

Electricity Delivery & Energy Reliability Advanced Grid Modeling 2014 Peer Review

Power System Parallel Dynamic Simulation Framework for Real-Time Wide-Area Protection and Control

Gurunath GurralaSreekanth PannalaMichael StarkeSrdjan SimunovicAleksandar Dimitrovski

Vision – Faster, Dynamic, On-line Tools

Aligned with DOE's Advanced Grid Modeling Program Objectives

STRATEGY: Support mathematically-based power systems research to:

 Accelerate Performance – improve grid resilience to fast time-scale phenomena that drive cascading network failures and blackouts

- Enable Predictive Capability rely on real-time measurements and improved models to represent with more fidelity the operational attributes of the electric system, enabling better prediction of system behavior and thus reducing margins and equipment redundancies
 - Goal to achieve faster than real-time & look ahead simulation
- ✓ Integrate Modeling Platforms (across the system) capture interactions and interdependencies that will allow development of new control techniques and technologies
 - Integration of CAPE/PSSE

Motivation and Impact

- Current state of the art software:
 - PSS[®]E by Siemens requires 1 minute of computation for a 1 second of real-time simulation (Eastern Interconnect → more than 60,000 buses and 8,200 generators.)
 - For predictive modeling, simulation computation will need to be an order of magnitude faster.
 - Currently performed on single CPU core.
- Technology limitations have directed focus for computation to multi-processor cores.
 - To effectively utilize multi-processor cores, parallel computation approaches must be available
- Three orders of magnitude faster is needed for look ahead simulation

Synchronous Machine

Dynamic Model

Synchronous Machine IEEE 1.1

1 field winding on q-axis and 1 damper winding on d-axis including Transient saliency

$$\frac{d\delta}{dt} = w_B S_m$$
$$\frac{dS_m}{dt} = \frac{1}{2H} \left[-DS_m + T_m - T_e \right]$$
$$\frac{dE'_q}{dt} = \frac{1}{T'_{do}} \left[-E'_q + (X_d - X'_d)I_d + E_{fd} \right]$$

$$\frac{dE'_{d}}{dt} = \frac{1}{T'_{qo}} \left[-E'_{d} - (X_{q} - X'_{q})I_{q} \right]$$

$$\frac{dE_{dc}}{dt} = \frac{1}{T_c} \left[-E_{dc} - \left(X'_q - X'_d \right) I_q \right]$$

Governor Model

$$\frac{dP_{SV}}{dt} = \frac{1}{T_{SV}} \left[-P_{SV} + P_C - \frac{1}{R_D} S_m \right]$$

IEEE Type 1 Excitation System

$$g \quad \frac{dE_{fd}}{dt} = \frac{1}{T_E} \left[-\left(K_E + A_E\left(e^{(B_E E_{fd})}\right)\right) E_{fd} + V_R \right]$$

$$\frac{dV_2}{dt} = \frac{1}{T_F} \left[-V_2 + \frac{K_F}{T_F} E_{fd} \right]$$

$$\frac{dV_1}{dt} = \frac{1}{T_R} \left[-V_1 + V_1 \right]$$
if $T_R = 0$ then $V_1 = V_t$

$$\frac{dV_R}{dt} = \frac{1}{T_A} \left[-V_R + K_A \left(V_{ref} - V_1 - V_F\right) \right]$$
if $V_R \leq V_{Rmin}$ then $V_R = V_{Rmin}$ and $\dot{V}_R = 0$
if $V_R \geq V_{Rmax}$ then $V_R = V_{Rmax}$ and $\dot{V}_R = 0$

Turbine Model

$$\frac{dT_m}{dt} = \frac{1}{T_{CH}} \left[-T_m + P_{SV} \right]$$

Algebraic Equations

$$\begin{bmatrix} i_q \\ i_d \end{bmatrix} = \frac{1}{\begin{pmatrix} R_a^2 + \dot{X_d} \dot{X_q} \end{pmatrix}} \begin{bmatrix} R_a & \dot{X_d} \\ -\dot{X_q} & R_a \end{bmatrix} \begin{bmatrix} \dot{E_q} - V_q \\ \dot{E_d} - V_q \end{bmatrix}$$

$$I^{DQ} = Y^{DQ} V^{DQ}$$

$$Y_{ij}^{DQ} = \begin{bmatrix} B_{ij} & G_{ij} \\ G_{ij} & -B_{ij} \end{bmatrix}; V_j^{DQ} = \begin{bmatrix} V_{Qj} \\ V_{Dj} \end{bmatrix}; I_i^{DQ} = \begin{bmatrix} I_{Di} \\ I_{Qi} \end{bmatrix};$$

