Innovation for Our Energy Future

Fuels for Advanced Combustion Engines (FACE)

Josh Taylor, Scott Sluder, and Ken Wright (And the entire FACE working group)

Diesel Engine Efficiency and Emissions Research (DEER) Conference

August 15, 2007

Members of the FACE WG

 Working group formed when DOE labs approached the CRC AVFL committee to collaborate on this project of mutual interest

Auto/Diesel Manufacturers

- General Motors
- Ford
- Cummins
- International Truck & Engine
- DDC

Government Agencies/National Labs

- U.S. Department of Energy
- National Renewable Energy Lab
- Oak Ridge National Lab
- Sandia National Lab
- Pacific Northwest Lab
- Lawrence Livermore National Lab

Energy Companies

- ConocoPhillips
- ExxonMobil
- Marathon Petroleum
- BP
- Chevron Energy Technology Co.

Other Organizations

- Battelle Memorial Institute
- West Virginia University
- NCUT
- Bill Leppard

FACE Objectives

- Many competing engine technologies
 - Combustion
 - LTDC, PCCI, HCCI, MK, UNIBUS, etc.
 - Injection strategies
 - Early, late, split
 - Ignition control
 - Intake temperature, EGR, spark assist, variable compression ratio, etc.
- Difficult to cross-compare fuel effects

- Objective: Prepare a statistically designed set of research fuels that allow investigators to quantify fuel effects
 - Each technology may operate best with different fuels
 - We will not optimize "a fuel" for advanced combustion

Approach

- Gasoline and diesel sub-teams were formed
- Identify relevant physical properties for fuels
 - Downselect to focus on 3-4 most important
- Set ranges for relevant properties
- Define constraints for blending fuels
 - Fuels blended primarily from refinery streams
 - Additives should not be used and pure compound use should be minimal
- Contract a blender to prepare the fuels and make them available to research community
- Conduct extensive characterization of the fuels and make the results available publicly

Gasoline FACE Fuels Matrix

- Properties defined:
 - RON (70-95)
 - Sensitivity (0-12)
 - n-Paraffins (5-25%)
 - Aromatics (0-50%)
- Constraints:
 - RVP = 7 psi
 - < 10% pure compounds</p>
 - < 10% olefins</p>

- Approach:
 - Hand blends of ~30 fuels will be prepared in small batches
 - Ability to match target properties and initial testing will help select final 10 fuel recommendation
- Status:
 - RFP issued and no responses were received
 - Possibly Chevron-Phillips may be interested in blending fuels

Diesel FACE Fuels Matrix

- Property Targets
 - Cetane Number (30-55)
 - Aromatics (20-45%)
 - $-T_{90}$ (270-340°C, or 518-644°F)
- Constraints
 - ULSD (< 15 ppm S)</p>
 - < 4% olefins
 - Smooth distillation curve
- Center of cube shifted to mimic an average market fuel
 - CN = 43
 - Aromatics = 32%
 - $-T_{90} = 320^{\circ}C$

Status of Diesel Fuel Blending

- Chevron-Phillips Chemical was selected as the blender for the diesel matrix of fuels
- 5 fuels have been blended and are available for purchase
- Decisions have been made to reach some of the challenging targets in remaining fuels
 - Remaining fuels are currently being blended and will be available soon

- Blue points in the cube are fuels blended as of 6/20/2007 and received for CN tests.
- Red points are fuels not yet blended.

Characterization of Fuels

- Octane Number (RON & MON for gasoline range)
- Cetane Number and IQT Derived Cetane Number (for distillates)
- API Gravity
- RVP
- Sulfur
- Distillation (D86 IBP, T5, T10,...T90, T95, EP)
- Oxygen
- H/C ratio
- Benzene
- Heat of Combustion (gross & net)
- Other D4814 properties for gasoline
- Other D975 properties for distillates
- PIANO (n-paraffins, iso-paraffins, aromatics, naphthenes, olefins) (by FIA)
- Detailed Hydrocarbon Analyses (Possible techniques):
 - GC and GC/MS
 - 2 Dimensional GC and 2D GC/MS
 - GC-FIMS
 - NMR

FACE Timeline

			2005		2006				2007			
	Task	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
	CRC concurrence to form working group											
	Invitations and formation of working group	-	\									
FACE WG	Literature review and ongoing work review			†								
	Formation of strawman teams and initial proposals for fuel properties and ranges			+	→							
	Concurrence of strawman teams initial matrices				+	-						
	RFP to award contract to blender of fuels								1			
	Preliminary blends, analysis, and standard ignition tests complete									+	—	
	Working group team and statisticians analyze results of preliminary blends									1	~	
DOE	Large batches of fuels prepared by blender										•	
	Distribution of fuels to engine research teams									-		
	Research teams generate engine data											
	Working group team and statisticians analyze results of engine testing with fuel matrices										—	

Future Direction of FACE

- Recasting mission statement
 - Allow working group to oversee project work
 - Fuel effects testing in advanced combustion engines
- Focus groups formed
 - Alternative fuels
 - Ethanol in gasoline blends
 - Biodiesel, oil sands diesel, and XTL/renewable diesel
 - Chemical kinetics
 - Fuels to span range of commercially available gasoline/diesel
 - Fuel safety issues
- Disseminate results of fuel characterization and testing

