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Main objectives of the project

4
Aggregator

- Day ahead savings
Ancillary Services

Retail Whole-Sale
Market Market

@ Objectives: Modeling control mechanisms and economic value for
aggregated load flexibility

o Evaluation: Theory and validation by simulations
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Residential /personal appliances potential

o Observation: Costs include that of recruiting customers

o The “Internet of things” will make personal appliances easy to
monitor and control (think of app “WhatsOn?”)

E . LG HomeCHall

Clean raoms before you
return home?

@ Our tasks for this year model is the information needed to:

@ Deliverable 1: Ex-ante plan and Real-time control (EV + TCL)
© Deliverable 2: Pricing a specific flexible use (EVs)
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Decision model

Ex-ante decisions:

o How much power B(t) to purchase and how much ancillary
service capacity M (t) to offset costs in the forward market

o Solve for the minimum cost forward:

Bé?,%é}m%ZQE{CF(L“)’BWM(&)} st L(t) € LPR(Y), (1)

where LPE(t) the feasible set of loads ex-ante
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Decision model

Ex-ante decisions:

o How much power B(t) to purchase and how much ancillary
service capacity M (t) to offset costs in the forward market

o Solve for the minimum cost forward:

min ZE{ B(t), M(t))} s.t. L(t) € LPE(t), (1)

B(t), M(t)

where LPE(t) the feasible set of loads ex-ante

y

Real-time decisions:
o Control L(t) to follow the schedule (B(t), M(t))
o Minimize its real-time cost (here myopic):

ril(itl)q CR(L(t), B(t), M(t)) s.t. L(t) € LET=PR(¢) (2)

where LET=PE(t) is the feasible set of loads in real time




Part I

Modeling DR flexibility
Ex-ante and in Real-time



Existing aggregate ex-ante models

o Tank model: Fill the flexible demand tank by the end of the day
[Lambert, Gilman, Lilienthal,’06], [Lamadrid, Mount, Zimmerman,
Murillo-Sanchez, ’11],[Papavasiliou, Oren ’10]
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o Good for both!

Categories covered (deliverables)

@ Deferrable loads with dead-lines v
@ Interruptible rate constrained EVs with deadlines and V2G v/
© Thermostatically Controlled Loads v
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Unified modeling approach

Q State-space parametric description of the set £;(¢) of possible
load injections of specific appliance 7
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Unified modeling approach

Q State-space parametric description of the set £;(¢) of possible
load injections of specific appliance 7

@ Event-driven: Appliances are available for control after ¢; with
initial state S;; (arrival is a;(t) = u(t — ¢;) unit step)

O Divide and conquer: Define a representative set £y(t) for a given
appliances cathegory (v), quantizing possible parameters (¢) and,
if continuous, quantize the state (z)

@ Aggregate and conquer: Describe total flexibility £Y(¢) using:
Aggregate arrival and state occupancy

Zé s —x)a;(t 25% ) — x)a;(t)

iEPv i€P}
Aggregate control knob
d} () = # appliance moved from z to 2’ before time ¢
ad} ,(t) =d} ,(t+1)—d} () =# ... at time ¢
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Non-interruptible Appliances - Individual Flexibility

o Loads that can be shifted within a time frame but cannot be
modified after activation, e.g., washer/dryers

(]

z;(t) € {0,1} = state of appliance ¢ (waiting/activated) — initial
state always 0

Ox;(t) = z;(t + 1) — z;(t) = state change

i appliance load = g;(t), if activated at time 0

(4]

(]

©

Laxity (slack time) of x;

Li(t) ={Li(0)|Li(t) = Y 9mi(7)gilt — ), (1) € {0, 1},

zi(t) 2 ai(t — xq), wi(t —1) < @(t) < ai()}-

In English:
Load = load shape shifted at time of change of state (off to on)
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Non-interruptible Appliances - Aggregate Flexibility

o Appliances clustered: quantized pulses ¢%(¢) and deadlines x?
e a’(t) = arrivals and dg ;(t) = d9(t) = activations in cluster ¢

L£0(t)

Il
/—’H

Zg Yx0di(t),d(t) € ZT

a1(t) > a(t—x7), di(t—1) < d(t) < a?(t)}
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Generalized to more complex cases....

