

Demonstration of a 50% Thermal Efficient Diesel Engine - Including HTCD Program Overview

D. M. Milam, G.E. Donaldson

W. L. Easley, M. S. Bond, S. D. Roozenboom, J.R. Brucker, C.P. Hittle, N.G. Coon

DOE Contract DE-FC05-00OR22806

Team Leader:

Technology Development Mgr: Roland Gravel Project Officer: Gurprear Singronde

August 23nd, 2006 2006 DEER conference

Outline

- HTCD Overview
 - Program Objectives& Benefits
- Progress Report on 50% Engine Project
 - Systems Approach
 - Review each of the 8 Building Blocks
 - Concept
 - Status
 - Systems
 Interactions
 - Challenges
 - Interim System
 Demonstration
 - Summary and Conclusions

Program Objectives: Transfer of Technology into Production

HTCD Timeline

2001 2002 2003 2004 2005 2006

From Baseline Efficiency to 50%

DOE HTCD Program Objectives

NATIONAL/GLOBAL IMPLICATIONS

•Improved fuel efficiency will:

- Decrease consumption of non-renewable energy sources
- Reduce CO₂ emissions output
- Lower operating costs for end users
- Decrease dependence on foreign oil supplies

Program Objectives: Transfer of Technology into Production

DOE/Caterpillar Objectives

- Demonstrate:
 - 2010 On-Highway Engine emissions levels (0.20 g/hp-hr NOx, 0.01 g/hp-hr PM)
 - 50+% thermal efficiency
- System should also:
 - Package within a class VIII onhighway truck
 - Maintain durability and reliability
 - Cost viable

Reduction in Fuel Consumption and CO2 emissions

Caterpillar Objectives

- Develop high customer value 2010 On-Highway and 2014 Tier 4 power train systems
 - Evaluate high efficiency building blocks
 - fuel economy benefit
 - durability/reliability
 - cost
 - packaging
 - etc.
 - Integrate building blocks into a 2010 On-Highway and 2014 Tier 4 compliant systems
 - Significant improvement in cycle fuel economy
 - · cost effective
 - meets production standards

DOE / Caterpillar Engine Programs - Accomplishments & Break-through

- In-Cylinder Components
 - 49% OTE engine demonstrated
- Light Truck (LTCD)
 - HCCI breakthrough
 - Mixed Mode Injection concept
- Electric Turbo Compound (ETC)
 - Integrated system demonstrated on gas stand and engine
- Heavy Truck Clean Diesel (HTCD)
 - Full load HCCI on SCTE, rated on MCTE
 - NOx Adsorber demonstration
 - 2007 emissions capable demonstrator truck in 2003
 - Virtual Truck simulation
 - VCR engine build
 - Advanced Fuel System design
 - Evaluation of 3 paths to meet 2010 emissions
 - 50% overall thermally efficient engine →
 Demonstration this year

Outline

- HTCD Overview
 - Program Objectives& Benefits
- Progress Report on 50% Engine Project
 - Systems Approach
 - Review each of the 8 Building Blocks
 - Concept
 - Status
 - Systems
 Interactions
 - Challenges
 - Interim System Demonstration
 - Summary and Conclusions

Program Objectives: Transfer of Technology into Production

HTCD Timeline

2001 2002 2003 2004 2005 2006

From Baseline Efficiency to 50%

Systems Approach

High Efficiency Demonstrator

- Systems Approach
 - Many building blocks needed
 - Interactions must be carefully considered
 - Integrated package critical
- **Demonstration Point**
 - 1200 rpm
 - Peak Torque

The Path to 50% Thermal Efficiency **START** HE AFTERTREATMENT **REDUCED** Caterpillar C15 engine capable Catalyzed low pressure drop of 2007 emissions levels diesel particulate filters (DPFs) Piston-ring-liner friction and low pressure drop NO, aftertreatment employed. design and low friction

Red. Friction

SYSTEM OPTIMIZATION

- Caterpillar's system cycle simulation and CFD codes used to optimize system
- variable valve actuation

HE COMPACT COOLING **SYSTEM**

- Low pressure drop, high
- effectiveness coolers used
- Coolers includ intercooler
- CGI cool radiator

TURBOCOMPOUND

High efficiency axial power turbine geared into rear of crank with fluid coupling for torsional reduction

HE AIR SYSTEM

- High efficiency turbocharger designs employed
 - vaned radial turbine designs high efficiency radial

HTCD Program System Schematic System Thermal Efficiency = 50 (50)% High Efficiency N=1200 RPM C15 T=2508.1Nm Demonstrator P=315.1kW A/C HP Turb HP Comp Systems Approach Stack I/C LP Turb LP Comp NRT NRT Power Turb (Ambient) CGIC Red. Friction (0.25 pts.) Reduced Flow Restriction **High Efficiency** (0.14 pts.) Aftertreatment (1.1 pts.) eat Rejectio System (0.7 pts.) Optimization (2.0 pts.) High Efficiency Ai System (1.2 pts.) **High Efficiency Compact Cooling** Turbo-compound (1.7 pts.) (1.5 pts.)

