

Electrolytic Hydrogen Production Workshop NREL, Golden, Colorado February 27-28th, 2014

High Pressure PEM Electrolysis

Status, Key Issues, and Challenges

Monjid Hamdan Director of Engineering

High Pressure PEM Electrolysis

High cost of compression is making it difficult for all hydrogen production pathways to match the energy cost of gasoline...

Hydrogen compression dominates refueling costs

¹http://www.hydrogen.energy.gov/pdfs/12021_csd_cost_ projections.pdf, May 14th, 2012

Advantages of High Pressure PEM Electrolysis

- Eliminates one or more stages of mechanical compression
- Reduces system complexity
 - □ Lower drying requirements
- Low maintenance
 - No moving parts
 - No contaminants
- Permits hydrogen generation at user endsite
- Cross-cutting technology, applicable to Electrochemical Hydrogen Compressors

Advancements in <u>Membrane</u>, <u>Stack</u>, & <u>System</u> required for commercial viability

Membrane Challenges: High Pressure Operation

Mechanical Strength

Membrane creep

- Loss of Stack Seals
- □ Membrane extrusion into fluid ports
- □ Hardware leakage (internal & external)
- □ There is a need to improved strength without adversely impacting conductivity

Chemical Durability

- Membrane degradation increases with operating pressure
 - □ Significant increase in chemical degradation rate under high pressure operation
- High back diffusion
 - Thin membranes have low resistance, allowing efficient operation at high current densities. Drawback is high back diffusion.
 - Similar faradaic losses in PEM fuel cells and electrochemical H₂ compressors under same operating conditions & membrane selection
- Need to synthesize new low EW ionomers to meet new performance targets
 - Membranes with high conductivity and low permeability needed

Efficiency

Membrane Efficiency

Stack Hardware

Hydrogen at 5,000 psig (Ambient O₂) Generated directly in PEM Electrolyzer

Future Challenges

- Increase hardware capability for high pressure applications (H35 and H70 refueling)
 - □ Scale-up: Increased output
 - Increase active area/number of cells
 - Material strength:
 - Conductive anode/cathode membrane support structures with high yield strength
 - Improved sealing:
 - Material creep (vs. time, pressure, & temp cycles)
- Reduce stack cost
 - The repeating cell unit comprises >90% of electrolyzer stack cost
 - Reduce labor/material requirements
 - Anode support structure now dominates cost of the electrolyzer stack
 - High tolerance requirements of cell components increases manufacturing cost
- Improved chemical stability of cell components (H₂ embrittlement)
- Long term endurance testing & validation (5,000+ Hours)

System Challenges

Internal/External Challenges

- Increasing electrolyzer pressure leads to system simplification but requires higher cost BOP components
- Innovative system component development required
 - Hydrogen dryers
 - Gas-phase separators
 - Level sensing
- Extended durability testing/validation
 - Full optimization studies
- Hydrogen safety codes and standards: Collaborators such as NIST or national laboratories, needed to help in standardizing the process

Economic Feasibility: Cost of H₂ Compression in PEM

http://www1.eere.energy.gov/hydrogenan

⁴Based on electrical cost of \$0.061/kWh

dfuelcells/mypp/pdfs/production.pdf

² 2015-2020 DOE Target is \$1.70/kg

³ 300 psia H₂ feed source

- ~\$0.40 (40%) cost reduction compared to mechanical compression
- Largest \$ contributor is Feedstock
 - Improving membrane efficiency and reducing electric cost are key to future cost reductions
- Higher cost of Stack/BOP may offset gains: Low cost stack/system designs required