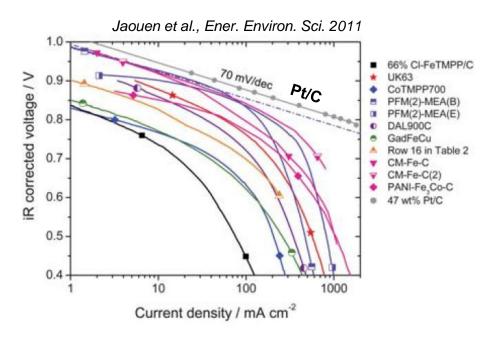
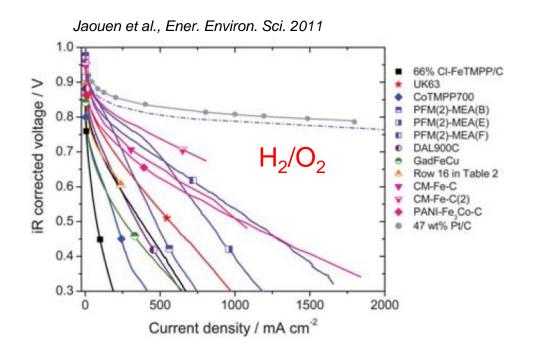
Some considerations when developing non-PGM catalysts


Anu Kongkanand and Wenbin Gu General Motors Global Product Development, Fuel Cell Activities

> Present to the DOE CWG June 16, 2014

Recent Progresses



- Great progresses in recent years. Mostly achieving kinetic target.
- Does kinetic target need to be adjusted?
- Where do we stands on fuel cell performance and what else needs to be done?

Obvious Issues

- Serious transport loss above 0.1 A/cm²_{MEA}.
- Cause of loss is unclear but likely due to flooding and poor proton conduction in the catalyst's micropores.
- Stability is very poor, especially for the most active catalysts.

Usable Power?

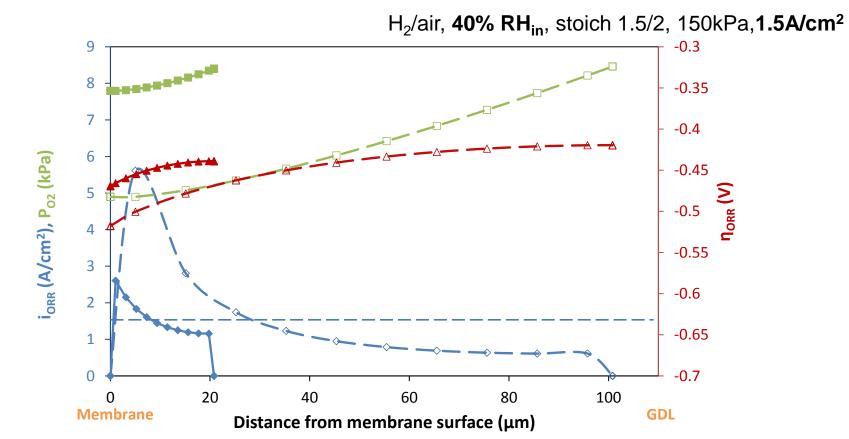
From FCTT Roadmap, June 2013

Table 3. Technical Targets for MEAs

Characteristic	Units	Status	2020 Target
$Q/\Delta T_i^a$	kW/°C	1.9 ^b	1.45
Cost	\$/kW	17 ^c	14
Durability with cycling d, e	Hours	9,000 ^f	5,000
Performance @ 0.8 V ^g	mA/cm ²	311	300
	mW/cm ²	248	250
Performance @ rated power e	mW/cm ²	845 ^h	1,000

