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Good Understanding of Spray Structure is Important in

Diesel Combustion


• Performance and emissions of diesel engines are closely tied to 
the spray from the injector 
– Excessive penetration → wall wetting → UHC emissions 
– Excessive premixed combustion → NOx emissions 

• Led to progressive development of diesel injection systems to 
achieve better mixture preparation 
– Pump-Line-Nozzle → Unit Injectors →Common Rail Systems 
– Smaller injector holes 
– Higher injection pressure 
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Current Spray Diagnostic Techniques Inadequate


• Understanding of the atomization of diesel sprays is still incomplete 
• Mechanical Measurements 

– Intrusive 
• Optical Measurements 

– Can’t probe internal spray structure in dense regions 
– Often not quantitative, due to strong scattering effects 

• Need a nonintrusive, quantitative technique to measure sprays 
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Schematic of X-Ray Setup
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Quantitative relationship between x-ray 
transmission and projected mass density I = I0e
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I0 Incident x-ray intensity


I Measured x-ray intensity ln(I0 / I )

μM Fuel absorption constant, area/mass M =

M Projected mass density, mass/area μM
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Radiography Has Good Spatial and Time Resolution


Measurement Grid 
• Radiography is a pointwise 

measurement 
–	 Raster injector to build up 

measurement grid 
–	 Example grid: 2250 points 
–	 Data in discrete columns 

• Also good temporal resolution: 
time step 3.68 μs 
–	 1 CAD at 3000 rpm = 56 

μs 
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Experiment Details 

•	 Light-duty diesel common-rail injector 
•	 Two nozzles: axial single hole 

–	 Hydroground 
• Subjected to 24% hydrogrinding 
• Orifice diameter: 183 μm 

–	 Non-hydroground 
• Orifice diameter 207 μm 

–	 Designed to have the same steady-state 

flowrate


•	 Injection parameters 
–	 Injection pressure: 250 bar 
–	 Injection duration: 400 and 1000 μs 
–	 Ambient gas: N2 

–	 Ambient pressure: 1 bar 
–	 Averaged over 64 injections 
–	 Liquid: Calibration fluid with cerium additive 
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Spray Evolution: 400 μs Injection


Hydroground


Non-hydroground
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Spray Evolution: 1000 μs Injection


Hydroground


Non-hydroground
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Transverse Mass Distributions Gaussian Except Near Nozzle


x = 0.2 mm 
• Examine the mass density of the 

spray along a slice perpendicular 
to the spray axis 

•	 Generally Gaussian shape 
–	 Matches expected behavior of 

a fully developed jet 
• Distribution has flatter top than a 

Gaussian within 1 mm of the 
nozzle 
–	 Suggests that there is a 

relatively high-density core of 
fuel 

x = 10.0 mm 
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Radiography Can Measure Cone Angle Dynamics


• Benefits of 
radiography over 
optical cone angle 
measurements 
–	 Dynamics 
–	 Based on spray 

core, not outside 
of droplet cloud 
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Radiography Can Measure Both Leading and Trailing Edge Speed


Penetration 

Trailing
Edge 

11 



Large Amount of Fuel in “Head Vortex”


• Partition spray into “head vortex” and 
trailing jet 
–	 While entire spray remains in 

measurement domain 
• “Head vortex” more prominent for short 

duration injections 
–	 Nearly 80% of mass after end of 

short duration injection 
• Trailing jet remains relatively dense for 

long duration injections 
–	 “Head vortex” contains the majority 

of the mass 
•	 Implications for spray modeling 

12 



Future Work


•	 Extend current experimental conditions 
– Shrink the size of the x-ray beam: better spatial resolution 
– Increase ambient pressure: density closer to engine conditions 

• Recently achieved 30 bar ambient pressure 
–	 Experiments in multi-hole nozzles: closer to applied equipment 
–	 Single-shot & image-based measurements 

•	 Improved Data Analysis 
–	 Projection inversion: estimate true fluid density from projected 

mass density 
–	 Refine determination of the “head vortex” 
–	 Axial velocity determination 

13 



Future Work: Spray Axial Velocity Determination 

• Axial velocity of spray in dense 
regions of the spray is not well 
known 

• Measure mass-averaged axial 
velocity for each measurement 
column 
–	 Internal speed of liquid 

•	 Axial velocity affects: 
–	 Penetration speed 
–	 Shear with ambient gas 
–	 Initialize spray breakup models 

• Calculated axial velocity for a 400 
μs spray from a hydroground 
nozzle 
–	 Speed from Bernoulli’s 


equation: 236 m/s
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Future Work: Spray Axial Velocity Determination 
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x=x0 

∞ ∞∞ ∞ 
m& cv (x > x0 , t) = − ∫ ∫ ρ(x0 , y, z, t) ⋅V (x0 , y, z, t) • n̂ ⋅ dz ⋅ dy ∫ ∫ ρ(x0, y, z, t) ⋅Vx (x0, y, z, t) ⋅ dz ⋅ dy 

−∞ −∞ Vma (x0, t) = −∞ −∞ 
∞ ∞ ∞ ⎡ ∞ ⎤ 
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Radiography Mass Measurements Match Mechanical

Measurements


• Accumulated mass as a function 
of time 

• Generally good agreement with 
Bosch Rate-of-Injection meter 

• Total injected mass by mechanical 
measurement is 334 μg, which 
agrees well with the x-ray data 

Hydroground nozzle, 400 μs 

spray
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Transverse Integrated Mass


•	 Examine area of Gaussian fits to 
transverse mass distributions 

–	 Indicates how densely spray is 
packed axially 

–	 In units of mass/length 
–	 Aids in further analysis 
–	 Referred to as Transverse 

Integrated Mass (TIM) 
•	 Peak value corresponds to leading 

edge structure 
•	 TIM increases between nozzle and 

leading edge, suggesting spray slows 
down as it moves downstream 

–	 Expected behavior from fully 
developed jet theory 

–	 Transverse spread coupled with 
axial compression 
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Cone Angle for 1000 μs Duration Sprays


• Cone angle based on linear fit to 
FWHM of Gaussian fits of transverse Spray Event Cone Angle 
mass distributions for 0 < x < 10 mm 

• Far smaller angles than typically seen 
from optical measurements 
–	 Indicates that optical 

measurements focus on spray 
periphery 

• Increase in cone angle at end of 
spray for both nozzles 
–	 Seen in optical measurements as 

well 
• Cone angle changes significantly 

during the spray event 

Hydroground, 475 μs ASOI  5.9° 

Non-hydroground, 475 μs ASOI  2.5° 

Hydroground, 644 μs ASOI  3.9° 

Non-hydroground, 644 μs ASOI  3.3° 

Hydroground, 1072 μs ASOI  1.2° 

Non-hydroground, 1072 μs ASOI  2.8° 

Hydroground, 1219 μs ASOI  7.1° 

Non-hydroground, 1219 μs ASOI  3.8° 
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Spray Width: Hydroground vs. Non-hydroground


475 μs 664 μs 
ASOI ASOI 

1219 μs1072 μs 
ASOIASOI 
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