Models Built : POWER WORLD MATLAB with generic RK4 Method SIMULINK with inbuilt ODE15s solver

Power World uses IEEE 2.1 model for Synchronous Machines i.e. 1 field winding, 1 damper on d-axis and 1 damper on q-axis

Power System Model Validation

3 Gen 9 Bus System

Rotor Angle Responses of GEN-2 & GEN-3 w.r.t GEN-1

Disturbance: 3ph Fault at bus 5, Fault Duration 0.1s (6 cycles)

Dynamics of MATLAB and PowerWorld are closely matching

Terminal Voltage Responses

Disturbance: 3ph Fault at bus 5, Fault Duration 0.1s (6 cycles)

Parareal Time Parallel Algorithm

Parareal Algorithm

Parareal Implementation on 1&2-Dimentional Systems

One Dimensional

$$\frac{\partial y}{dt} = \sin(t) y(t) + t$$
$$y(0) = 1 , t \in [0, 14]$$

Error and Convergence

Two Dimensional System

Vander Pol Equations

 $\begin{array}{l} y_1' = y_2 \\ y_2' = \mu \left(1 - y_1^2 \right) y_2 - y_1. \end{array}$

Coarse = 30; Fine = 100

Error and Convergence

Parareal Implementation on Power System Classical Model

3 Generator - 9 Bus System

Classical Model Rotor Angle Responses – 3 Gen 9 Bus

No of Fine Intervals, n_fine = 100, 0.00167s

No of Coarse Intervals, n_coarse = 60, 0.1667s

		Fine					Sequential Coarse
Coarse Initial	iteration k	Evaluation	if Parallel	Coarse Prediction	if Parallel		Correction
	1	1.339289849	0.0223215	0.014592738	0.00024321		0.014691148
	2	1.316211219	0.02230866	0.014766918	0.00025029		0.014704129
	3	1.301405662	0.02243803	0.013325787	0.00022975		0.013452572
	4	1.272228637	0.0223198	0.013105421	0.00022992		0.01336835
	5	1.248776895	0.02229959	0.012894413	0.00023026		0.012949052
	6	1.224902533	0.02227096	0.012659558	0.00023017		0.013086705
0.033039		Total	0.13395853	Total	0.0014136	Total	0.082251957
Total Time							
Parareal	0.2506631						
Time for Fine Only							
with Fine Step	1.323156						
Speeed Up	5.27862308						

Speed Up 5.27 with the assumption of ideal Parallelization

10 Generator - 39 Bus System

Speed Up – Classical Model

Coarse – Fine	System	Achieved	Theoretical
RK4 - RK4	3 Gen-9 Bus	5.27	60/6=10
RK4 – RK4	10 Gen – 39 Bus	4.71	60/5=12

Parareal Implementation Power System Detailed Models

Integration Methods: Trapezoidal with Midpoint rule predictor

RK4 Method

Speedup – Summary

Coarse – Fine	System	Achieved	Theoretical	
Trap – Trap	3 Gen – 9 Bus	4.7	400/8= 50	
Trap – RK4	3 Gen – 9 Bus	6.26	400/8=50	
Trap – Trap	10 Gen – 39 Bus	5.27	400/7=57	
Trap – RK4	10 Gen – 39 Bus	7.06	400/7=57	
Trap – Trap	327 Gen – 2383 Bus	4.23	400/9=44	
Trap – RK4	327 Gen – 2383 Bus	9.11	400/9=44	

Future Work

- Hierarchical windowing approach
- Detailed IEEE 2.2 SM model
- C implementation + SUNDIALS solvers
- Initial HPC implementation to test scalability
- Benchmarking parareal on El
- Combine system decomposition with parareal in collaboration with ANL

Acknowledgements

The authors would like to acknowledge the support of the Oak Ridge National Laboratory and the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability under the **Advanced Modeling Grid Research Program**.

