

Research, Development, and Field Testing of Thermochemical Recuperation for High Temperature Furnace

DE-FG36-08GO18130
American Iron and Steel Institute/Gas Technology Institute
09/30/2008 - 12/31/2013

Joseph Vehec, American Iron and Steel Institute

U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014

- Substantiate technical feasibility of Thermochemical Recuperation (TCR) concept and economic viability including identification of technical scale up and manufacturability concerns
 - Increase furnace thermal efficiency to 61%
 - Reduce Natural Gas usage ~ 21%
 - Reduce Carbon footprint ~ 21%
 - Reduce NO_x > 21% (due to flue gas recirculation)

- Current Industry Practice: Recouping of sensible heat from waste gas to combustion air
- TCR Approach: Recouping both sensible heat from waste gas and endothermically converts fuel to higher calorific value
 - Current optimum TCR System is equivalent to preheating combustion air to 1700°F
- Innovation: TCR System consists of a non-catalytic reformer and air pre-heater in one integrated system

Technical Approach

- Project team included a leading R&D organization; three major steel companies; a major burner manufacturer; and a major recuperator manufacturer
 - Gas Technology Institute [GTI]
 - ArcelorMittal USA
 - Republic Steel
 - United States Steel Corporation
 - Bloom Engineering
 - Thermal Transfer Corporation
 - Steel Manufacturers Association
 - Union Gas Limited

- Domestic Steel Industry competition drives reductions in costs and new regulatory requirements drives Greenhouse Gas reductions
- Initial end users Steel Reheat Furnaces
- Future end users
 - Electric Arc Furnaces; indirect heating systems; hybrid heat recovery-and-hydrogen production
- Commercialization Approach:
 - A revised Commercialization and Market Acceptance Plan (CMP) provides details regarding natural gas price sensitivity to return on investment (ROI) success; market population, etc.

- Based on an EIA projected natural gas price of \$5.91 per MMbtu, the table below represents a typical range of economic paybacks for three Reference Reheat Furnace (RRF) cases
 - Note that for Case III to have a satisfactory payback the natural gas price will need to exceed \$6.03 per MMBtu
- Reference Reheat Furnace (RRF)

Description	Case I	Case II	Case III
	Retrofitting an Air	Retrofitting a Three-unit	Retrofitting a three-unit
	Recuperator on RRF	TCR System on RRF	TCR System on RRF
	without recuperation	without recuperation	with existing recuperation
CAPEX	\$4.3 million	\$18.3 million	\$14 million
Fuel Savings	\$6.0 million	\$9.4 million	\$3.3 million
Simple ROI	8.6 months	23.4 months	50.2 months
NPV *	\$19.1 million per year	\$18.8 million per year	(\$0.25) million per year

^{*}NPV at a 7% discount rate over six years of cash flow

- Phase I Feasibility Study (October 2009)
 - Economic evaluation for reheat furnaces
 - Established design parameters
- Phase II R&D (March 2012)
 - Transition concept to a prototype for field testing
- Extended Testing (July 2013)
- Phase III Prototype Field trial (terminated December 2013)
 - Design, fabrication and field testing of prototype at a steel company site

Total Project Budget				
	Phase 2.5	Phase 3	Total	
DOE Investment	1,910,649	2,675,573	4,586,222	
Cost Share	818,849	1,146,675	1,965,524	
Project Total	2,729,498	3,822,248	6,551,746	

Results and Accomplishments

- Project work ended with Phase II Extended Testing (Task 2.5)
- A 21% fuel reduction was validated for the reference reheat furnace (RRF) specification provided by a steel company partner
- A CAPEX was developed for both a non recuperated RRF and a recuperated RRF
- The CMP contains a sensitivity analysis of ROIs based on the above with respect to a range of natural gas prices

