Electrolytic Hydrogen Production Workshop Manufacturing and Scale Up Challenges

Joseph Hartvigsen Ceramatec, Inc. National Renewable Energy Laboratory Golden, CO

February 28, 2014

Antipode Assertions

- Electric power generation is not the limitation
 - To misquote Jay Leno "Use all you want, we'll make more"
 - http://atomicinsights.com/2013/02/use-all-the-electricity-you-want-well-make-more.html
- High electric costs come from working the demand curve from below rather than above
- "Grid Storage" is a misleading notion
 - Constrains thinking to electricity in / electricity out viewpoint
 - Instead of asking what is the most beneficial instantaneous use of excess capacity
- A broader thought framework is "energy currency arbitrage"
 - Need efficient, economical, intensive conversion paths
- Electric utilities aren't fixed with the right mindset for the job
 - Business model optimized for their industry's historical constraints

Renewable and Nuclear Power Grid Challenged

Nuclear

- PUC caps on profits
- Risk averse utilities
- Slow growth of grid demand
- Rate payer opposition
 - Greater opposition in major urban centers with large loads
 - Bonding Whoops! (Specter of WPPSS '83 \$2.25B bond default)

Renewable

- Dispatchability
 - Grid stability
 - Costly reserve requirements
 - Wind out of phase with diurnal load min-max
- Transmission
 - Resource remote from load (population) centers
 - Transmission permitting difficult and construction costly

Energy Resources, Incl. RE, Are Abundant

'OMORROW'S CERAMIC SYSTEMS

By Source, 1949-2011

25 —

20 -

Renewable energy resources

- Large Scale Wind
 - 800 GW at class 4+ US wind sites
- Small Hydro
 - 70GW new at existing dams (Chu 22 Sep09)
- Concentrator Photovoltaic
 - Land area 12km²/GW
- Biomass
 - Agricultural & Forestry residues
 - Carbon neutral cycle assuming production and processing are carbon free
- Nuclear
 - Increased output of existing units
 - Note trend in figure since 1970
- Hydrogen from electrolysis requires
 - 42-54 MW-hr/ton for water electrolysis
 - 18 to 24 tons/GW-hr
 - 34 MW-hr/ton for steam or co-electrolysis
 - 29 tons/GW-hr

http://www.eia.gov/totalenergy/data/annual/archive/038411.pdf p6

Natural Gas

2010

... but problematic, and the key to prosperity

'OMORROW'S CERAMIC SYSTEMS

- Environment
 - Climate Change
 - GHG sources
 - 8 tons CO₂/kW-yr from coal or oil
 - Leaky natural gas pipelines
 - Ruminants
 - Ozone hole no, that's a different topic 250
 - Habitat Impacts
 - Drilling in Arctic National Wildlife Refuge¹⁵⁰
 - Wind turbines in Chesapeake Bay
 - Air pollution
- Regional resources may be limited
 - Oil
 - National security
 - Gas

http://thehill.com/blogs/blog-briefing-room/news/282053-murkowski-energy-is-good#ixzz2PPJKOKVL

- Heating vs. power generation
- Transportation issues
- Renewables
- Energy as the key to prosperity
- Questions to consider.

"Energy is not a necessary evil. Energy is good" Sen. Lisa Murkowski (R-Alaska)

Which energy segment is most vulnerable?

- Electric generation
- Electric transmission
- Electric storage
- Carbon dioxide emissions
- Transportation fuels

Which poses most severe economic penalties?

- Electric generation
- Electric transmission
- Electric storage
- Carbon dioxide emissions
- Transportation fuels

Where are energy's "golden" opportunities?

- Carbon dioxide sequestration
- Electric transmission
- Renewable energy
- Electric storage
- Hydrogen
- Transportation fuels

Petroleum Production

- The Most Successful Business Model in History
 - Climate Change
 - Global Destabilization Effects
 - Resource Limit
 - Demand Growth

- Why are hydrocarbons so valuable?
- What Next?

