
Miniaturized Air-to-Refrigerant Heat Exchangers

2014 Building Technologies Office Peer Review

Prof. Reinhard Radermacher, raderm@umd.edu University of Maryland College Park

Project Summary

<u>Timeline</u>:

Start date: 03/01/2013

Planned end date: 02/29/2016

Key Milestones

1. Heat exchanger designs/process: 6/30/14

2. Fabrication/testing of 1 kW: 9/30/14

3. Fabrication/testing of 10 kW: 9/30/2015

Budget:

Total DOE \$ to date: \$561K

Total future DOE \$: \$489K

Target Market/Audience:

Residential and commercial heat pump systems with various capacity scales

Condensers as first choice of application

Key Partners:

Oak Ridge National Laboratory

Luvata

International Copper Association

Wieland

Heat Transfer Technologies

Project Goal:

Purpose: Develop next generation heat exchangers for heat pumps and airconditioners.

Performance Target: Miniaturized air-to-refrigerant heat exchanger with at least 20% less volume, 20% less material and 20% more performance than current designs.

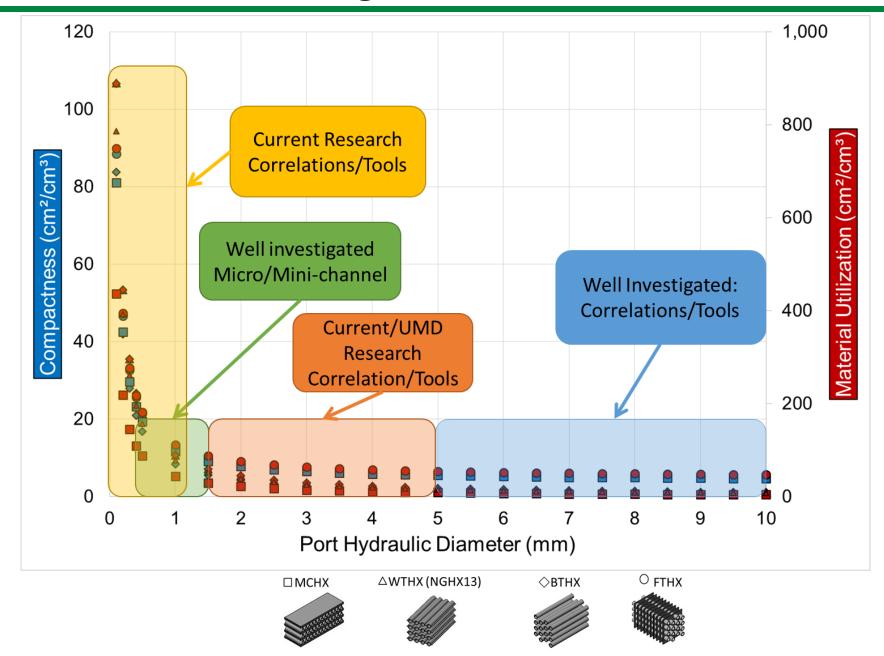
Market Target: To be in production within five years.

Purpose and Objectives

Problem Statement:

Develop miniaturized air-to-refrigerant heat exchangers that are 20% better, in size, weight and performance, than current designs **AND**In production within 5 Years

Target Market and Audience:


- Residential and commercial heat pumps and air-conditioners
- US Shipment of residential air-source equipment in 2011: 5.5 Million units
- US EIA 2009 Energy Consumption: 41.5% for space heating, 6.2% for AC
- Proposed heat exchanger technology will readily compete with current condenser designs for AC systems (3.7 M).

Impact of Project:

- Project deliverables: analyses tools and heat transfer correlations
- Heat exchangers (1 kW and 10 kW) that are at-least 20% better (size, weight and performance) than current designs, based on measured performance
- Manufacturing guidelines to facilitate production within 5 years

