VOLTTRONTM as an Open Source Platform for Energy Management Applications

July 23, 2014

Software Framework for Transactive EnergyCase Western Reserve University
Cleveland, OH

Saifur Rahman (srahman@vt.edu) Virginia Tech

History

Problem Statement

- Buildings consume over 40% of the total energy consumption in the U.S.
 Over 90% of the buildings in the U.S. are either small-sized (<5,000 square feet) or medium-sized (between 5,000 sf and 50,000 sf).
- These buildings typically do not use Building Automation Systems (BAS) to monitor and control their building systems from a central location.

Virginia Tech Focus

Develop an <u>open source</u>, <u>low cost</u>, <u>low power consumption</u> platform that can monitor and control majority of loads in buildings to **improve energy efficiency** and **facilitate demand response** implementation.

Three major loads in buildings:

- HVAC
- Lighting loads
- Plug loads

Source: EIA - Commercial Building Energy Consumption Survey (CBECS) http://www.eia.gov/consumption/commercial/data/2003/index.cfm?view=consumption#e1a

Solution Approach

VOLTTRON™ was used as a platform to host our software. It is open-source and not hardware specific.

VOLTTRONTM Features:

- Open-source platform
- Built-in security module
- Built-in resource management capability
- Distributed and decentralized control based on a multi-agent system
- Can be installed in a low-cost, lowpower embedded system
- Sensitive to CA Title 24 requirements

Solutions for Small Buildings

Solutions for Larger Buildings

BEMOSS on Various Embedded Devices

CPU: 700 MHz ARM processor

RAM: **512MB SD** Ethernet: 10/100 RJ45

USB 2.0: Available

Price: \$35

3.4"x2.2" Size:

CPU: 1GHz ARM Cortex-A8

RAM: **512MB SD** Ethernet: 10/100 RJ45

USB 2.0: Available

Price: \$55

Size: 3.4"x2.1"

CPU: Dual core 1.2GHz ARM

Cortex-A9

RAM: 1GB SD

10/100 RJ45 Fthernet:

USB 2.0: Available

Price: \$220

Size: 4.5"x4.0"

Virginia Tech's Agent Development on VOLTTRON™

Software Used

Agent coding

- Python
- C++

Database

- sMAP
- PostgreSQL

User Interface

- Django
- jQuery
- ZeroMQ
- Java script
- Twitter Bootstrap

VOLTTRONTM: Beneficial Features

- Scalability
- Open architecture
- Ease of deployment
- Built-in security module
- Interoperability (through IEB)
- Resource guarantee for agents
- Can be installed in a low-cost, low-power embedded system
- Distributed and decentralized control based on a multi-agent system
- Language-agnostic environment (supports development in Python, Java, JADE, Binary, etc.)
- Have community support

VOLTTRONTM: Room for Improvement

- GUI tool may be added for agent management and debugging.
- VOLTTRON™ 1.2 does not support agent mobility and cloning service.
- VOLTTRON[™] 1.2 does not follow any agent communication standards (e.g., Foundation of Intelligent Physical Agents - FIPA).
- VOLTTRONTM 1.2 does not address interaction of multi-agent systems.
- VOLTTRON™ 1.2 does not provide an easy database interface (e.g., MySQL, PostgreSQL, Oracle, etc.)
- Additional security features, <u>may be available in VOLTTRONTM 2.0</u>.

In-house BAS Operating System

Installation times

	PC	PandaBoard	BeagleBone
VOLTTRONUIDatabase (PostgreSQL)	20 minutes	1 hours 20 minutes	2 hours 15 minutes

Thank You

Saifur Rahman srahman@vt.edu

Professor and Director
Virginia Tech – Advanced Research Institute

Extra slides

Electricity Use in Office Buildings

Electricity use in buildings

Three major loads in buildings:

- HVAC
- Lighting loads
- Plug loads

Source: EIA - Commercial Building Energy Consumption Survey (CBECS)

http://www.eia.gov/consumption/commercial/data/2003/index.cfm?view=consumption#e1a