Building Block 1 – High Efficiency Aftertreatment

Building Block 1 – High Efficiency Aftertreatment

Concept

- Low back pressure design
- High conversion efficiency aftertreatment

Status

- Engine demonstrated
- System Interactions
 - Package size vs. conversion efficiency (Engine out NOx /PM)
 - Package size vs. back pressure (expansion ratio across turbo machinery)

Challenges

- Long term degradation
- Low temperature operation
- Reductant
- Regeneration /Transient dosing (conversion efficiency)
- Packaging
- Cost

Building Block 1 – High Efficiency Aftertreatment

Building Block 1 – High Efficiency Aftertreatment

- Concept
 - Low back pressure design
 - High conversion efficiency aftertreatment
- Status
 - Engine demonstrated
- System Interactions
 - Package size vs. conversion efficiency (Engine out NOx /PM)
 - Package size vs. back pressure (expansion ratio across turbo machinery)
- Challenges
 - Long term degradation
 - Low temperature operation
 - Reductant
 - Regeneration /Transient dosing (conversion efficiency)
 - Packaging
 - Cost

Building Block 2 – Reduced Friction/Parasitic

Building Block 2 – Reduced Friction/Parasitic

- Concept
 - Reduced PRL friction through improved ring design
 - Lower friction oil
 - Reduced parasitic load through variable flow oil pump
- **Status**
 - **Engine demonstrated**
- **System Interactions**
 - Oil consumption (effect on DPF size for ash intervals)
 - Any blow-by effect on system efficiency
- Challenges
 - Oil control
 - Benefit / Cost for variable flow devices

500

1000

Engine Speed (RPM)

1500

2000

(1.5 pts.)

2500

Building Block 3 – Reduced Flow Restriction

Building Block 3 – Reduced Flow Restriction

- Concept
 - Improved manifolds and port design
- Status
 - Simulated engine benefit
 - Parts Procured
 - Flow Bench
 Demonstrated
- System Interactions
 - Flow passages versus
 Strength Capability
- Challenges
 - Benefit / Cost
 - Capital

Building Block 4 – Reduced Heat Rejection

Building Block 4 – Reduced Heat Rejection

- Concept
 - Air Gap Piston
 - Exhaust Port Liner
- Status
 - Simulated engine benefit
 - Procurement in process
- System Interactions
 - Increased in-cylinder temps vs. emissions
 - Top ring area temps vs. piston deposits\
 - Increased exhaust energy for high efficiency air system and Turbo compound
- Challenges
 - Benefit / Cost
 - Durability

Building Block 5 – High Efficiency Air System

Building Block 5 – High Efficiency Air System

- Concept
 - Improved Aerodynamic design of turbine & compressor wheels
 - Vaned design for housing
- Status
 - Simulated engine benefit
 - Procurement in process
 - Gas Stand Demonstrated
- System Interactions
 - Sized for use with turbocompound system & IVA
- Challenges
 - Benefit / Cost
 - Map width

Building Block 6 – Turbo Compound

Building Block 6 – Turbo Compound

- Concept
 - High Efficiency Axial Turbine geared to rear gear train
- Status
 - Simulated engine benefit
 - Procurement in process
- System Interactions
 - Optimized power vs. A/T Package size (back pressure)
 - Optimized reciprocator power vs. turbo compound power
- Challenges
 - Benefit / Cost
 - Packaging

Building Block 7 – High Efficiency Compact Cooling System High Efficiency Compact Cooling Benefit

Building Block 7 – High Efficiency Compact Cooling System

- Concept
 - Intercooling
 - Lower Intake Manifold Temps
 - Higher oil and coolant temps
 - Lower pressure drop
- Status
 - Engine Demonstrated
- System Interactions
 - Package size vs. fan flow pressure drop across core
 - Oil and coolant temps vs. air side pressure drop
- Challenges
 - Benefit / Cost
 - Packaging

Building Block 8 – System Optimization

Concept

- Higher Peak Cylinder Pressure
- Higher Compression Ratio
- Higher injection pressure
- Optimized CGI settings
- Optimized IVA settings
- Optimized nozzle and bowl

Status

- Engine Demonstrated
- System Interactions
 - PCP needed for Compression ratio increase
 - Piston Bowl for higher compression ratio vs. smoke
 - Parasitic vs. Burn Rate vs. Smoke
 - IVA vs. CGI vs. Smoke vs. Heat Rejection

Challenges

- Durability
- · Benefit / Cost

Building Block 8 – System Optimization

Engine demonstrated benefit of increasing compression ratio

Interim System Demonstration

- HTCD Overview
 - Program Objectives& Benefits
- Progress Report on 50% Engine Project
 - Systems Approach
 - Review each of the 8 building blocks
 - Concept
 - Status
 - Systems Interactions
 - Challenges
 - Interim System Demonstration
 - Summary and Conclusions

Table of Key Data		
Thermal Efficiency	45.5	%
BSFC	186	g/kw hr
Speed	1200	rpm
Load (peak torque)	2508	Nm
Engine out NOx	2.5	g/hp hr
Engine out Smoke	<1.5	AVL
System out NOx	2010 compliant	
System out PM	2010 compliant	

Summary and Conclusions

- HTCD Overview
 - Program Objectives& Benefits
- Progress Report on 50% Engine Project
 - Systems Approach
 - Review each of the 8 building blocks
 - Concept
 - Status
 - Systems
 Interactions
 - Challenges
 - Interim System Demonstration
 - Summary and Conclusions

HTCD program an excellent example of government industry cooperative research

Key accomplishments reviewed

Integrated system approach to achieve 50% overall thermal efficiency (~17% improvement) identified

- Concepts explained
- Status presented
- Key system interactions addressed
- Challenges being addressed

Integrated design completed for Class 8 truck

Interim system demonstration

•~ 46% overall thermal (~7% improvement)

Final demonstration scheduled to be completed by Sept 30th, 2006.

Future DOE programs to deliver 55% overall thermal efficiency (HECC) and fuel economy improvement through exhaust waste heat recovery (EWHR)

•Still 22% of the heat leaves the stack with current demonstration

Thanks to the DOE for their assistance in achieving significant results