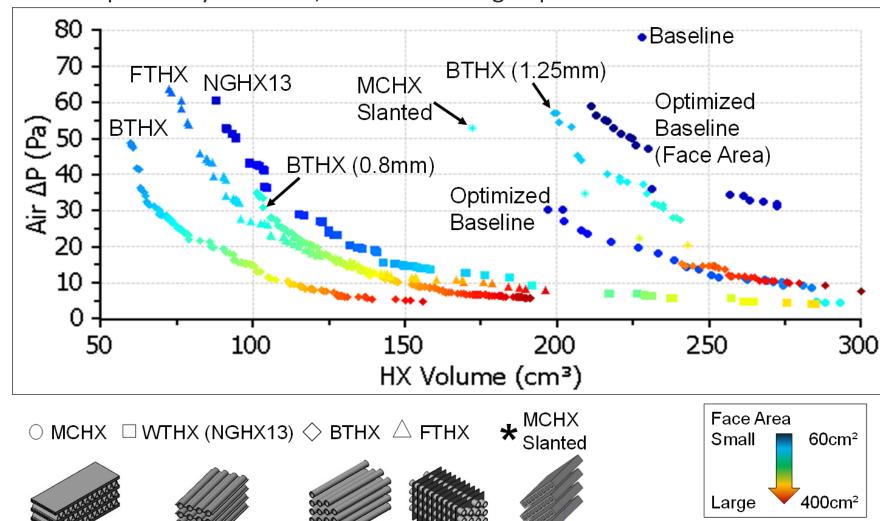
Future of Heat Exchangers

Approach

- Develop a comprehensive multi-scale modeling and optimization approach for design optimization of novel heat exchangers
 - Parallel Parameterized CFD
 - Approximation Assisted Optimization
- Develop a test facility for air side performance measurement of heat exchangers
- Design, optimize and test 1 kW and 10 kW air-to-water and air-torefrigerant heat exchangers
- Investigate conventional and additive manufacturing techniques
- Analyze system level performance of novel heat exchangers
 - Evaporator and condenser of a system based on same design

Approach : Key Issues

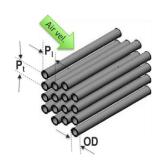
- Lack of basic heat transfer and fluid flow data for design and analyses of air-to-refrigerant heat exchangers with small flow channels
- Availability for small diameter tubes
- Joining/manufacturing challenges
- Face area constraints
- Fouling and flow mal-distribution
- Wetting

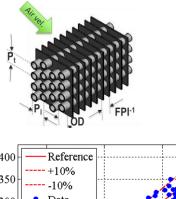

Approach: Distinctive Characteristics

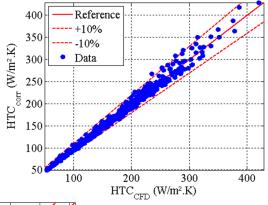
- Develop a comprehensive multi-scale modeling and optimization approach for design optimization of novel heat exchangers
 - Allows for rapid and automated CFD evaluation of geometries with topology change
 - More than 90% reduction in engineering and computation time
- Focus on small hydraulic diameter flow channels
 - Bridging the research gaps
 - Heat transfer, pressure drop correlations and design tools
- Prototype development is in progress, with target production within 5 years

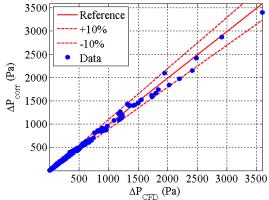
Progress and Accomplishments: Analyses

- Identified 9 candidate geometries
- Developed analyses codes, conducted design optimization for 1 kW radiators

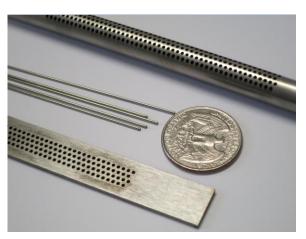

Project Accomplishments: New Correlations

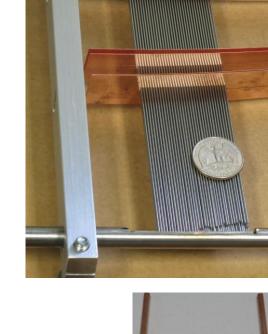

Bare Tube Heat Exchanger


Design Variable	unit	Range
OD	mm	2.0 to 5.0
P _t ratio (OD)	-	1.5 to 3.0
P _I ratio (OD)	-	1.5 to 3.0
N _t (Bank of tubes)	-	2 to 20
Air velocity	m/s	0.5 to 7.0



Design Variable	unit	Range
OD	mm	2.0 to 5.0
P _t ratio (OD)	-	1.5 to 3.0
P _I ratio (OD)	-	1.5 to 3.0
N _t (Bank of tubes)	-	2 to 10
FPI	in ⁻¹	8 to 24
Air velocity	m/s	0.5 to 7.0

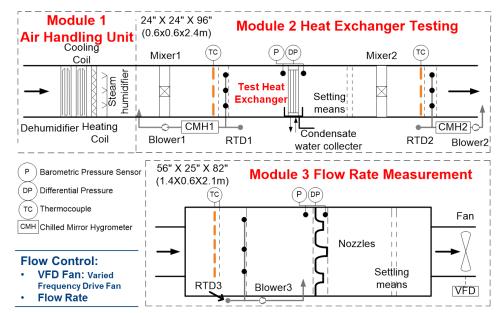



Progress and Accomplishments

Accomplishments:

- Manufacturing
 - Investigated commercially available tubes
 - Investigated conventional manufacturing options
 - Investigating additive manufacturing options
 - Fabricating prototype heat exchangers

