

Intra-catalyst Reductant Chemistry in Lean NOx Traps: A Study on Sulfur Effects

Jim Parks (parksjeii@ornl.gov), Matt Swartz, Shean Huff, Brian West Oak Ridge National Laboratory
Fuels, Engines, Emissions Research Center

DEER 2006 August 20-24, 2006 Detroit, MI

Sponsor: U.S. Department of Energy, OFCVT

Program Managers: Ken Howden, Gurpreet Singh, Kevin Stork

Study Focus Area: Sulfur Effects on Reductant Utilization by Lean NOx Trap Catalysts

- Lean NOx Trap (LNT) catalysts are effective at reducing NOx from diesel engines but need...
 - Periodic "regeneration" (rich exhaust) with suitable reductants
 - Durability against negative sulfur effects
 - Sulfur degrades performance over time by poisoning NOx sites
 - deSulfation (high temperature clean up) recovers lost site activity
- ORNL has studied regeneration chemistry on a light-duty diesel engine platform with in-cylinder combustion techniques
 - Intra-catalyst sampling has been applied to characterize reductant utilization [SAE 2006-01-1416, SAE 2005-01-3876, SAE 2004-01-3023]
- Study presented here focuses on the effects of sulfur on intracatalyst chemistry during in-cylinder regeneration

Two engine control strategies for achieving intermittent rich

combustion for regeneration of LNT

Two LNT Regeneration Strategies Chosen Based on Difference in Chemistry

- Delayed and Extended Main (DEM):
 - Throttle for reduced air flow
 - Extra fuel injected near main injection timing to achieve rich conditions
- Post 80 Injection (P80):
 - Throttle for reduced air flow
 - Extra fuel injected after main injection later in cycle to achieve rich conditions

Two engine control strategies for achieving intermittent rich combustion for regeneration of LNT

Experimental setup allows full exhaust species characterization throughout the catalyst system

Exhaust Speciation: DEM Strategy, 60s Cycle (DEM, 60s)

DEM, 60s

- NOx Reduction Efficiency (NRE)=96.9%
- •Mean LNT Temp=329°C
- •Minimum A/F=13.5
- •60 second Cycle:
 - •57 seconds Lean
 - •3 seconds Rich

U. S. DEPARTMENT OF ENERGY

Strategy and Cycle Time Combinations in Study

Catalyst chemistry characterized under sulfated and desulfated conditions

Sulfation procedure

- Degreened in air
- BP15 fuel
- 1% bottled SO₂ at 3.4slpm
- Three loading states (fuel S + bottled S)
 - 3.06g S ≈ 2888 miles
 - 5.63g S ≈ 5319 miles
 - 9.63g S ≈ 9087 miles
- Full characterization done at each loading state

Desulfation procedure

- Engine based desulfation
 - Target 700°C / 14AFR
 - Fixed boost to 0kPa
 - Use RPM to control airflow
 - Control catalyst inlet AFR using inpipe injection
- 20 minute desulfation event

<u>Fue</u>	loa	<u>ding</u>
		_

Fuel Flowrate	0.6 g/s	
Fuel Economy (assumed)	45 mi/gal	
BP 15 Sulfur Content	0.0015%	
Fuel Density	0.143 gal/lb	
Miles per gram S	944 mi/g	
grams S /min	0.00054 g/min	

Bottle loading

Molecular Weight of S	32.06 g/mol S
1% SO2 flowrate	3.4 slpm
SO2 concentration	1.00%
S flowrate	0.0486 g/min

	state 1	state 2	state 3
1% SO2 Injected (min)	28	45	60
Injected S (g)	1.35	2.18	2.92
Cumulative Engine S (hrs)	52.8	64.9	98.0
Cumulative Engine S (g)	1.71	2.10	3.18
Running Total S (g)	3.06	5.63	9.63
Equivalent miles	2888	5319	9087

Catalyst chemistry characterized under sulfated and desulfated conditions

Sulfation procedure

- Degreened in air
- BP15 fuel
- 1% bottled SO₂ at 3.4slpm
- Three loading states (fuel S + bottled S)
 - 3.06g S ≈ 2888 miles
 - 5.63g S ≈ 5319 miles
 - 9.63g S ≈ 9087 miles
- Full characterization done at each loading state

Desulfation procedure

- Engine based desulfation
 - Target 700°C / 14AFR
 - Fixed boost to 0kPa
 - Use RPM to control airflow
 - Control catalyst inlet AFR using inpipe injection
- 20 minute desulfation event

UT-BATTELLE

S/deS Effect on Strategy Performance

 P80 strategies (Higher in HCs, Lower H₂/CO) appear to degrade more with S/deS; Why???

P80, 60s

P80, 60s

P80, 60s

P80, 60s

P80, 60s

OAK RIDGE NATIONAL LABORATORY

NH₃ formation increases after deSulfation

 NH₃ formation after deSulfation was higher for all cases

Potential causes:

- Sintering of Sorbate
 - suspect thermal sintering of sorbate may be the cause of higher NH₃
 - Castoldi et. al. Report NH₃ formation corresponds with higher sorbate loading (bulk crystallites)
 - L. Castoldi, I. Nova, L. Lietti, P. Forzatti, "Catalysis Today" 96 (2004), pp. 43-52
- Change in Reductant:NOx ratio
 - CLEERS, Pihl, and other work on N₂ selectivity show NH₃ increases with increasing Reductant:NOx ratio
 - > Pihl, et.al. SAE 2006-01-3441

H₂ Produced In Catalyst During 20s Cycles

 In 20s cycles, H₂ observed being created in catalyst most likely from reforming reactions (water-gas shift, etc.)

Same process may occur in 60s data, but H₂ may be consumed immediately for NOx reduction

Catalytic H₂ production: Effect of S/deS

- Increase in catalyticproduced H₂ greater for P80 strategy
- H₂ production degrades with S/deS aging
- LNT performance may degrade more rapidly for strategies that depend on catalyst utilizing HCs from engine

Summary

- In general, reductant utilization in LNT moved downstream only slightly with S/deS
 - Process is consistent; optimism for modeling
- NH₃ formation increased after deSulfation process
 - Regeneration control strategies must adjust accordingly with age
- Strategies with high HC and low H₂/CO (P80) may depend on catalytic H₂/CO production for regeneration
 - S/deS degradation of catalytic H₂/CO production may have greater degradation impact on the effectiveness of P80-like strategies
- Preparing Paper for SAE Fall Powertrain and Fluids Conference