FOMORROW'S CERAMIC SYSTEMS

TEC

Liquid Hydrocarbon Energy Storage Density

- Energy Density
 - JP-8 43 MJ/kg, 0.76 to 0.84 kg/liter
 - Diesel 42 MJ/kg, 0.86 kg/liter

~1 MW-month on one tank truck

"Recharge"

- 4.4 MJ/liter (min. work of compression is 10-12% of LHV)
- Established markets for liquid fuels

- Hydrogen at 690 bar (10,000 psi) Z=1.43

- US demand, 6.3 billion bbl/yr, >\$600 billion/yr
- Highly developed infrastructure
- Existing vehicle fleet
- Liquid fuel's value commands a premium 23 MW, 2 minute

Liquid Hydrocarbons = High Value Density

- Carbon value strongest for light liquids
 - $-CO_2$ -\$55/ton (Norway C tax)
 - Coal \$10 \$65/ton (transportation cost dominate)
 - Natural Gas \$250/ton carbon (\$4/decatherm)
 - Bitumen ~ \$400/ton (50% Bitumen/WTI Crude)
 - Crude Oil \$800/ton carbon (\$95/bbl)
 - Refined fuel (pre-tax) ~\$1100/ton carbon

Hydrogen is not an energy dense storage medium, but is used to synthesize energy and value dense hydrocarbons

Synfuels Historical Perspective

- Fischer-Tropsch Synthesis
 - First commercial plant in Germany, 1936
 - Continuous commercial operation in South Africa since 1955
 - Secunda plant is CTL
 - Also operate GTL
 - Shell GTL in Malaysia
 - Newer plant in Qatar (Oryx)
 - Primarily large scale CTL & GTL
- Syngas production cost ~5/6 of total
- Syngas conversion cost ~1/6 of total
- Challenge: Produce a small scale plant at same cost per bpd capacity as large plant

New Electric Energy Storage Paradigm Electricity In, Storable & Transportable Fuel Out

Various aspects of this work have been supported by the DOE (INL), ONR and State of Wyoming

Ceramatec Syngas Compression Skid

Ceramatec 4 Inch FT Reactor Test Loop

- Scaled up approach from 1-1/2" reactor
- Single 4" Fixed Bed FT
- Thermal management structure
- Dual mode cooling loop
- Simplified flowsheet
- 5-10 gal/day
- Prove key technologies of 10 bbl/day pilot plant design
- Nearing commissioning

Electric Power Costs Low Enough For H₂

Electric Grid Pricing Probability Curves

Multi-regional 85th percentile cost of electricity < 40/MW-hr Many H₂ cost models assume 70/MW-hr, 95th percentile of high cost regions

H₂/Synfuel Market Size 3.5x > Grid Power

Electrolysis 1.285 V	Annual Electrical	Petroleum	H ₂ /Synfuel electric
\$40/MW-hr	Energy Demand	equivalent	energy as ratio to
Syngas cost \$90/bbl	GW-hr	k-bbl	current demand
Conventional	4,119,388	1,801,874	1x
Electric Load	47% of Capacity		470 GW
US Crude Oil Imports		3,580,694	2x 940 GW
US Crude & Refined		4,726,994	2.6x
Imports		\$900k/min @ \$97/bbl	1,220 GW
US Crude Oil Refinery Inputs		5,361,287	3.0x 1,410 GW
US Crude & Refined Refinery Inputs		6,277,893	3.5x 1,650 GW

http://tonto.eia.doe.gov/dnav/pet/pet_sum_snd_d_nus_mbbl_a_cur.htm http://www.eia.doe.gov/cneaf/electricity/epa/epates.html

Grid stability restricts wind to ~ 1/6 of load, requires costly reserves, new transmission

1000 GW Market with kW Stacks?

- Forecourt H₂ station of 1500 kg/day
 - 2.2 MW Electric power demand
 - 232cm² cell active area, 300 mA/cm²
 - 23,800 cells (238, 9.1 kW 100 cell cell stacks)
 - Stack cost well under \$200/kW
 - Plumbing and wiring costly ... but possible?
- Central Hydrogen Plant of 50,000 kg/day
 - 72 MW Electric power demand
 - Approaching 8000 stacks or 800k, 232cm² cells
 - How to plumb and wire 8000 stacks?
 - Or ... 184 stacks of $1m^2$ (10,000cm²) active area cells
- Need large format SOEC stacks for Central H₂

Tape cast sintered limits size

720 cell 12-stack module

Sintered stainless supported 1 m² cells?