Progress and Accomplishments


Accomplishments: Performance Testing

Designed and fabricating a test facility

Project Contribution to Energy Efficiency:

- Comparison of predicted air-side performance to existing data shows a 22% deviation → Better agreement is expected with new test facility and larger heat exchangers
- Additional performance measurements to be carried out in 2014

Awards/Recognition: None

Project Integration and Collaboration

Project Integration:

- Collaboration with key project partners to identify and solve manufacturing and deployment challenges
- Collaboration with ORNL for additive manufacturing and fatigue testing
- First-hand feedback from industry partners of UMD Consortium

Partners, Subcontractors, and Collaborators:

- ORNL: Subcontractor; design, advanced manufacturing and testing
 - Omar Abdelaziz: Scientist, PI
 - Patrick Geoghegan: Scientist
- Luvata: Industry partner; manufacturing, system integration and marketing
 - Mike Heidenreich: VP of Product Engineering
 - Randy Weaver: Modeling Engineer
- Heat Transfer Technologies: Industry partner; heat exchanger design, manufacturing process development
 - Yoram Shabtay: President
 - John Black: VP of Market Development

Project Communications

Kick-off Meeting:

Kick-off Meeting & Brainstorming Workshop, 22-Apr-2013, University of Maryland

Publications:

- Bacellar D., Abdelaziz O., Aute V., Radermacher, R., 2014, Design of Novel Air-to-Refrigerant Heat Exchangers Using Approximation Assisted Optimization, ASME Verification & Validation Symposium, May 7-9, 2014. *Accepted for publication*.
- Bacellar D., Ling J., Aute V., Radermacher, R., Abdelaziz, O., 2014, Multi-Scale Modeling and Approximation Assisted Optimization of Bare Tube Heat Exchangers, Proceedings of the International Heat Transfer Conference, IHTC-15, Aug 10-15, 2014, Kyoto, Japan. *Accepted for publication*.
- Bacellar D., Ling J., Aute V., Radermacher, R.,2014, CFD-based Correlation Development for Air-Side Performance for finned and finless tube heat exchangers for small tube diameters, 2014 International Refrigeration and Air-Conditioning Conference at Purdue, July 14-17, 2014, Purdue, IN. *Abstract Accepted*.

Next Steps and Future Plans

Next Steps and Future Plans:

- Complete prototype fabrication
- Conduct pressure tests on prototype heat exchangers
- Commission the test facility (5/30/3014)
- Fabricate multiple (radiator and condenser) 1 kW prototypes for testing (6/30/2014)
- Test 1kW heat exchangers (9/30/2014)
- Improve designs and propose optimal designs for 10 kW capacity (1/30/2015)
- Fabricate 10 kW capacity prototypes for testing (6/30/2015)
- Develop and disseminate tools for heat exchanger analyses (12/30/2015)
- Develop and disseminate manufacturing guidelines for miniature heat exchangers (1/30/2016)

REFERENCE SLIDES

Project Budget

Project Budget: DOE Total \$1,050K, FY12-16 (3/1/2013 to 2/29/2016)

Variances: No variances at present

Cost to Date: \$561K

Additional Funding: No additional funding is expected.

Budget History											
FY2012-FY2013 (past)			.014 rent)	FY2015 — FY2016 (planned)							
	DOE	Cost-share	DOE	Cost-share	DOE	Cost-share					
\$	504K	NA	\$57K	NA	\$489K	NA					

Project Plan and Schedule

Project Schedule																
Project Start: 03/01/2013	Completed Work															
Projected End: 02/29/2016	Active Task (in progress work)															
	Milestone/Deliverable (Originally Planned)															
	◆ Milestone/Deliverable (Actual)															
		FY2013			FY2014			FY2015				FY2016				
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
Past Work																
Project kick-off		•														
Finalize best designs for various materials																
Manufacture sample tubes, headers and investigate joining options																
Select most promising materials and techniques																
Identify preferred design andmanufacturing methods																
Current/Future Work				- immonio												
Complete pressure tests on prototype heat exchangers																
Commission the air-side test facility							•									
Fabricate multiple (radiator and condenser) 1 kW prototypes for testing							•									
Test of 1kW Heat Exchangers																
Analyze system level performance benefits																
Improve designs and propose optimal designs for 10 kW capacity									and a series							
Analyze system performance of 10kW designs for diff. applications																
Fabricate 10 kW capacity prototypes for testing												•				
Test 10 kW propotype													•			
Develop and disseminate tools for heat exchanger analyses														•		
Develop and disseminate manufacturing guidelines for miniature heat exchangers															•	
Closure															•	