Hybrid systems: control of the switching events. Discrete switching
z;(t) € {0,1,..,n} + continuous dynamics {g; »(t)}r_1

o Dimmable Lighting, joint washer/dryer cycle, etc.
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Continuous state: EVs- Individual Flexibility

o States are quantized in the set X; = {0,1,..., E;}
o The possible charging rates in the set 9X; (possibly only one!)
o The deadline for full charge is x;

Li(t) = {Li(t)|Ls(t) = 0xs(t)as(t), z;(t;) = S;,
z:(t) € X, 0z:(t) € OX;, 15(xi) = E;}

In English:
Load (power) = rate of change in state of charge z;(t) (energy)

o The parameters distinguishing £;(t) are the battery capacity E;,
the possible charging rates 0X; and the deadline x;
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Continuous state: EVs- Aggregate Flexibility

L=y Y (-2ddl, ()

q=1  (z,a/) € x9,
(z/ —2) € Ox

8dgz/ Z+ 28 zz’ < ng(t)
X4
Vi>x%and z < E? — ni(t) =0

nd(t) = ad(t) + Y [df (t—1) = df (¢ 1)]}

r’'eX

o Heterogenous (X4,0X19,x?) — different clusters ¢ =1, ...,

E=2

Sy

‘\"u(f) ay(t) ‘12(0/‘

Q
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Other classes

o Rate-constrained battery change, e.g., V2G
do3(t)

do 3(t)

doa(t) di3(t)

@R () G CDwmE (D G ED
’ do,1(t) dyo(t) da 3(t)
al) wl)  wl)  ab w)  a® al) b
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TCLs - Individual Flexibility

o 1;(t) temperature in comfort band [z} — B;/2, z} + B;/2] in the
time window [x3, x§) of the day.

o TCL cycles on and off b;(¢) € {0,1} within a time frame [t}, tf)
larger or equal than [xi, x§). TCL 7 arrival and departure events:

a;(t) = u(t — ), r(t) = u(t—t)).
For unit 7 we have:

;Cz(t) = {Ll(t”a.%(t) = —kiil?i(t) + Oéi(t) + bl(t)fl,
bi(t) € {01}, Li(t) = bi()E:. Ve € [1, 1)
[2:(8) = 7| < B/2, lthan € 3 XD}

where £; = rate of heat gain Btu/h, Z; is & in KW /h and the
ambient noise E[a;(t)] = Zamp(t)ki, Tams(t) = ambient temperature
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TCLs - Randomized control

o Since «;(t) is random, switching the control b;(¢) € {0,1} changes
the probability that the appliances move from one state z to z’

P;(2|z; t; by(t)) = Prob <ai( =12 —x(1 — k) — by(t )5)

o We need to cluster based on these probabilities
Pi(a'|z; t;0) = P2’ |25 450), ¢=1,...,Q"
@ Occupancy of a temperature bin includes those OFF + those ON

ng(t) = ()+nf§1()

)

= rd(t)+> D% (t—1)—D¢ ,(t—1)

' €S

D} ,/(t) = # appliance moved from z to z’ at time ¢

E{DZ ., ()|nd(t)} = ng o(£) P9(a'|2;:0) + ng, () PI(a' |25 8 1)
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TCLs - Aggregate Flexibility

@ The comfort band constraint translates into

Y|z — 2™ > BY/2 — Pr(ni(t)=0)>n,

where 7 is close to one (violations rare)

o Aggregate flexibility of heterogeneous TCLs

1

o
£(t) = {L<t>|L<t> D IDELINONTIOEES SN0
b=0

q=1 x84
nd(t)= (t)+Y DY (t—1)—=DI (t—1),
' €S
1
b=0
Vo |z — 2™ > B2, V[tlan € X7, x"9)

— Pr(ni(t) = 0) = 1}
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Real time TCL control: simplified model

o The complexity grows linearly with # of quantization points but
exponentially with # of parameters

o Simplified myopic policies based on EV deadlines:
Least Laxity First (LLF) and Earliest Deadline First (EDF)
[S. Caron and G. Kesidis, '10], [S. Chen, Y. Ji, and L. Tong, ’12], [A.
Subramanian, M. Garcia, A. Dominguez-Garcia, D. Callaway, K. Poolla, and
P. Varaiya, ’'12], [G. O’ Brien and R. Rajagopal, ’13]

o TLC deadlines based control: TCL communicates quantized
deadline instead of temperature state and switch value

(7:(t), bi(2))

Li(t) — bi(f)E —
Ti(t) = 1 ( - i) — b)) 5 — 7% ) .

