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•	 Target : 10% fuel economy improvement without increasing 
emissions 

•	 Partnering: 
– GM – materials research, subsystem design, integration, modeling, and 

validation 
–	 GE – TE module, subsystem design and manufacturing 
– Oak Ridge National Lab – high temperature material property 

measurement and validation 
–	 RTI – superlattice-based thin film materials and modules 
– University of Michigan – bulk materials : filled skutterudites, nano

composites,… 
– University of South Florida – bulk materials: clathrates, nano-grain 

PbTe, … 
–	 Michigan State University – bulk PbTe-based materials … 



DOE Program High-Level ProcessDOE Program High-Level Process

Science: 
GM, RTI, UM, MSU 
& USF 

Engineering: 
GE, GM, & RTI 

Target: 
Cost-effective 10% 
FE Improvement 

Material Data 
Validation: 
ORNL 
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• Today’s ICE-based vehicles: < 20% of fuel energy is used for 
propulsion 

• > 60% of gasoline energy (waste heat) is not utilized 

Energy Distribution - Typical Mid-Size Vehicle 
on the Federal Test Procedure (FTP) Schedule 
Urban (Highway) % energy use 

Energy Distribution - Typical Mid-Size Vehicle 
on the Federal Test Procedure (FTP) Schedule 
Urban (Highway) % energy use
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Exhaust Flow and Temperatures for a 4 
Cylinder Engine 
Exhaust Flow and Temperatures for a 4 
Cylinder Engine
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• Engine coolant is also a possible heat source, but smaller ΔT 

Thermoelectric Energy Recovery Augmented 
Electrical System 
Thermoelectric Energy Recovery Augmented 
Electrical System



Nano-derived materials give additional control
Nano-derived materials give additional control
� Enhanced density of states due to quantum confinement effects 

⇒Increase S (sharp edge of electron D.O.S. near Fermi surface EF) 
⇒without reducing σ ( very high electron D.O.S. near Fermi surface EF) 

� Boundary scattering at interfaces reduces κL more than σ 
� Possibility of materials engineering to further improve ZT 
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Thermoelectric Waste Heat Recovery
Thermoelectric Waste Heat Recovery
Efficiency: 

T − T 1 + ZT − 1ε = H C 

TT H 1 + ZT + C 

HT 

Year 
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• Many recent material advances are nano-based




$ / W – a Program Metric$ / W – a Program Metric
� $/W (not only ZT) is used for balancing various material, module, and subsystem options 

� $/W can be readily converted to $/Δmpg, and $/Δmpg < Savings/Δmpg is necessary 
to provide consumer value 
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Consumer Fuel Savings/Δmpg ≈ $300-400/Δmpg (15000 mile/yr., 3yrs., 18-20 mpg) 



� plenty of space for accommodating TE subsystem 
� a lot of waste heat: exhaust and radiator 
� current muffler: 610 x 310 x235 (mm) 
� available envelope: 840 x 360 x 255 (mm) 

Vehicle Selection – Full Size TruckVehicle Selection – Full Size Truck

Typical Exhaust Heat -Ci ty Driving Cycle 
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Fuel Economy Analysis - OFuel Economy Analysis - verdriveOverdrive
Throttle PositionThrottle Position Cycle Vehicle SpeedCycle Vehicle Speed 19.6
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10% fuel economy improvement for a full size truck would require (for a hybrid full size truck): 
� 1.65 kW – city 
� 2.5 kW – Highway 

350 W is the minimum requirement 
�	 equal to the base electrical load of today's generator on FTP, and would improve its composite 

Urban/Highway fuel economy by ~ 3% 



Subsystem Model SchematicSubsystem Model Schematic



Subsystem ModelingSubsystem Modeling

Exhaust: 
TH, TC, flow & fluid 
properties 

Radiator: 
TH, TC, flow & fluid 
properties 

Elec. Load: 
Effective R, Vreq, 

GM’s Inputs GE’s System Model 

Device config. 
• Structure / design 
Heat transfer 
• Hot & cold exchangers 
• Interfaces  
Power conditioning 
• DC/DCc onverter  

Requirements: 
Cost, Power, Life 

GM’s MPG 
model
Output 

cost 

Δmass, ΔP, 
power 

% FESavings 

GM’s FETo ols 

Materials Dev. 
• α(T),ρ(T),λ(T) 
•Cost & mass 
•Geom. req.  