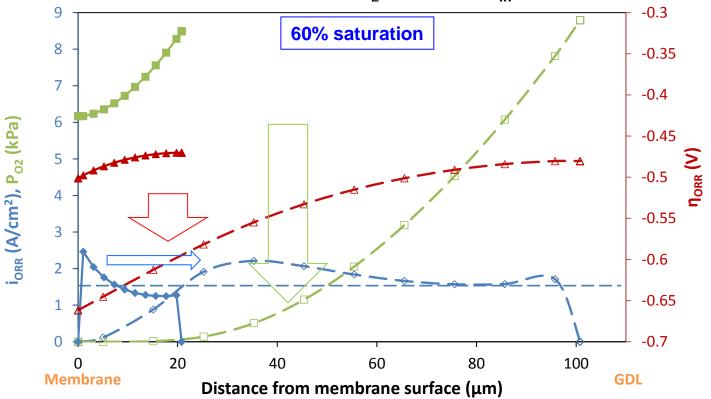
$$Q/\Delta T_i = \frac{\text{Stack power (90 kW) x} \left(\frac{E_{th,LHV} (1.25 \text{ V}) - \text{Voltage at rated power}}{\text{Voltage at rated power}}\right)}{\text{Stack temperature - Ambient temperature (40°C)}}$$

- For automotive application, size of the radiator (heat rejection) determine the maximum useable power (rated power).
- As a rule of thumb, V lower than 0.56 V is not usable. (raw voltage, H₂/air)
- In addition, power density targets prevent us for going to lower current density to maintain high voltage.


Reality check: H₂/air performance

- Performance in H₂/air is rarely reported. (Understandable, but please do so.)
- From limited available data (GM and few literature), usable power is only ~0.2 A/cm². (0.1 W/cm² vs target of 1 W/cm²)
- Can we pack more catalyst into the electrode to compensate? It's so cheap!!

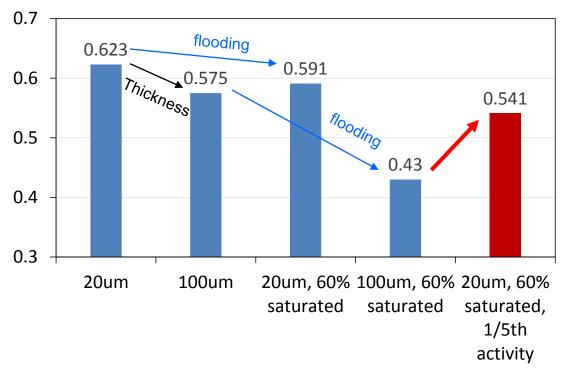
Thick vs Thin electrodes. Both have same kinetics.



- Modeling using Pt/C-like electrode properties (likely the best case scenario).
- Thick electrode leads to large proton and O₂ transport losses (~50mV).

Real problem starts when flooded


H₂/air, **40%** RH_{in}, stoich 1.5/2, 150kPa,**1.5A/cm**²



- Water in thick electrodes tend to reach saturation earlier than in thin electrodes.
 (as early as 40% RH_{in})
- And when thick electrode floods, the effect is far more severe.

Prediction of voltage at 1.5 A/cm²

- In this example, increase in thickness causes ~50mV and ~160mV losses when electrode is dry and when water accumulation occurs, respectively.
- In fact, it is better to sacrifice kinetic activity by reducing the catalyst loading down to 1/5th (20 μm thick).
- Think twice before go thick! Even with a new highly-conductive ionomer, significant challenge remains in water management.

Future Foci

- Increase volumetric activity.
 - → Thick electrodes are unrealistic. Prefer ~20 µm cathode (600 A/cm³@0.8V, ~22 A/cm³@0.9V)
- Eliminate use of Fenton catalyst metals such as Fe and Cu.
- Improve stability.
- Develop catalyst to give more usable power
 - → As a starter, let's report H₂/air performance
 - → Do not recommend MEA optimization at this stage.
 - → Recommend catalyst design to improve oxygen transport.
 - → Do we need a high-power target? (should be driven by current Q/ΔT & Stack power density targets)
 - → At this stage, hybridizing with PGM catalyst does not give significant benefit. However, this will change if usable power of the non-PGM improves.
 - → In that sense, catalysts that give high usable power but low kinetics are better than those with high kinetics but low usable power.

