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@ Are the growing interests in alternative diesel fuels

and advanced combustion techniques compatible?
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@ Are advanced combustion techniques sensitive to
fuel composition?

...It is almost certain that future, advanced combustion
engine technologies will show a greater [ performance and

emissions] sensitivity to [fuel-property] variations...
(section 4.7.1 of the FreedomCAR Multi-Year Program Plan)

e Lack of direct control of combustion timing
— No spark initiation in most cases

— Limited control with fuel injection timing (combustion strategy
dependent)

— Combustion is kinetically initiated

e Traditional fuel ignition properties may not be sufficient
indicators of advanced combustion performance
— Influence of “physical” vs. “chemical” cetane number
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Low temperature heat release

With increasing temperature at constant pressure
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e What is formed
during LTHR?

e Alternative fuel \O
differences?
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Experimental platform and fuel matrix
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® Fuels progressed from only LTHR at low CR to

LTHR and HTHR at higher CR
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@ LTHR magnitude is dependent on CN and
equivalence ratio
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e LTHR magnitude trends with derived cetane number
FT diesel-light cut > methyl decanoate > #2 diesel-light cut

e Methyl decanoate LTHR likely over-predicts LTHR of biodiesel
— Aliphatic chain is responsible for LTHR, not methyl ester

— Over 50% of soy-based biodiesel is comprised of species with multiple
unsaturations

— Unsaturated species exhibit less LTHR than saturated species
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@ FTIR analysis of n-heptane exhaust reveals
CO and aldehydes are formed by LTHR

n-heptane, ®=0.25
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@ 2.5 heptanedione identified in n-heptane
exhaust condensate

H3C/\/\/\CH3

n-Heptane
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2,5-heptanedione

Additional Species
Identified

Butanal

2,3 Butanedione

4-penten-2-one

2-pentanone

Butanoic acid

Pentanoic acid

2,5 hexanedione

2-pentanone, 5-(1,2-
propadienyloxy)

Reaction scheme taken from Curran et al., 1998.
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™ Conventional diesel and FT fuels show
trends similar to n-heptane

15 1800

e Partially oxidized 125
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@ Decarboxylation of methyl decanoate
produces CO, during LTHR
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e Comparable levels of CO and CO, are formed by LTHR
— Temperatures are insufficient to oxidize CO to CO,
— CO, is a product of decarboxylation

e Decarboxylation is undesirable from soot-suppression standpoint

— Under-utilization of fuel-bound oxygen to remove carbon from soot-precursor
reactions

— Better oxygen utilization could be realized by oxygenates with ether functional
groups
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@ LTHR reactions of aliphatic chain occur
prior to decarboxylation

4-oxopentanoic acid methyl ester

5-methoxycarbonylpentan-4-olide
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Retention Time

Oxo-methyl ester

Retention Time

2-methyl butanoic acid methyl

12.86

ester
Methyl hexanoate 17.45
Methyl heptenoate 17.59
Methyl octenoate 21.72
Methyl octanoate 22.06
Methyl nonenoate (isomers) 22.12, 25.85
Methyl nonanoate 25.90

4-oxopentanoic acid methyl ester | 16.45
5-oxopentanoic acid methyl ester | 17.45
5-oxohexanoic acid methyl ester 20.90
6-oxoheptanoic acid methyl ester | 25.44
4-oxooctanoic acid methyl ester 29.86
2-oxodecanoic acid methyl ester 30.03
9-oxodecanoic acid methyl ester 32.06

Methyl decenoate (isomers)

28.83 + 4 others

methyl decanoate

29.50
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Conclusions

» LTHR behavior of different fuels can be investigated in a
motored engine

e LTHR magnitude trends with cetane number

e The oxidation takmgf_I place during LTHR produces partially
oxidized species with only negllglble amounts of CO,
— High concentrations of CO and aldehydes
— 2,5-heptanedione, found in n-heptane exhaust condensate, can
be closely linked to LTHR mechanism
e |f allowed to proceed through HTHR, partially oxidized
species largely converted to CO,

e CO, produced during LTHR from methyl decanoate is a
product of decarboxylation
— Decarboxylation is undesirable from a soot-suppression standpoint

— LTHR reactions with aliphatic chain can occur before
decarboxylation, incorporating additional oxygen into the
molecule
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