

Advanced Grid Modeling 2014 Peer Review

Next Generation Grid Data Architecture &

Analytics Required for the Future Grid

Arjun Shankar and Russell Robertson

Team: Lin Zhu, Frank Liu, Jim Nutaro, Yilu Liu, and Tom King

Wide-area Situational Awareness

Fully integrated Grid with High Penetration of Renewables

Wide-area Closed Loop Control

- closed loop control using wide-area monitoring across multiple time scales
- coordinated renewable energy source controls

Modeling & Estimation

- robust phasoronly static and dynamic estimator development
- real-time large scale data security

Actuation

- multi-terminal HVDC system control
- renewable energy converters as compensator
- hybrid AC/DC transmission architecture

<u> Monitoring</u>

- FNET/GridEye system allows for event detection, size, and location estimate
- automated oscillation alert and analysis
- improved visualization tools
- real-time situational awareness & visualization tools
- off-line pattern discovery

Testbeds

- a large-scale testbed provides simulation. platforms to evaluate & demonstrate solutions for the future grid & advanced concepts
- the Hardware Universal Grid Emulator allows testing of various power system architecture and integration of key technologies

Northeastern

Next Generation Grid Data Architecture

PURPOSE

- To foster open collaboration on issues, establish requirements and propose a specific next generation data architecture
- To enable the production use of new computation methods for management and control of the grid

The scope of "Data Architecture" includes all the data-layer elements needed to support the production implementation of grid modeling and analytics systems – including messages/APIs for consuming data and communicating control actions.

Grid Information Requirements Are in High Flux

- More distributed and reconfigurable electric grid
- Many more measurements; more frequently
- Shorter analytics cycle times; advanced analytics
- Growing use of automated controls
- More third party information and energy service providers

Data-Perspective Motivation

- In the near-term, this project will propose solutions to utility issues associated with increased use of large volume data sources such as synchrophasors and metering systems
- A data architecture template, allows research to focus on innovative solutions rather than creation / re-invention of the data layer to support these solutions
- Reliable, high-performance information flows are not scalably supportable by current APIs and protocols

Roadmap Components

Architectures for Grid Sensors Information Flow

- Loose Coupling
- Flexible Coupling
- New Inflows at Control Centers

Analytics

- Offline/Batch and Online
- Control: stability and response signals determination

Architectures for Control

- Distributed Control Framework
- Signal Location Focus

Advanced Grid Modeling & Data Architecture

Project Work Process

Accomplishments

- 1. Investigate
 - A. Recent Grid Architectures
 - B. Benchmark other industry
- 2. Determine Requirements for Important & Emergent Applications
- 3. Use EMCS as a proxy for a demanding future application

1A - Investigate Current Grid Architectures

Accomplishments

- Purpose is to identify architecture gaps.
- R&D projects for grid data architecture have so far emphasized particular facets of the problem:
 - Interoperability (Gridwise, Intelligrid)
 - Data transportation (Gridstat)
 - Data services bus (FPGI)
 - Conceptual modeling frameworks (European SGCG)
 - Better understand new requirements for the data architecture based on renewable energy management and responsive load integration
 - e.g., iTESLA architecture has efforts in data mining technology for modeling stochastic system variables

Investigation Outcome Snapshot

Project Name	Sponsor/ Date	Objective/Content	Focus on data architecture
IntelliGrid	EPRI, 2001	Integrate energy delivery system and information system	InteroperabilityCommunication networks
Gridwise	DOE, PNNL, 2004	Establish interoperability principles	Interoperability for end-use
GridStat	NSF, WSU 2001	• Delivery of power grid operational status information	Middleware technology
FPGI	PNNL, 2011	 Next-generation concepts and tools for grid operation and planning 	Data managementSoftware framework
sgcg	CEN/CENELEC/ET, 2011	A framework to perform standard enhancement and development	 Modeling Interoperability
iTESLA	European Commission, 2012	Dynamic security assessment considering uncertainty	Data miningData management
TCIPG	UIUC, UCD, WSU, etc, 2011	 Secure low-level devices, communications, and data systems 	Cyber security
SGIP	NIST, 2009	• To accelerate the implementation of interoperable Smart Grid devices/systems	Interoperability
SG- framework	NIST, 2010	To develop interoperable standards	InteroperabilityStandardization

Grid Architecture Gap

- <u>Structural:</u> most current architectures discuss necessary functional abstractions of the information layer: e.g., Intelligrid, GWAC Stack, NIST Smart Grid, etc. However:
 - Emerging DISTRIBUTED CONTROL structural requirements remain to be addressed.
- <u>Functional:</u> New data sources (e.g., smart inverters, PMUs, imagery), higher data volumes (e.g., 60 Hz+ sampling), and new applications (e.g., comfort signals, transactions)

Emerging NEW APPLICATIONS and DATA ANALYTICS demands rely on the new data layer and data architecture definition.

