DEER Conference

Clean Technology for Diesel Expansion

Yasuyuki Sando Senior Manager Honda R&D Co., Ltd.

Transition of Environmental Issues

Diesel contributes to CO2 reduction

- 1. Current Production EU Diesel
- 2. Clean Diesel Development Status
- 3. Diesel Fuel Status
- 4. Summary

i-CTDi: HONDA Production Diesel Engine The Power of Dreams

Main specification

Engine type	N22A
Cylinder number	Inline 4 cylinder
Displacement	2.204 (L)
BoreXStroke	85X97.1 (mm)
Valve configration	DOHC-4vlv
Compression ratio	16.7
Fuel injection system	Common-rail
Maximum fuel pressure	1600 (bar)
Emission category	EURO-IV
Maximum power	103/4000 (kW/rpm)
Maximum torque	340/2000 (Nm/rpm)

Design Concept

Core Technologies

High-precision combustion control

Optimized combustion chamber

1600bar common rail system

Pilot injection

Swirl control valve

Electric controlled EGR valve

EGR cooler

Variable geometry turbocharger

Light-weight & high-rigidity structure

ASCT aluminum cylinder block
Lower block construction
Top feed cooling circuit
Offset cylinder
2nd order balancer system
Roller chain system
Pendulum mount system

Exhaust after-treatment system

Oxidation & de-NOx catalyst Metal foil substrate

SAE paper

2004-01-1316 Development of New 2.2-liter Turbocharged Diesel Engine for the EURO-IV Standards

DPF System

i-CTDi Application in EU

- 1. Current Production EU Diesel
- 2. Clean Diesel Development Status
- 3. Diesel Fuel Status
- 4. Summary

Strategy and Latest Achievement Level

Premixed Charge Compression Ignition

Comparison of After Treatment System

Diesel OBD-II System

As development progresses, technological challenging points are identified

- 1. Production EU Diesel Update
- 2. Clean Diesel Development Status
- 3. Diesel Fuel Status
- 4. Summary

Status of US diesel fuel

Influence of Cetane Number

Variation of Cetane Number influence on high EGR rate combustion

Control system for US Cetane No. variation would be required

Cylinder Pressure Sensor

Detection of Cetane number for Calibration

SAE paper : 2006-01-0180

Study on Ignition Timing Control for Diesel Engines using In-cylinder Pressure Sensor

- 1. Production EU Diesel Update
- 2. Clean Diesel Development Status
- 3. Diesel Fuel Status
- 4. Summary

Summary

- Diesel clearly has a potential to reduce CO2 emissions but is not as clean as current gasoline.
- Honda has made significant progress in the area of combustion enhancement and after—treatment technology for global expansion of Diesel.
- The improvement of LNC is ongoing. Still heat-resistance is main technological challenge.
- For US market, OBD still remains major technical hurdle.
- Improvement of diesel fuel quality is necessary to maintain good engine performance. European equivalent specification is preferred from developer's viewpoint.