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Partners: LANL, Cal Tech, Columbia, and U. of Michigan 
 
Collaborators: MIT, Landau Institute, ENS-Paris, NICTA-Australia, 
Moscow Inst. of Physics, U. of Washington,… 
 
Research Areas 
• Power System Control Under Uncertainty  

• Chance-Constrained Optimal Power Flow (LANL, Columbia, Michigan) 
• Distributed Control of Load for Frequency Control (Cal Tech, LANL) 
 

• Transmission Effects of Distribution Grid Dynamics  
• PDE Models of Distribution Dynamics (LANL, Michigan, Landau Institute, ENS-Paris) 
• Distribution Dynamics Model Reduction (LANL, Michigan) 

 
• Coupled, Interdependent Infrastructures—Gas-Grid Coupling   

• Stochastic Temporal Dynamics of Coupled Power and Gas Systems (LANL) 
• Coupled Gas-Grid Reliability, Operations, and Design (LANL, NICTA-Australia, MIT)  

Outreach 
• Winter School 2015—January 15-17 
• Winter Conference 2015—January 18-19, 
 

 
 
 
 
 

Program Overview 
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Outreach 
 

Winter School (Jan 15-17,2015) 
- 9 X 2-hour lectures from experts in 

Distributed Control, Optimization, and 
Stochastic Methods 

- Focused on graduate students and postdocs 
- Application of these methods to grid control, 

design and optimization 
 
 
• Ian Hiskens (Michigan) 
• Florian Dorfler (UCLA/ETH) 
• Steven Boyd (Stanford—not confirmed) 
• Daniel Bienstock (Columbia) 
• Steven Low (Cal Tech) 
• Pascal vanHentenryck (NICTA-Australia) 
• Antonio Conejo (Ohio State) 
• Duncan Callaway (UC Berkeley) 
• Konstantin Turitsyn (MIT) 

 
 

Winter Conference (Jan 17-18, 2015) 
16 invited presenters 
 
• Ian Dobson   (Iowa State) 
• Seth Blumsack  (Penn State) 
• Paul Hines (Vermont) 
• David Hill (Sydney) 
• Bernie Lesieutre  (Wisconsin—TBD) 
• Javad Lavaei  (Columbia) 
• Krishnamurthy Dvijotham (Washington/Cal Tech) 
• Chris DeMarco  (Wisconsin—TBD) 
• Alejandro Dominguez-Garcia (Urbana) 
• Goran Andersson  (ETH) 
• Jakob Stoustrup (PNNL) 
• Shmuel Oren (UC Berkeley) 
• P.R. Kumar (Texas A&M)  
• Eugene Litvinov  (ISO-NE) 
• Janusz Bialek  (SkTech) 
• Michael Ferris (Wisconsin) 
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• Existing dynamical simulations of high voltage transmission 
grids typically use: 
• detailed models of generators and transmission 
• simplified aggregate models of loads that do not account for the 

complex spatiotemporal interactions of the loads 
 

• The need for better dynamical load models 
• Encroaching on stability boundaries—Impact of load dynamics is 

growing 
• Collective, nonlinear (and undesired) dynamical load behaviors (FIDVR) 

driven by typical transmission grid behavior, e.g. normal fault clearing.  
• Deployment of active consumer loads will yield new “load” dynamics.   
 
 

• Our approach 
• Model/Understand the complex spatiotemporal interactions of loads 
• Develop low-dimensional representations suitable for simulations of 

transmission dynamics 
 

Context/Vision—Distribution Dynamics  
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Presentation Outline  

• Project Purpose—Develop understanding of FIDVR dynamics (and other complex 
distribution dynamics) and fast/simple models for integration into transmission 
simulations 
 

• Significance and Impact—Improved understanding of the effect of complex load 
dynamics on transmission dynamical stability without significant increase in 
computational burden 
• FIDVR Example—What are the dynamics under consideration? 