New Requirements (Post 2008/ ARRA)

1B – Investigate Successes in Other Sectors

Parametric Views: Volumes, Resolution, Variability, Quality, Uncertainty, Latency

Finance Functional Architecture Stack

Technology Capabilities View - Microsoft Platform

Source: Microsoft's Banking Reference Architecture Document 2012

Technology Capabilities View - End-user Experience

Healthcare Reference Architecture Examples

Credit: Teradata.com

mHealth Architecture Stovepipe Patient/Caregivers Patient/Caregivers Analysis/ visualization/ Re-usable health feedback data and knowledge 0 services Processing V Storage Standardized personal data vaults and health Data transport specific data ۵ exchange protocols Data capture Mobile platforms Mobile platforms iPhone/Android/ iPhone/Android/ Feature Phones Feature Phones

> Credit: D. Estrin and I. Sim

Distributed mHealth Goals

Teradata Finance and Healthcare Centralized Large-Scale Processing

Benchmarking Lessons Learned

Grid systems can effectively leverage work in other sectors

- Scalable data-alignment (Extract-Transform-Load) at ingest is solved.
- Storage management is not a pain point.
- Stream handling of data is improved.
- Analytics on scalable and streaming data is available.
- Linking disparate data is possible.

However, other sectors offer essentially no parallels to the cyber-physical scale of wide-area electric grid control. The electric grid infrastructure still needs new distributed data and control handling architectures.

2 – Understand Requirements

- Applications determine data-layer requirements
- Opinion leaders helped create list of representative future-state applications
- These applications were ranked based on their importance to operating the grid of the future
- Requirement issue areas for these applications were identified

Data Architecture & Data Analytics

Collaborating with Stakeholders to define the Future
 Grid Data Architecture

Representative Application List

Adaptive Topology Control	Next-Generation SCADA/EMS				
Adaptive Topology Planning	Optimized Power Flow				
Advanced/Predictive Restoration Systems	Oscillation Detection				
Alarm Integration and Management	Post-Trip Fault Analysis				
Electrical Network Model Validation	Power Market Analysis				
Fault Induced Delayed Voltage Recovery	Predictive Control				
Forward Analysis (granular 60 minute look ahead)	Producer / Consumer (Prosumer) Systems				
GIC, Solar, EM Disturbance Response	Remedial Action Schemes				
Islanding Management	Renewables Integration				
Look-Ahead Simulation and Control (10 Seconds)	Stability Monitoring and Frequency/Voltage Control				
Modeling System Dynamics and Transients	State Calculation (vs. Estimation)				
Multi-Resolution Frequency Analysis	Transmission Pathway and Congestion Management				
N-1-1 Contingency Analysis	Wide-Area Profiling and System Management				

Next Generation Challenges

					Application Challenge Dimensions					
			A Desertion	Priority Score	Computat ional	Configura tion	Data			
			Application				Volume	Velocity	Veracity	
	1	3	Advanced/Predictive Restoration Systems	25		Yes	Yes			
	2	8	GIC, Solar, EM Disturbance Response	25				Yes	Yes	
	3	4	Alarm Integration and Management	19		Yes				
	4	5	Electrical Network Model Validation	19		Yes			Yes	
	5	13	N-1-1 Contingency Analysis	19	Yes	Yes	Yes			
	6	23	Stability Monitoring and Frequency/Voltage Control	19				Yes		
	7	2	Adaptive Topology Planning	17	Yes	Yes				
	8	7	Forward Analysis (granular 60 minute look ahead)	17	Yes	Yes	Yes	Yes		
	9	9	Islanding Management	17				Yes		
	10	22	Renewables Integration	17		Yes				
	11	17	Post-Trip Fault Analysis	16		14.			Yes	
	12	10	Look-Ahead Simulation and Control (10 Seconds)	15	Yes			Yes	Yes	
	13	11	Modeling System Dynamics and Transients	15	Yes	Yes				
	14	26	Wide-Area Profiling and System Management	15	Yes	Yes	Yes			
	15	1	Adaptive Topology Control	13		Yes			Ves	
	16	14	Next-Generation SCADA/EMS	13	Yes	Yes	Yes	Yes	Yes	
	1/	16	Oscillation Detection	13			Yes	Yes	Yes	
	18	24	State Calculation (vs. Estimation)	13			Yes		Yes	
	19	6	Fault Induced Delayed Voltage Recovery	12	Yes			Yes		
	20	12	Multi-Resolution Frequency Analysis	11	Yes		Yes		Yes	
	21	19	Predictive Control	11	Yes			Yes		
	22	21	Remedial Action Schemes	11				Yes		
	23	25	Transmission Pathway and Congestion Management	11		Yes				
	24	15	Optimized Power Flow	9	Yes					
	25	18	Power Market Analysis	9	Yes					
	26	20	Producer / Consumer (Prosumer) Systems	8			Yes			

