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Study Focus Area: Sulfur Effects on Reductant Utilization
by Lean NOx Trap Catalysts

e Lean NOx Trap (LNT) catalysts are effective at reducing NOx from
diesel engines but need...
— Periodic “regeneration” (rich exhaust) with suitable reductants
— Durability against negative sulfur effects

> Sulfur degrades performance over time by poisoning NOx sites
» deSulfation (high temperature clean up) recovers lost site activity

e ORNL has studied regeneration chemistry on a light-duty diesel
engine platform with in-cylinder combustion techniques

— Intra-catalyst sampling has been applied to characterize reductant
utilization [SAE 2006-01-1416, SAE 2005-01-3876, SAE 2004-01-3023]

e Study presented here focuses on the effects of sulfur on intra-
catalyst chemistry during in-cylinder regeneration
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Two engine control strategies for achieving intermittent rich
combustion for regeneration of LNT

“Delayed and “Post 80 Injection”
Extended Main” (P80)

(DEM)

pilot
\

Two LNT Regeneration Strategies Chosen Based on Difference in Chemistry

e Delayed and Extended Main (DEM):
— Throttle for reduced air flow
— Extra fuel injected near main injection timing to achieve rich conditions
e Post 80 Injection (P80):
— Throttle for reduced air flow
— Extra fuel injected after main injection later in cycle to achieve rich conditions
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Two engine control strategies for achieving intermittent rich
combustion for regeneration of LNT

e Delayed and Extended
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Experimental setup allows full exhaust species
characterization throughout the catalyst system

e DOC upstream of LNT catalyst

FTIR
o ::jfrﬁzzl sensor is feedback point for A/F Bench 2 GCIMS bag
e Exhaust samples obtained at Y4, ‘2, and %4
intra catalyst locations in LNT SpaciMS
e Analysis for: H,, CO, HC, NOx, CO,, O,
Tailpipe
Engine Out SS2 Bench

Bench (SS3)

(SS1)

NOXx NOXx
Sensor #1 Sensor #2
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Exhaust Speciation: DEM Strategy, 60s Cycle (DEM, 60s)
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Strategy and Cycle Time Combinations in Study | —&ngine ou
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Catalyst chemistry characterized under sulfated and
desulfated conditions

Sulfation procedure

Degreened in air
BP15 fuel
1% bottled SO, at 3.4slpm
Three loading states (fuel S +
bottled S)

— 3.06g S = 2888 miles

— 5.639 S = 5319 miles

— 9.63g S = 9087 miles

Full characterization done at each
loading state

Desulfation procedure

Engine based desulfation
— Target 700°C / 14AFR
— Fixed boost to OkPa
— Use RPM to control airflow
— Control catalyst inlet AFR using in-
pipe injection
20 minute desulfation event

OAK RIDGE NATIONAL LABORATORY
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Fuel loading
Fuel Flowrate 0.6 g/s
Fuel Economy (assumed) 45 mi/gal
BP 15 Sulfur Content 0.0015%
Fuel Density 0.143 gal/lb
Miles per gram S 944 milg
grams S /min 0.00054 g/min
Bottle loading
Molecular Weight of S 32.06 g/mol S
1% SO2 flowrate 3.4 slpm
SO2 concentration 1.00%
S flowrate 0.0486 g/min

state 1 state 2 state 3
1% SO2 Injected (min) 28 45 60
Injected S (g) 1.35 2.18 2.92
Cumulative Engine S (hrs) 52.8 64.9 98.0
Cumulative Engine S (@) 1.71 2.10 3.18
Running Total S (g) 3.06 5.63 9.63
Equivalent miles 2888 5319 9087
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Catalyst chemistry characterized under sulfated and
desulfated conditions

Sulfation procedure

Desulfation procedure | [ [ |

Degreened in air
BP15 fuel

1% bottled SO, at 3.4slpm

Three loading states (fuel S +
bottled S)

— 3.06g S = 2888 miles

- 5.639 S ~ 5319 mi|eS J intercooler
— 9.63g S = 9087 miles (f throttle
Full characterization done at each Engine ntake | tecn. [ E

loading state CD\ ="“

exhaust manifold | cooler H
Engine based desulfation waste gate
— Target 700°C / 14AFR | Lo Lo
~ Fixed boost to 0kPa LN o = T
— Use RPM to control airflow S
— Control catalyst inlet AFR using in- -

pipe injection
20 minute desulfation event fuel

thermocouples
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S/deS Effect on Strategy Performance

o P80 strategies (Higher in HCs, Lower H,/CO) appear to degrade more

with S/deS; Why???
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Small downstream shift in reductant utilization with S
exposure
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Small downstream shift in reductant utilization with S
exposure
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Small downstream shift in reductant utilization with S
exposure
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Small downstream shift in reductant utilization with S
exposure
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Small downstream shift in reductant utilization with S
exposure
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Significant changes observed in N, selectivity with S/deS
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Significant changes observed in N, selectivity with S/deS
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Significant changes observed in N, selectivity with S/deS
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Significant changes observed in N, selectivity with S/deS
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NH; formation increases after deSulfation
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H, Produced In Catalyst During 20s Cycles
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Catalytic H, production: Effect of S/deS
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Increase in catalytic-
produced H, greater for
P80 strategy

H, production degrades
with S/deS aging

LNT performance may
degrade more rapidly for
strategies that depend on
catalyst utilizing HCs
from engine
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summary

e In general, reductant utilization in LNT moved downstream only
slightly with S/deS

— Process is consistent; optimism for modeling

e NH; formation increased after deSulfation process
— Regeneration control strategies must adjust accordingly with age

o Strategies with high HC and low H,/CO (P80) may depend on
catalytic H,/CO production for regeneration

— Sl/deS degradation of catalytic H,/CO production may have greater
degradation impact on the effectiveness of P80-like strategies

e Preparing Paper for SAE Fall Powertrain and Fluids Conference
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