Subsystem Modeling – 2 D Thermoelectric 
Network Model 
Subsystem Modeling – 2 D Thermoelectric 
Network Model 
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2007 Year End Module and Subsystem Goals
2007 Year End Module and Subsystem Goals

• Thermoelectric Module Design 
– TE material manufacturing 
– Thermomechanically robust materials & module design


– Initial module characterization 

• Subsystem Design and Optimization 
– Heat exchanger optimization 
– Thermal and mechanical integration strategy 
– Exhaust flow testing facility complete 



TE Module Conceptual DesignTE Module Conceptual Design

Identifying and modeling 
candidate module designs for 
cost, thermoelectric 
performance and thermo
mechanical durability 
• Minimize thermal stresses 

pn 

• High operating temperature 
• Good ohmic contact & high 
thermal conductivity (diffusion 
barriers, solders/brazes, electrodes) 

pn 

• Minimize shunt path 
• No thermo-chemical degradation 
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Module Design OptimizationModule Design Optimization

Initial Design Study: 

• Identify primary module 
design variables 

• Examine effect on primary 
output variables 
1. Power output 
2. Cost 
3. Thermo-mechanical 

durability 



Design Space OptimizationDesign Space Optimization
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Overlay of TE System Efficiency andOverlay of TE System Efficiency and 
Expected Exhaust ConditionsExpected Exhaust Conditions

0.12	 Wout

A Candidate TE Material 18


0.1	 234.8 
451.6 

0.08	 668.4 
885.2 

0.06	 1102


1319


1536
0.04

1752


1969

0.02 

2186


0

350 400 450 500 550 600 650


Exhaust Flow Input Temperature [C] 

E
xh

au
st

 M
as

s 
F l

ow
 [

kg
/s

] 



Phase I SummaryPhase I Summary

� quantified electric power requirements for 10% FE improvement 

� established $/W as a program metric – automotive and consumer focus; and determined cost 
target for both exhaust and radiator TE waste heat recovery (materials, modules, subsystems) 

� completed the initial exhaust and radiator subsystems design, performance analysis, and cost 
modeling 

� assessed manufacturability of bulk and thin-film modules and subsystems 

� validated many known materials’ performance, and enhanced the design of thin-film modules 

� explored routes toward higher ZT and low material cost 

� exhaust recovery can meet the 350 W requirement with existing materials with high starting 
purities but at high cost 

� radiator recovery alone will not meet the 350 W requirement and is cost prohibitive 



Dual-frequency Resonant Phonon Scattering 
in Skutterudites 
Dual-frequency Resonant Phonon Scattering 
in Skutterudites
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Thermoelectric Enhancement in NanocompositesThermoelectric Enhancement in Nanocomposites

PbTe 
(room temperature) 

J. Martin, G.S. Nolas, W. Zang & 
L. Chen, APL 90, 222112 (2007) 

• Non-conglomerated nanocrystals within the bulk matrix 
• Power Factor enhancement of 30% at room temperature 
• Three weeks at 600 K with preservation of nanostructure 



Filled Skutterudite NanocompositesFilled Skutterudite Nanocomposites
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HTML at Oak Ridge Natioanl LabHTML at Oak Ridge Natioanl Lab
ORNL efforts will focus on the following areas: 

– High temperature transport properties testing 
– Utilizing ORNL capabilities to continue the search for 

high ZT materials 
– Start mechanical properties testing on selected 


materials


– Continue to develop and expand measurement 

capabilities for TE materials




Environmental Impact of R134a Containing 
Automobile AC: Global Warming 
Environmental Impact of R134a Containing 
Automobile AC: Global Warming
� Direct and Indirect Global Warming Impact of R-134a 

Direct leakage R-134a: 
345 gm/yr * 1,400 = 483 kg/yr 

Indirect increase in emissions due to AC R-134a: 
23.5 gallons/yr * 8.9 kg CO2/gal = 209 kg/yr 

� Total Global Warming Impact of R-134a, and Entire 
Gas-Powered Vehicle 

R-134a: 483 + 209 = 692 kg/yr 

Entire Vehicle: avg. 696 gal/yr * 8.9 kgCO2/gal = 6194 kg/yr 

* M. S. Bhatti, “A critical look at R-744 and R-134a mobile air-conditioning systems”, SAE SAE-970527 



SummarySummary

�	 Automotive TE waste heat recovery is promising for FE 
improvement 

�	 $/W or $/Δmpg needs to used to assess its commercial 
feasibility 

�	 Major challenges in materials and engineering 

�	 Automotive TE cooling needs to be evaluated 
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