. . i = aq(t
i —1)E0 B ()2 — 2D

o An EDF scheduler maximizes residual future flexibility
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Regulation through TCL loads

Ex-ante:
o To follow the AGC signal the aggregator must be able to

@ Increase/decrease demand by a certain step of variable height m
from the baseline
© Hold the demand at that value for a certain duration &

o We evaluated £ to be the 97 % quantile of the zero-crossing time
from historical AGC signals (19 min. based on PJM signals)

o Capacity estimate for the population 2.05 MWs
Q
! _ : q
M = Zl min M)
q:

where M%(t) is the maximum deviation m from the baseline that
a load in cluster ¢ can tolerate at time ¢ with 0.05m error
(determined simulating the response of each cluster using £%(t))
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Regulation through TCL loads

o Real Time the TCLs are controlled for 6 h based on clustering
deadlines (60 clusters)

o Temperature is Jan 29th 2012 in Davis;

e =; =¢&; ~ U([2000,4000]) Btu/h, k; =~ U([50,200]) W/C, z} ~
u([69, 75]), B; ~ U([2,4]) F

5
2

i \} \/
g

gty J{\WM"AV‘“ NI

55 —Target load (baseline + regulation signal) | 1 S0 0 1S 200 280300 350
H - Actual load o7

—Baseline load g7
5 I T n T T T L 2 70
. e R B

Time (minutes)

Figure : Simulated response of the TCL population (10000) to regulation
signals and three 2 ton A/C units temperatures. The y-axis range i=

comfort band.
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Part 11
Pricing specific flexible uses
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Price design for specific flexible use

Price Direct Scheduling
Control Signal

Signal

Consumer demand
functions

Appliance
arrivals

Consumption Inter-temporal | Load Profile
Level Load Shifting

Decisions Decisions

Price
Signal

Consumer demand
functions

Appliance
arrivals

Consumption Inter-temporal | Load Profile

Level Load Shifting
Decisions Decisions

Figure : Differentiated Pricing and Scheduling (top) and Dynamic Retail
Pricing (bottom).

Both schemes harness a subset of the ¢rue flexibility of demand

LPR(1) C £(t)
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DR #1: Dynamic Retail Pricing

o Dynamic retail prices x(t) = [7"(t),...,7"(t + T)] € Z(¢) (set of
regulated prices in Z(t))
@ Possible load shapes:

LPE(1) = {L(t) = f(t;x(t)),x(t) € Z(t)} (3)
o Here f(.) is the price-response of the population

quantized price response - known

1%
ft;x(t) =L (t) + [ ag(x(t)) argmin " }
2.2 | skb) agw m;
unobservable

o Price response only observable in aggregate and not for different
clusters — learning aj(x(¢)) from limited observations
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DR #2: Pricing for Direct Load Scheduling (DLS)

@ An aggregator hires appliances and directly schedules their load
o We are one of the first to look at the economic side of DLS
o Set of differentiated prices based on plasticity

z'(t) = {zj(t),v9 € T"}

But how can we have voluntary participation in DLS? J

o Differentiated discounts z"(¢) from a high flat rate — incentives
o Appliances choose to participate based on incentives — a$(z"(¢))

observable
——

v
LOR@) = LB+ Y ag(a'(t) Ly(1).
v=19€T"
o Reliable: aggregator observes ay(x"(t)) after posting incentives
and before control - no uncertainty in control unlike retail pricing
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Dynamic Cluster-specific Incentives for DLS

o Cluster parameters ¥ of 2 types: intrinsic + customer chosen
o Cluster appliances based on intrinstic characterics, e.g. g?(¥)

o Customer picks the mode m, e.g., deadline x?, comfort band B?

A set of incentives z2%(t),m = 1,..., M™9 for each cluster ¢ and category v

Aggregator
DLC incentive menu for 1.1 KW battery charge requests

Charge | 1hr |2hrs |3hrs |4hrs
length

Incentive
Design and
Recruitment
Unit

Laxity

1hr 50,05 |$0.13 | $0.19 | $0.19

2hrs $6.09 $0.22 | $0.25
3hrs $0.11 [$0.19 | $0.25 | $0.3
\ load P

Wholesale
Market

Recruitment
notice

Direct
Scheduling
Unit

Generalizes deadline differentiated price [Kefayati, Baldick, '11], [Bitar, Xu ’13]
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Incentive design

o Category v and cluster ¢ — intrinsic properties of loads

o Independent incentive design problem for different categories v
and clusters ¢ — Let’s drop ¢, v for brevity

o Optimal incentives given uncertainty about customer reservations
to be recruited?