Thermodynamics Drives Efficiency at High Temperature

Water Splitting Thermodynamics

SOEC Endotherm Recuperates Resistive Losses

TOMORROW'S CERAMIC SYSTEMS

One Technology - Multiple Modes Of Operation

Solid Oxide Stack Module

'OMORROW'S CERAMIC SYSTEMS

Syngas by Combined Steam and CO₂ Electrolysis

Reverse shift reaction: $CO_2 + \uparrow H_2 <==> CO + \Downarrow H_2O$ As steam is consumed and H_2 produced, the RWGSR converts CO_2 to CO

CO₂ electrolysis is as easy and efficient as steam electrolysis

Scalable Alternative High Temperature Electrolysis Route

Thermal neutral voltage: 1.46V/cellCell voltage: 1.05±0.05VFaradaic efficiency: 100 %Current density: 100 mA/cm²Thermodynamic efficiency: 100%No Degradation in 700hr test

High Temperature Molten Salt Cells for Large Area

Ceramatec Initiated Collaboration With Weizmann Institute

Estimated Synfuel Cost Contribution

- Drop in synthetic fuel cost contribution
 - -\$100 \$120/bbl electrolysis cost (\$40-\$50/MW-hr)
 - -\$6.75/bbl FT reactor & catalyst
 - \$12/bbl transportation of product & CO₂
 - (\$10/bbl) avoided CO₂ tax at \$25/ton CO₂ or -
 - (\$42/bbl) biodiesel tax credit at \$1/gal
 - \$81-\$123/bbl depending on
 - Electric rates (dominate cost factor)
 - CO₂ policy (carbon tax or biofuels tax credit)
 - SOEC & FT CAPEX secondary

Wind+Biofuels Production, 40x40 mile basis

- Biomass Feedstock
 - 22,700 TPD biomass (8.1 annualized dry tons/acre)
 - 10,000 TPD C, 1,400 TPD H from cellulose
- Wind Energy
 - 5 MW/km² wind turbine density over 1600 square miles
 - 20 GW wind power potential (only need 5 to 7 GW for fuel)
- Electrolytic Hydrogen or Syngas
 - 3,300 TPD H₂ required for all biomass C to fuel
- Synfuel
 - Baseline 30,000 bbl/day biomass to liquids + 24 kTPD CO₂
 - Additional 58,000 bbl/day by wind electrolysis of CO₂
 - Wind: 4.7 GW with SOEC or 6.5GW with water electrolysis

The Electrolytic Synfuel Solution

- Electrolysis efficiency 100% shown in practice
- Process negates RE shortcomings
 - Intermittency
 - Stranded due to limited transmission reach & capacity
- Efficient, concentrated, RE storage technology
 - 36 MJ/liter
 - 21-26 MW-days storage in a 10,000 gallon tank trailer
- Utilize all carbon content in BTL, CTL, & CC sys
- FT needs 20 bar comp. vs. 700 bar H_2 FCV
- Product compatible with existing dist. & vehicles
 20 to 50 years to retire existing fleet

Parametric Techno-Economic Analysis

- Based on Ceramatec published SOFC TEA (SSI-12)
- Set steam flow and utilization at operating point
- Calculate parameters using performance model - V_{op} , $j_i(U, V_{op})$, $P(U, V_{op})$, and η_{stack}
- Size and price the stack based on operating conditions
- Determine steam flow to reach desired capacity
- Size and price insulation vs. heat requirement
 - Price insulation
 - Calculate heat loss through insulation
 - Update auxiliary heat requirement
 - Increment insulation until combined insulation and auxiliary heat cost minimum is determined

Techno-Economic Model

- Set steam flow and utilization at operating point
- Calculate parameters using performance model - V_{op} , $j_i(U, V_{op})$, $P(U, V_{op})$, and η_{stack}
- Size and price the stack based on operating conditions
- Determine steam flow to reach desired capacity
- Size and price insulation vs. heat requirement
 - Price insulation
 - Calculate heat loss through insulation
 - Update auxiliary heat requirement
 - Increment insulation until combined insulation and auxiliary heat cost minimum is determined

