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Challenges and Project Objective

 Challenges

» The increasingly diversified generation sources, including
renewables and gas turbines, are changing the power
systems in both system topologies and operation strategies.

» The flourish of renewables and the deactivation from fossil
fuel synchronous generators may lead to higher pressure for
optimization of various VAR sources, esp. dynamic ones.

» The value of future reactive power resources are critical to
utility planners.

 Obijective

» Develop an integrated VAR analysis and planning tool which
can achieve the above motivations with different types of
VAR sources.



Significance and Impacts

Generation uncertainty and new characteristics are
addressed in the long-term VAR planning.

VAR sources are differentiated as static VAR and
dynamic VAR sources in the short-term VAR planning to
further optimize the VAR planning and ensure dynamic
voltage stability — a utility concern

The benefit and value of VAR are evaluated and
assessed to either determine feasibility of investment
or value streams from VAR optimization — a utility
benefit

Framework of the future VAR planning and operation
which could lead to the power system VAR planning and
operation revolution.
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MOVARTI tool overview
VAR Value Assessment: budget constrained VAR planning
Long-term VAR planning: considering static voltage constraints

Short-term VAR planning: considering post-contingency voltage
dynamics



MOVARTI Tool Overview - Capability
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MOVARTI Tool Overview - Architecture

System Data [———) MATLAB <):()| GAMS

GUI
Static Optimization
Power Flow: MATPOWER
Optimization: GAMS
Python
y VAR Benefit Analysis
Optimization: GAMS

Dynamic Optimization

Power Flow: PSS/E PSS/E

Dynamic Simulation: PSS/E
Optimization: MATLAB




VAR Value Assessment

Without VAR compensation

With VAR compensation
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VAR value streams:

B1: Benefit from reduced
power losses

B2: Benefit from shifting
reactive power flow to active
power flow

B3: Benefit from increasing
line transfer capability




Quantitative Assessment Model

Base Case (z): Base system without VAR compensation (Qc=0).

Perturbed Case (z’): Compensation is available at a given bus in the given
amount for evaluation.

» VAR value (i.e., benefits from the OPF model) = 2’ — z, which is essentially a
sensitivity study which can be used for budget-constrained planning.

YV VYV

Based on ACOPF model:

Min: 15 f(Pg:) (Total production cost)

Subject to:
PG _ |:> _P(\/ 0) =0 QGi +QCi —QLi —Q(V,0)=0| (Nodal power balance)
pgl"n < Py < P(r;:ax Qg‘iin <Qg; < Qéniax (Generation active and reactive limit)

Vimm SVi SVimaX ann < Q Qg\ax (Voltage limit and VAR capacity limit)

‘LF ‘< LgMmax | (Line capacity limit)
I




VAR Value Study with IEEE 39 Bus System (1)
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VAR Value Study with IEEE 39 Bus System (2)

Generation cost vs. VAR Capacity
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Long-term VAR Planning:
Considering Static Voltage Constraints

Considerations:

1. Different generation types including coal, gas, and
renewables

2. Wind energy Weibull distribution

3. Correlation between multiple wind farms

4. Different VAR capabillities of wind farms

5. Static voltage constraints

Results:

To determine static VAR source size and location that
minimizes the total cost



Bi-level Optimization Model
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Worst
Scenario creation considering 7 scenario ( Master problem:
wind correlation J L VAR allocation
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Case Study with IEEE 39 Bus System (1)
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Four wind farms connected at Bus 10,
Bus 20, Bus 25 and Bus 29.
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Case Study with IEEE 39 Bus System (2)

Select the worst scenarios in which the system has the least
reactive power reserve.
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Case Study with IEEE 39 Bus System (3)

VAR allocation results under different optimization objectives

Objective: VAR Cost Objective: Total Cost

VAR Size Fuel cost VAR cost Total cost VAR Size Fuel cost VAR cost Total cost
(Bus) ($/hr) (%/hr) ($/hr) (Bus) ($/hr) ($/hr) (%/hr)

~ 1715(7), 143532  691.3 144223 114.2(7), 143454 7386 144,193
(PI=1) 500 (s 118.2 (18)
Caseb 2040 152 (7),
= 1715(8), 143524  691.3 144215 186.2(11), 143435 7340 144,169
(pf=0.98) (g 91.9 (17)
Case c
95.3(7) 143,512 173 143,685  956(7) 143512 1734 143,685
(D curve)

When the correlation among wind farms is considered, the worst scenarios
for Case a and Case b are the same. Therefore, VAR allocation results for
these two cases are the same if only VAR cost is the objective.

It is recommended to use total cost as the objective if possible, since this
may lead to different and better results from the overall system perspective.



Dynamic VAR Planning: considering post-
contingency voltage dynamics

Approaches:

1. Use the static VAR optimization results as the

reference.

2. Consider NERC criteria on post-fault voltage

recovery performance.

3. Solve an nonlinear optimization problem to
minimize the cost while meeting dynamic

voltage requirements.
Results:

Locations and sizes of dynamic VAR sources

Stage 1: Contingency screening [

Stage 2: Determine the locations [
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Stage 3: Optimize the sizes
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Stage 1: Contingency Ranking

Use a composite load model including

motor loads

Find the most severe N-1 or N-2 by a
Voltage Recovery Index:
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Stage 2: Placement of Dynamic VAR Sources

1. Evaluate a Voltage Sensitivity Index (VSI) for bus j or the overall
system by simulated post-contingency voltage trajectories with a
small g; injected at bus i

VSl =max| V™ -Vt =1~T |/,
1 N

VSI, ==> VI,
N4

2. Select a number (depending on budget) of the buses with the
highest VSlIs to place SVCs
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Stage 3: Optimization of the Sizes of Dynamic

VAR Sources

Determine the locations of

A new iterative Linear Programming

dynamic var supports by FSE
and guess the initial O; a p p ro a C h
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Case study with IEEE 39 Bus System

« Consider a severe N-2 contingency: a 3-phase fault on bus 17 cleared by opening lines 17-18
and 17-27 after 5 cycles
* Choose buses 28, 27 and 20 (top-3 VSI values) to install SVCs, and then optimize the sizes
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Optimizing the Sizes of Dynamic VARs

Q,g(MVar)

Optimal Solution: Q,,=326MVar, Q,,=25MVar and Q,g=25MVar
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Comparison of Trajectories
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The optimized solution gives
secure voltage response while
minimizing the total cost.
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Conclusions

e An integrated VAR planning and analysis tool is
developed.

» Concept verification tool for utility users to test and
verify the concepts developed in this project, under
the paradigm of considering uncertainty and post-
contingency voltage dynamics

» Functions include VAR value assessment, long-term
VAR planning considering static voltage constraints,
and short-term VAR planning considering post-
contingency voltage dynamics

» Easy user interface with PSS/E and GAMS



Future Works

FY 2015: Continue engagement of Dominion Virginia
Power (DVP) and other companies to develop the
MOVARTI tool to address utility challenges and needs:
» Operational consideration of VAR sources

» Uncertainty at the demand side

FY 2015: Further development of the tool to integrate
the static planning and dynamic planning,
methodology validation using a real system.

Out-year plan: Deployment as an open-source tool.
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