@ The closest problem in literature: “optimal unit demand pricing”

P1 P2 X4 X X3

P3 2
@ A % A
A
\vi / v‘ /
V4 3 Vit AV
independent @ Correlated @

o Customers valuation for different modes correlated (value of EV
charge with 1 hr laxity vs. value of EV charge with 2 hrs laxity)
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The Incentive Design Problem

o Aggregator designs posted incentives
x(t) = [a1 (1), 22(2), ..., am (1)),

o From recruitment of flexible appliances, the aggregator saves
money in the wholesale market (utility):

u(t) = [Ul(t),..., UM(t)]T

o Aggregator payoff when interacting with a specific cluster

population:
Payoff of mode m indicator of mode m selection
——t—— —_——
Y(x(t)it)= D (Un(t) = 2m(t)) D aim(x(t);1)
meM i€P(t)

a;,m(x(t);t) = 1 if load ¢ picks mode m given incentives x(t)
o Goal: maximize payoff Y (x(t);t)
o Problem: we don’t know how customers pick modes
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Probabilistic Model for Incentive Design Problem

o At best we have statistics — Maximize expected payoff
o Probability of load 7 picking mode m:

Pim(x(8); ) = E{aim(x(t); 1)}

o Incentives posted publically - Individual customers not important
o Define mode selection average probability across modes:

epn Pim(x(t);t
P (x(t);1) = 2iep( >P(t)|< (1) 1)

p(x(t);t) = [Po(x(t);t),..., Pap(x(t);t)]T — what we need

o Maximize expected payoff across cluster population

max B4 > (Unn(t) = zn(t) D am(x(t);t) p =

x(8)=0 meM i€P(t)
known unknown
T’ \
max (u(t) —x(¢))" p(x(t);1)

x(t)>=0
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Kringing method

o Mode selection probability p(x(t);t), the expected recruitment
utility u(¢), and the population size |P(¢)| are daily periodic
functions, i.e., Vit =iH + h,h =0,..., H — 1,7 € Z that come
from a multivariate Gaussian distribution

p(x; h) = B (x) +2(x),

o Find the point where the probability of improving the payoff
beyond its current best value T is highest, i.e.,

T —[P(h)[(u(h) = x) TBhf(X))

(2

maXQ(

where 02 = |P(h)|?(u(h) — x) TX(x)(u(h) — x) and Q(.) denotes
the Gaussian Q function.
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Numerical results

Stats based on 620 PHEV residential charge events, demand [0, 5
kWhs], 10 clusters, made rate flexible, simple probabilistic model set
to match increasing risk as people get close to their travel time

__LSE forward purchase|
(with DLS)

__LSE forward purchase
(without DLS)
Regulation Services
Capacity Offered

5 10 15 20 25 30 35 Fl s 10 52
Time (Hours) Time (hours)

Figure : The performance of 620 PHEVs in following regulation signals.

Regulation service capacity prices are taken to be equal to the ISO
New England’s day-ahead market clearing prices in the Maine load
zone on September 1st
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Numerical results - cont.

Table : Comparison of the 4 studied incentive design schemes

Method LSE profit | daily # recruited and payment
Bayesian - Uniform | $493 707 EVs - 3.2¢c per EV
Bayesian - Gaussian | $281 555 EVs - 1c per EV

Black box - kriging | $653 560 EVs - 2¢ per EV

Upper bound $774 708 EVs - 2.1¢c per EV
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Publications accepted this year

o M. Alizadeh, Y. Xiao, A. Scaglione, and M. van der Schaar, “Dynamic
Incentive Design for Participation in Direct Load Scheduling
Programs”, IEEE Journal on Selected Topics in Signal Processing -
Special Issue on Smart Electric Power Grid, To appear, 2014.

o M. Alizadeh, A. Scaglione, A. Applebaum, G. Kesidis, and K. Levitt
“Reduced-order Load Models for Large Populations of Flexible
Appliances” Power Systems, IEEE Transactions on, to appear, 2014.

o M. Alizadeh, H.T. Wai, A. Scaglione, A. Goldsmith, Y. Fan, and T.
Javidi, “The Charge and Travel Problem in Electric Transportation
Networks”, Invited paper, 52nd Allerton Conference, Oct. 2014, to
appear.

o M. Alizadeh, A. Scaglione, A. Goldsmith, and G. Kesidis, “Capturing
Aggregate Flexibility in Demand Response”, Invited paper, IEEE 53rd
Annual Conference on Decision and Control (CDC), Dec. 2014, to
appear.
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Future work and directions

Deliverables and schedule for activities under FY14 funding
o Interface between appliances and aggregator for EVs and TCLs v/
o Pricing of specific flexibility of EV v/

Early thoughts on follow-on work for funding in FY15

o Exploring methods to cluster the inter-temporal constraints of
solar and wind power to model net-generation flexibility

o Studying congestion in future coupled infrastructures - Traffic
and EV charging

o Comparing Dynamic Pricing and Price Differentiated Scheduling
via game theoretic analysis
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