  
• Technical Approach 

• Distribution Dynamics Model 
• Analysis of Dynamics—Comparison with related work 
• Model Uncertainty—Inclusion of Disorder 
 

• Technical Accomplishments 
• FIDVR critical clearing time 
• Effects of disorder/load uncertainty  
• Low-Dimensional Models 
 

• Conclusions 
 

• Future Work 
 



Significance and Impact—FIDVR Example 

 
Related work in this general area 
• PNNL—statistical model of stalling and thermal tripping 
• Iowa State—statistical model of stalling with power flows 
• LBNL/ASU/SEL—PSCAD and RTDS simulation of stalling dynamics 
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Induction motor stalling 
dynamics occurs here...  
Focus of current work 



Technical Approach—Distribution Dynamics Model 
Induction Motor Dynamical Model 
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Technical Approach—Distribution Dynamics Model 
Spatially Continuous Power Flow 
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Power flow equations 

Motor dynamics 



Technical Approach—Distribution Dynamics Model 
Boundary and Initial Conditions 

• Using “simplified” boundary conditions that 
do not include transmission impedance 

• Separates the distribution dynamics from 
quasi-static transmission impedance effects 

• Impedance is included during integration 
into transmission simulations 
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∆t=Fault duration 

∆V=Fault depth 



Technical Approach—Model Uncertainty 

• Distribution circuit load composition 
is not very well known  

• We account for this in general way 
by including randomness in load 
parameters 

• Example: Uncertainty in motor 
loading 
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Technical Approach—Analysis of Dynamics 
Spatiotemporal Interaction of Load Dynamics 
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Fault applied Fault-on  
Motors decelerate 

Fault cleared  Some recover 
Some stall 



Technical Approach—Analysis of Dynamics 
Final Location of Normal/Stalled Interface—Tnet=0 
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Fault applied Fault-on  
Motors decelerate 

Fault cleared  Some recover 
Some stall 



Technical Approach—Analysis of Dynamics 
Energy Function—Frozen Voltage 

Post-fault voltage determines energy landscape 
Post-fault motor angular speed determines final motor state 
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Technical Approach—Comparison to Related Work 
PSCAD Model of Motors and Distribution Circuit (ASU) 
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Technical Approach—Comparison to Related Work 
PSCAD Model of Motors and Distribution Circuit 

PSCAD model accounts for:  
• Motor electrodynamics 
• Angle dependent torque 
• Resolves AC cycle 
• Fault relative to AC phase 

Dynamics of PSCAD model are 
consistent with our continuum power 
flow/phasor dynamics model 



Technical Approach—Analysis of Dynamics 
Accuracy of the Tnet=0 Condition 
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• Tnet=0 condition provides a 
conservative estimate of  
– Final front location  
– Critical clearing time 

• Condition becomes less 
accurate as Z0 approaches L  
– Finite size effects 



Technical Accomplishments—Critical Clearing Time  
Computed Using the Tnet=0 Condition 
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Fault Depth

Stable

Unstable



Technical Accomplishments—Effects of Model 
Uncertainty—Distribution of Critical Clearing Times 
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• Distribution circuit load 
composition is not very well known  

• We account for this in general way 
by including randomness in load 
parameters 
 



Technical Accomplishments—Low-Dimensional 
Models—Path Forward 

• Normal/Stalled interface 
is the salient low-
dimension feature the 
dynamics. 

• Approximately constant 
motor speed ω on either 
side of the front  

• Front location can be 
predicted based on Tnet=0 
point 

• Algebraic relationships for 
pre/post-fault P and Q 
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• Developed a continuum power flow/phasor 
motor dynamics of distribution dynamics 
– Captures the salient features of FIDVR dynamics—

comparable to PSCAD models 
– Used energy arguments to improve the understanding 

of the spatiotemporal aspects of induction motor 
stalling and FIDVR 

– Computed critical clearing times for one “class” of 
distribution circuit 

– Quantified the effect of load uncertainty on critical 
clearing times 
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Conclusion  



Future Work—FY15 

• Extension to a wider range of circuits, loading and fault 
conditions to understand its accuracy 
– GridLabD distribution circuit taxonomy 
– transmission line impedance 

• Leverage the normal/stalled front for a low-dimensional 
model of the dynamics 

• Investigate higher-order collective effects/interactions: 
– FIDVR  cascading between circuits in a substation  
– FIDVR cascading to adjacent substations   
– Integrate reduced-order models into transmission simulations 

• Validation on real-world event data 
• Extend to smart/active load dynamics 
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