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| ntroduction

DOE’s 21% Century Truck - Transportation
* Supports economic growt

* Iskey to the country’s energy Ssecurity

* Enables an agile military

Examples of Nanotechnology | nfusion

* BMW - Nano-oxide in clear coat laguer for paint protection

* GM —running boards for Safari and Astro vans from plastics
reinforced with nanoclays.

* Hyperion - Electrostatic paint spraying using CNTs as additives

* Gold as catalyst, effectiveness, cost for oxidation of unburnt
hydrocarbons and CO inside PEM fuel supplies & catalytic
converters
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Thermal Management

Motivation
* EGR i1s the most popular near term solution for reducing NOX,

but this could add 20-50% to coolant heat rejection systems.

* Conventional cooling-system components such as radiators, oil
coolers, and air-conditioner condensers are already at or near
practical maximum size.

* Reduce the size of present cooling system (heat exchanger, fluid
reservoir and pump) to obtain a better aerodynamic profile and
Increase engine efficiency

* Coolants and lubricants are inherently poor heat transfer fluids

Advanced heat-transfer fluids: Nanofluid technologies




Thermal Management

Limitations

* Measurement — Hot wire susceptible to convection, requires non-

conducting solutions

* Materials — Nano-additives may cause abrasion and wear

* Particles — No images have been presented of individual
nanoparticles. Instead aggregates and agglomerates

* Models- Several

Effective medium theory (EMT) models include the Maxwell-Garnett and Bruggeman,
Hamilton-Crosser and Jeffrey and Davis models.




Thermal Management - Postulated Mechanisms
1. Brownian motion — Characteristic time to slow relative to fluid
thermal diffusion
2. Interfacial ordering! — Liquid ordering at interface — small range
3. Ballistic transport? — Applicable for additives of extended length

4. Nanoparticle clustering — Network formation, i.e. Percolation

1 Depends on thermal resistance at the interface (Kapitza conductance)
Governed by phonon-phonon coupling.

2 Depends upon additive thermal conductivity, defects, etc.

NanoMaterial | Thermal Cond. |% Increase H,O
MWNT 0.58 4.6
MWNT-Funct. |0.65 16

R250-G 0.60 8.0 J

R250 0.61 5.6 ]
R250-G-Funct. |0.66 19 ]
R250-Funct. 0.65 17




Friction and Wear

Needs
* Many critical components are lubricated by oil.

* Friction, wear and lubrication are important in virtually every
approach for reducing energy consumption and wear.

|mproved lubricants, coatings and lubricant formulations will
be important to addressing engine exhaust soot, sulfur and
phosphorus and their impact on advanced aftertreatment

technologies.

BN Shells MWNTs —  SWNTs  Nano-Onions
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Tribometry Instrumentation

Spiral Orbit Tribometer Pin on Disc Tribometer (POD)
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S.V. Pepper and E. Kingsbury, “Spiral Orbit Tribometry - Part 1:
Description of the Tribometer®” Trib. Trans. 46 (2003) 5764.




Coefficient of Friction for SWNTs
In Contact With Sapphire in Air
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Endurance Life for SWNTs
in Contact With Sapphire in Air
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Energy Storage

Motivation

Electrical storage systems are needed to capture energy from the
generator, braking events (and other sources)

and to return as needed.

* Auxiliary power units such as fans, HVAC, etc.

* To provide the “buffer” for low-speed torgue in start-and-stop
conditions.

* Hybrid Electric Propulsion Technologies

* Approaches:
Flywhedls, batteries, ultracapacitors



Energy density (Wh/kg)

Tradeoffs Between Batteries, Capacitors and Fuel Cells
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Energy Storage - Projections

Batteries
Nanomaterials for higher intercalation/alloying capacity,
e.g. Anode materials including Sn, and Si.

Material Carbon Tin Silicon
Liion 372 790 4200
Capacity LiC6 Li2C Li4.4C
(mA-hr/g)

Ultracapacitors — Energy storage increased with surface area.
* High surface area of nanocarbons
* Combined Faradaic and pseudo-faradaic process Goal being 1kW/kg

Flywheels — Advanced carbon fiber composites
Power electronics necessary to operate the variable frequency input and output.
Future
|mprovements in life cycle economics, power, storage capacity and
energy efficiency are needed.




