stepped Dimming	None	None	
Adaptive Comfort	Yes	None	None	

Data Mining Approaches, Cluster Analysis

Disaggregate occupant behavior into clusters

WINDOW POSITION

Schedule

U.S. DEPARTMENT OF

Data Mining Approaches, Cluster Analysis

Disaggregate occupant behavior into clusters

WINDOW POSITION

Schedule Tilted angle

	autumn	spring	winter	summer	pattern
E01	small	small	small	small	small openir
E02	small	small	small	small	small openir
E03	small	small	small	intermediate	small openir
E04	big	big	intermediate	big	big opening
E05	intermediate	intermediate	big	small	Intermediate
E06	small	small	small	small	small openir
E07	small	intermediate	small	small	small openir
E08	intermediate	intermediate	small	frequent	Intermediate
E09	intermediate	small	intermediate	small	small openir
E10	outlier	outlier	outlier	outlier	big opening
E11	small	intermediate	small	small	small openir
W01	intermediate	small	small	big	small openir
W02	small	small	small	intermediate	small openir
W03	small	small	small	big	small openir
W04	big	intermediate	small	small	Intermediate
W05	big	big	small	big	big opening

tern all opening all opening all opening opening rmediate opening all opening all opening rmediate opening all opening opening all opening all opening all opening all opening rmediate opening

Season Cluster Then Classification Cluster

