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Increasing Compliance

Contingency Analysis (CA) 

NowNow FutureFuture

Probabilistic CA
Optimal Power Flow

( ~4 sec)

Event Analysis (Manual)

State Measurement
Automated SCADA

State Estimation (SE)
SCADA + AGC

Automated Event Analysis & 
Decision Support for switching 

(~15 sec)

System Protection
(Preset)

Adaptive System Protection
(~1 minute)

PMU adoption

Vision – Faster, Dynamic, On-line Tools
T&G Capacity Expansion 

(Deterministic)
T&G Capacity Expansion 

(Stochastic)

Need for resilience
(System stochasticity)

PMU adoption

Predictive capability

Drivers

Increasingly Diverse 
Stakeholder Interests

Tighter margins

Load as a resource
Renewables
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Aligned with DOE’s Advanced Grid Modeling 
Program Objectives

STRATEGY: Support mathematically‐based power systems 
research to:
 Accelerate Performance – improve grid resilience to fast 

time-scale phenomena that drive cascading network failures 
and blackouts
• Move from Off-line to On-line Dynamic Tools

 Enable Predictive Capability – rely on real-time 
measurements and improved models to represent with more 
fidelity the operational attributes of the electric system, 
enabling better prediction of system behavior and thus 
reducing margins and equipment redundancies 
• Goal to achieve faster than real-time & look ahead 

simulation
 Integrate Modeling Platforms (across the system) – capture 

interactions and interdependencies that will allow 
development of new control techniques and technologies
• Integration of CAPE/PSSE



Motivation and Impact 
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Decision/
Optimization

Perform
System
Change

New
Trajectory

Stable

• Current state of the art software:
– PSS®E by Siemens requires 1 minute of 

computation for a 1 second of real-time 
simulation (Eastern Interconnect more than 
60,000 buses and 8,200 generators.)

– For predictive modeling, simulation computation 
will need to be an order of magnitude faster.

– Currently performed on single CPU core.
• Technology limitations have directed focus for 

computation to multi-processor cores.
– To effectively utilize multi-processor cores, 

parallel computation approaches must be 
available

• Three orders of magnitude faster is needed 
for look ahead simulation



Synchronous Machine
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Dynamic Model

ݐ݀ߜ݀ = ݐܵ݀ܵ݀ݓ = ܪ12 ܵܦ− + ܶ − ܶ݀ܧ′݀ݐ = 1ܶ′ௗ ᇱܧ− + ܺௗ − ܺᇱௗ ௗܫ + ݐௗ݀′ܧௗ݀ܧ = 1ܶ′ ᇱௗܧ− − ܺ − ܺᇱ ܫ
ݐௗ݀ܧ݀ = 1ܶ ௗܧ− − ܺ′ − ܺᇱௗ ܫ

ݐௗ݀ܧ݀ = 1ܶா − ாܭ + ாܣ ݁ ಶா ௗܧ + ோܸ

݀ ଵܸ݀ݐ = 1ܶோ − ଵܸ + ௧ܸ 				if		 ோܶ = 0	then	 ଵܸ = ௧ܸ

݀ ଶܸ݀ݐ = 1ܶி − ଶܸ + ிிܶܭ ௗܧ

݀ ோܸ݀ݐ = 1ܶ − ோܸ + 	ܭ ܸ − ଵܸ − ிܸ

݀ ܶ݀ݐ = 1ܶு − ܶ + ௌܲ݀ ௌܲ݀ݐ = 1ܶௌ − ௌܲ + ܲ − 1ܴ ܵ
݂݅	 ோܸ ≥ ோܸ௫				݄݊݁ݐ				 ோܸ = ோܸ௫		ܽ݊݀		 ሶܸோ = 0݂݅	 ோܸ ≤ ோܸ				݄݊݁ݐ				 ோܸ = ோܸ		ܽ݊݀		 ሶܸோ = 0

Synchronous Machine IEEE 1.1 

1 field winding on q-axis and 1 damper winding 
on d-axis including Transient saliency

Governor Model Turbine Model

IEEE Type 1 Excitation System



Algebraic Equations

݅݅ௗ = 1ܴଶ + ܺௗሖ ܺሖ ܴ ܺௗሖ−ܺሖ ܴ ሖܧ 	− 	 ܸܧௗሖ − ܸ

ܻொ = ܤ ܩܩ ܤ− ; ܸொ = ೂೕವೕ ; ொܫ = ூವூೂ ;