Materials
Motivation
* Reduction in weight can enables an increase in efficiency while
reducing emissions
Objectives
* Higher temperature, greater precision, and lighter weight

Property CNT Additive % Property Gain
Tensile Strength 1-5% PMMA/PS 50% Gain
Young’s Modulus 100% Gain
EM Shielding ~ 1% Polycarbonate, ~20dB
X-Band 1-10 GHz PS, PMMA
Electrical 0.1wt.% 0.1-1
Conductivity 1 wt. % 1-10
S/m 10 wt. % 10-100
Thermal Conductivity | Epoxy 100%
W/m-K 1% (10s W/m-K feasible)

|ssues. Costs, manufacturing and tooling (integration)




Polymeric Composites
Visual Results of Post Tensile Test Samples

Plain Foil

o Foil + CNT Interface
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Emissions Control Technologies

Sensors for

* Advanced Combustion Concs
(EGR, low-temperature, etc.)

* Exhaust Aftertreatment
2007-2010 EPA regulations

NOx @1.2 g/bhp-h

PM at 0.01 g/bhp-hr.

Time response critical

Presently no PM sensor and NOx
Inadequate

* Fuel Cells and Reformers

Sensors - Topics

1. Properties

2. Synthesis and characterization,
Sn02, Zn0O, In203 WO3 etc.

3. Integration

4. Performance

Carbon Monoxide

pts

1. Stored H2

0.1-5ppm

Operational Temperature <150 C
Response Time 0.1 —1 seconds
DryH2,1-1700 atm.

2. Reformate from stationary fuel processors

100-1000 ppm

Operational temperature 250 C

Responsetime 0.1 —1 seconds

Gas environment, high-humidity reformer/partial oxidation
gas

H20 at 1-3 atm.

H2in fuel
processor

M easurement range: 25— 100 %
Operating temperature: 70—150 C
Response time

H2in ambient air

Measurement range: 0—-2.5 %
Temperaturerange: -30C—-80 C

Responsetime: <1 second

Gas environment: ambient air 10 —98% humidity
Lifetime: 10 years

Sulfur compounds
(H2S, sO2,
organic sulfur

M easurement range: 0.001 — 0.5 ppm
Operating temperatures: - 40C — 300 C
Responsetime: < 1 min. at 0.05 ppm

Fuel processor
flow rate

M easurement range: 30 — 7500 SL PM

Temperaturerange: 0—-100 C

Gas environment: hihgh-humidity, reformer/partial oxidation
gas (H2, CO2, N2, H20)

Ammonia

M easurement range: 0—0.15 ppm

Operating temperature: 70—150 C

Selectivity: < 0.1 ppm from gas mixtures

Lifetime: 10 years

Responsetime: <1 min. at 0.1 ppm

Gasenvironment: high humidity reformer/partial oxidation
gas, (H2, CO2, N2 and H2)

Temperature

M easurement range: -40 C —150 C

Responsetime: <1 second

Lifetime: 100 years

Gas environment: highOhimidity air or H2 at 1-3 atm.
Insensitive to flow velocity




Metal Oxide Semiconductor (MOS) Sensors

* Traditional MOS sensors use films or pellets of metal oxides.
Problems include;
- Little exposed surface area
- Varying porosity
- Sintering
- Grain size

* Nanocrystalline Materials
+ Tremendous increase in surface area (relative to bulk)
+ Potentially more reactive material
+ Controlled crystallinity

* Mechanism 1/20xg + €, <> O,
CO+ O(_ad) — COxg) + €,
H 2, CxHy



Single Crystal
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Electrospun Nanofibers -
Transmission Electron
Microscopy Images



Conclusions
* Nanotechnology Is the implementation of nanomaterials

* Increased recognition of
Interfacial processes and properties !

* matters!

* Size matters!



CNT Properties

Property SWNTSs MWNTSs Comparison
Mechanical 100 63 1
Tensile (GPa) (Steel)
Modulus (TPa) ~1 ~ 1.2 ~0.2
Thermal 6000 2000 380 (Cu)
W/m-K 3200 (Diamond)
Electrical ~ 107 ~ 107 106
Alcm? (Cu)
Ohm-cm ~10° ~10° 4x106

Cost $500 / gram $100/gram $10/gram (Au)

* No synthesis process gives best of all three!
* Not all applications require these properties!
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