Requirement Gathering Highlights

- Next-generation EMS/SCADA is one application that hits all the application challenge dimensions.
- Top five next generation challenges are applications that reside in current day EMS and their incorporation leads to nextgeneration EMS.
- Configuration management is a sleeper critical requirement.

3. Use EMCS as an Application Proxy

EMCS – Grid Operations Ownership

EMCS Includes New Interfaces

Necessary Data Architectural Elements

- Streaming and Transactional Data Acquisition
 - Conventional grid data
 - High volume data sources
- Data Conditioning / Organization
- Data Storage
- Data Systems Middleware / APIs
 - High performance real-time data services
 - Historical data services for off-line analytics and business systems
 - Services and support for legacy applications
- Control Middleware / APIs
- Grid Metadata

Addressing Structural Needs of Local and Regional Stability

Control and Coordination Messages

- Control Signals
 - Near-Real-Time
 - +/- Load
 - +/- Gen for Regulation
 - Price signals
 - Scheduled
 - Base generation
 - Market Coordination

 Distributed control will exist at multiple levels.

 Physical Systems

 EMCS APIs

 EMCS APIs

 EMCS APIs

 Find the finities of the finities of the finities of the finite of the fin

- Status and Request APIs
 - Dynamic event status
 - Unscheduled mechanical, weather
 - Unscheduled load
 - "Comfort" services

Distributed Control Messages

- Events
 - Stability and Regulation
 - Islanded operations
- Peering messages
 - Price signals
 - Event status
- Peered agreements
 - Status to master control
 - Schedules

Preliminary Analysis of Data-Transport Impact on Future Control Scenarios

Accomplishment Summary

- Conducted 2 working group meetings
- Identified top quartile applications and their respective requirements
- Conducted an architecture survey of 9 recent grid architectures
- Looked at two architecture successes from other industry
- Developed a candidate list of data and control layer components for the future EMCS

Upcoming Work

- Implement the distributed coordination usecase in a model
- Develop the message types for the distributed and centralized close-loop control API
- Analytics
 - Develop and evaluate algorithms for EMCS distributed coordination operations
 - Use phasor data to perform dynamic assessment
 - Compare SCADA-based and phasor-based analytics for flexible control algorithms

Example #1: FNET/GridEye Data flow

Example #2: Dominion Comprehensive Data Repository

Central control

Addressing Emerging Functional Needs through Analytics

Traditional

- Static and dynamic analysis (power-flow): stateestimation
- (Scalable) contingency analysis
- Protection schemes
- Optimization routines for markets
- New analytics requirements
 - Optimization of distributed schedules (bin-packing) and dispatch
 - Distributed peering coordination
 - New regulation possibilities

Multi-University Data Analytics Projects

- Measurement-Based Estimation of Power Flow Jacobian: Algorithms and Computational Architectures (UIUC)
- Data Compression and Reconstruction for Large-scale Synchrophasor Measurements (RPI)
- Use of Big Data For Outage Management in Distribution Systems (TAM)
- Cyber-Physical System Security Assessment Involving Multiple Substations (WSU)
- Frequency Distribution and Event Discovery from Synchrophasor Data (UTK)

Data Analytics Overview

Advanced Grid Modeling 2014 Peer Review

Next Generation Grid Data Architecture &

Analytics Required for the Future Grid

Questions?