ொܫ = ܻொܸொ

Models Built :      POWER WORLD   
MATLAB with generic RK4 Method
SIMULINK with inbuilt ODE15s solver

Power World uses IEEE 2.1 model for Synchronous Machines
i.e. 1 field winding, 1 damper on d-axis and 1 damper on q-axis



Power System Model Validation 



3 Gen 9 Bus System Rotor Angle Responses of 
GEN-2 & GEN-3 w.r.t GEN-1 

Disturbance:  3ph Fault at bus 5, Fault Duration 0.1s (6 cycles) 

Dynamics of MATLAB and PowerWorld are closely matching
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3 Gen 9 Bus System Terminal Voltage Responses

Disturbance:  3ph Fault at bus 5, Fault Duration 0.1s (6 cycles) 



Parareal Time Parallel Algorithm 



Parareal Algorithm 

Coarse 
Evaluation

Initial Seed
Parallel

(n_coarse-k+1) Sequential
(n_coarse-k+1)

Coarse 
Corrections

k iterations

Fine 
Evaluations

Parallel
(n_coarse-k+1)

Coarse 
Evaluations



Parareal Implementation 
on 1&2-Dimentional  Systems



One Dimensional  
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Two Dimensional System

Vander Pol Equations

Coarse = 30; Fine = 100
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Coarse Approximation
True Solution
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Parareal Implementation
on

Power System Classical Model 



3 Generator - 9 Bus System
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Coarse
Actual Response
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After 6 iterations

Coarse: Classical Model with RK4  
60 intervals   0.1818s 

Fine:  Classical Model with RK4
100 intervals 0.0018s

Classical Model Rotor Angle Responses – 3 Gen 9 Bus



No of Coarse Intervals,  n_coarse = 60,   0.1667s

No of Fine Intervals,  n_fine = 100,   0.00167s 

3 Gen 9 Bus    Both Classical  Models                    Coarse   RK4  ‐ Fine Rk4        

Speed Up  5.27 with the assumption of ideal Parallelization

Coarse Initial iteration k
Fine 

Evaluation if Parallel Coarse Prediction if Parallel
Sequential Coarse 

Correction
1 1.339289849 0.0223215 0.014592738 0.00024321 0.014691148
2 1.316211219 0.02230866 0.014766918 0.00025029 0.014704129
3 1.301405662 0.02243803 0.013325787 0.00022975 0.013452572
4 1.272228637 0.0223198 0.013105421 0.00022992 0.01336835
5 1.248776895 0.02229959 0.012894413 0.00023026 0.012949052
6 1.224902533 0.02227096 0.012659558 0.00023017 0.013086705

0.033039 Total 0.13395853 Total 0.0014136 Total 0.082251957

Total Time 
Parareal 0.2506631

Time for Fine Only 
with Fine Step 1.323156

Speeed Up 5.27862308



10 Generator - 39 Bus System



Speed Up – Classical Model 

Coarse – Fine System Achieved Theoretical

RK4 - RK4 3 Gen-9 Bus 5.27 60/6=10

RK4 – RK4 10 Gen – 39 Bus 4.71 60/5=12



Parareal Implementation
Power System Detailed Models 

Integration Methods:    Trapezoidal with Midpoint rule predictor

RK4 Method 



Speedup – Summary 

Coarse – Fine System Achieved Theoretical

Trap – Trap 3 Gen – 9 Bus 4.7 400/8= 50

Trap – RK4 3 Gen – 9 Bus 6.26 400/8=50

Trap – Trap 10 Gen – 39 Bus 5.27 400/7=57

Trap – RK4 10 Gen – 39 Bus 7.06 400/7=57

Trap – Trap 327 Gen – 2383 Bus 4.23 400/9=44

Trap – RK4 327 Gen – 2383 Bus 9.11 400/9=44



Future Work

• Hierarchical windowing approach
• Detailed IEEE 2.2 SM model
• C implementation + SUNDIALS solvers
• Initial HPC implementation to test scalability
• Benchmarking parareal on EI
• Combine system decomposition with parareal

in collaboration with ANL
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