Recipient	In Collaboration with	Location	Project Name	DOE Funds			
ZoomEssence, Inc.	 Thermal Tech Engineering 	Hebron, KY	No Heat Spray Drying Technology	\$750,000			
	 Ion-Apex Electric 						
	 Duke Energy 						
	 National Starch 						
	 Hagelin Flavor 						
A "no-heat" spray drying process will be developed that eliminates the need for heat by drying to powders in treated air, significantly							
reducing energy consumption as well as producing more stable, consistent products. This project will focus on key technical challenges to							
scale-up the prototype	e dryer to an integrated pilot syste	em.					
Tulane University	 Advanced Polymer 	New	Development and Implementation of an Automatic	\$1,500,000			
	Monitoring	Orleans, LA	Continuous Online Monitoring and Control Platform				
	 Louisiana State University 		for Polymerization Reactions to Sharply Boost				
	 Louisiana Chemical 		Energy and Resource Efficiency in Polymer				
	Association		Manufacturing				
	 Nalco Company 						
Continuous, online monitoring of polymerization reactions using advanced sensor technology will be integrated with modeling and							
feedback mechanism	s to control polymer reactors, re	eplacing relianc	e on operator judgment and manual controls, which	can be more			
inefficient and waster	ful. Emphasis will be placed on t	echnical challe	nges to meeting market requirements in order to cor	nmercialize the			
system.							
GE Global Research	 University of Colorado 	Niskayuna,	Novel Membranes and Systems for Industrial and	\$2,000,000			
	 National Institute of 	NY	Municipal Water Purification and Reuse				
	Standards & Technology						
A smooth resin depos	sition technology will be develop	oed for reverse	osmosis membranes used in water treatment and in	dustrial and			
municipal wastewate	r reuse. Thin films of the resin v	vill be deposite	d on standard support membranes to improve perfo	rmance and			
significantly improve	energy efficiency.						
Doshi & Associates,	USDA Forest Products	Appleton,	A Novel Unit Operation to Remove Hydrophobic	\$316,000			
Inc.	Laboratory	WI	Contaminants				
A vacuum air flotation	n process will be developed to re	emove pitch an	nd adhesives in paper mill processing to improve ener	rgy efficiency,			
reduce water consum	ption and reduce sludge produce	ction. The tech	nique employs a vacuum system to generate bubbles	of air and CO_2			
that will float pitch and adhesive particles to the surface where they can be removed inexpensively. The project team will demonstrate							
batch and continuous prototype systems.							
Purdue University	• Eastman Chemical Company	West	Development of method and algorithms to identify	\$750,000			
	Dow Chemical	Lafayette, IN	easily implementable energy-efficient low-cost				
	• ExxonMobil Research &		multicomponent distillation column trains with				
	Engineering		large energy savings for wide number of separations				

Recipient	In Collaboration with	Location	Project Name	DOE Funds			
A state-of-the-art optimization algorithm is being developed to apply low-energy distillation processes that allow chemical manufacturers to							
reduce energy consumption between 10% and 50% at their plants. Purdue researchers will team with an IT company to develop a user-							
friendly interface for the algorithm and to better address software development and commercialization issues. The resulting distillation							
configuration tool will be demonstrated at multiple industrial partner sites.							
Siluria Technologies	 FIT Consulting 	San	Low-Energy, Low-Cost Production of Ethylene by	\$2,000,000			
	 Westlake Chemical corp. 	Francisco,	Low-Temperature Oxidative Coupling of Methane				
	 RTI International 	CA					
	 HIS Consulting 						
A rapid, automated sy	nthesis and screening technique	will be used to c	levelop and optimize catalysts with improved performa	nce for low-			
energy, low-cost conv	ersion of natural gas to ethylene,	an important m	anufactured chemical. A driver for cost savings is the lo	w-cost natural			
gas feedstock compare	gas feedstock compared to the conventional technologies that utilize more expensive feedstocks.						
PPG Industries	 Durr Systems, Inc. 	Allison Park,	Coatings and Process Development Reduced Energy	\$3,000,000			
	 North Dakota State 	PA	Automotive OEM Manufacturing				
	University						
A monocoat paint pro	cess and coating process for auto	motive assembl	y will be designed and developed to replace the curren	t basecoat and			
clearcoat processes in	assembly plant paint shops. The	proposed techn	ology may also allow automakers to meet fuel-econom	y standards in			
the future by incorpor	ating lightweight composites in t	heir automotive	designs as many lightweight composites cannot withst	and the cure			
temperatures required	d by today's coating processes.						
GrafTech	 Oak Ridge National 	Parma, OH	Low-Cost Bio-Based Carbon Fiber for High	\$4,500,000			
International	Laboratory		Temperature Processing				
Holdings, Inc.	 National Composites Center 						
	 Mascoma Corporation 						
	 Plasan Carbon Composites 						
As a viable alternative	e to petroleum-based carbon fik	ers produced o	overseas, low-cost carbon fibers made from biomass	will be			
developed and evaluation	ated for use in thermal insulatio	n, such as that	used in for high temperature furnaces used to manuf	facture solar			
panel components.							
The Boeing	• Ford Motor Co.	Seattle, WA	Energy Efficient Thermoplastic Composite	\$4,500,000			
Company	 Ajax TOCCO 		Manufacturing				
	• TEMPER, Inc.						
	 Cytec Engineered Materials 						
	 Vestas 						
	 Steeplechase Tool and Die 						
Large scale, integrated composites for aerospace applications will be produced and validated using a high speed manufacturing process as							
compared to the current autoclave process. The process utilizes induction heating to rapidly heat the material only where needed, applying							
pressure for consolidation and then rapidly cooling the part to achieve maximum stability. This induction heating approach will also be tested							

Recipient	In Collaboration with	Location	Project Name	DOE Funds			
as a joining technique to enable the incorporation of components into the overall part assembly.							
Easel	Eastman Chemical Company	Los Angeles,	Bio-Oxo Technology	\$2,000,000			
Biotechnologies, LLC		CA					
Metabolically enginee	red bacteria will be used to conve	ert renewable bi	omass resources to isobutyraldehyde, an important ch	emical			
intermediate used in the production of surface coatings and adhesives, lube oil additives, surfactants, among other products currently made							
from petroleum feedstocks. The project is a first step in a pathway to pilot scale demonstration incorporating an integrated fermentation and							
separation design.							
Aerojet Rocketdyne,	• EERC	Canoga Park,	One Step Hydrogen Generation through Sorption	\$750,000			
Inc. (formerly Pratt	NETL ORD	CA	Enhanced Reforming				
& Whitney	 Janike & Johanson 						
Rocketdyne)							
This project will demonstrate a one-step hydrogen production process exhibiting substantial energy benefits compared with the conventional							
hydrogen production method. Researchers will conduct studies to optimize performance while soliciting interest among companies in							
adopting the process.							
United Technologies	 University of Akron 	East	High Thermal Conductivity Polymer Composites for	\$750,000			
Research Center		Hartford, CT	Low Cost Heat Exchangers				
To speed the development of plastic heat exchangers, researchers will create a database of selected properties for thermally conductive							
plastics. Heat exchangers manufactured from polymer composites would have several advantages over metal heat exchangers, including							
lower weight, improved corrosion resistance, increased manufacturing energy productivity and lower greenhouse gas emissions.							