SOEC Performance and Cost Map Space

Variations in operating voltage and reactant flow space

Notaton

$\overline{E_N}(U)$ Average Nernst potential

- η_{stack} Stack efficiency
- V_{tn} Thermoneutral voltage
- U Steam utilization
- *j_f* Steam limiting current density
- *j_i* Stack current density
- ΔV_f Driving potential
- Vop Operating voltage
- R'' Area specific resistance
- $_{\dot{n}}$ Steam molar flow rate

Electrolysis Equations

Stack efficiency

$$\eta_{stack} = \frac{V_{tn}}{V_{op}}$$

• Thermal neutral voltage $V_{tn} = \frac{\Delta H}{nF}$

Steam utilization

Model Development

• Steam flow specific current density

$$\dot{v}_f = rac{\dot{n}nF}{A}$$

- Driving potential required to fully utilize steam
 - Difference between V_{op} and average Nernst potential $\overline{E_N}(U)$

$$\Delta V_f = j_f R''$$

• Nernst potential as a function of utilization $E_N(U) = E^\circ + \frac{RT}{nF} ln\left(\frac{U \cdot O_2^{1/2}}{1-U}\right)$

Model Development

Average Nernst potential

$$\overline{E_N}(U) = \frac{\int_{U_\circ}^U E_N(U) dU}{U}$$

• $\overline{E_N}(U)$ is easily evaluated. However, we cannot obtain the inverse function to solve for U

Model Parameterization

 Steam utilization can be expressed in terms of the full utilization potential and the difference between the Nernst and operating potentials.

$$U = \frac{V_{op} - \overline{E_N}(U)}{\Delta V_f}$$

- U cannot be explicitly obtained
- Therefore, we parameterize in V_{op} and U

Operating point solution $in(U, V_{op})$

Steam flow

$$\Delta V_f(U, V_{op}) = \frac{V_{op} - \overline{E}_N(U)}{U}$$

• Current density

$$j_i(U, V_{op}) = \frac{V_{op} - \overline{E_N}(U)}{R''}$$

• Efficiency $\eta_{stack}(V_{op}) = \frac{V_{tn}}{V_{op}}$

SOEC Performance Map

TOMORROW & CERAMIC SYSTEMS

Economic Model (cont.)

- Map total cost of H_2 , $\left[\frac{\$}{kg}\right]$
- Map capital contribution to total cost
- Map auxiliary heat contribution to total cost
- Map electricity contribution to total cost

Electricity contribution [\$/kg]

Capital cost contribution [\$/kg]

Vop

Cost of Auxiliary Heat [\$/kg]

Vop

Total cost of H₂ [\$/kg]

Vop

Optimal Vop vs. Electric Price

Electrolysis H₂ Cost Model Sensitivity

Electrolysis Cost Comparison With SMR Cost Correlations

With comparable energy costs, SOEC H_2 cheaper than SMR H_2

Degradation & Lifetime Model

- Diffusion limited degradation processes
 - Oxide scale growth
 - Cation interdiffusion & reaction layers
- Leads to a parabolic rate law
 - R"(t)=R0"*(1+sqrt(t/T)) where tau is time to double area specific resistance
- Integrate 1/R"(t) for ave lifetime production
 - Integration substitution variable U=1+sqrt(t/T)
 - Lifetime fraction of initial production rate $2^{(U-\ln(U)-1)/(t/T)}$

Fit to Stack With Low Degradation

TOMORROW'S CERAMIC SYSTEMS

Economic model assumptions

- BOP: based on SECA target of \$400/kW SOFC operated at 0.7 V, scaled to 1.3 V SOEC
- Ground up mfg cost model substantially lower \$/kW
- Insulation: \$2180/m³
- Heat Exchanger: \$400 /m²
- Electricity: \$45/MW-hr
- Auxiliary heat: \$4.50 per 10⁶ BTU
- Depreciation: Stack 24k hours, BOP 10 years, 10% continuous ROI
- Duty factor: full load 8600 hours/year

