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What i1s Diesel Particulate Matter ?

e Composition:

—“Dry carbon” 504
14% Carbon

e turbostratic graphite Lube SOF 41%
25%

e initial evidence of fulleren

. Solids (carbon +ash) - 54%
structures 1n some cases

SOF (fuel + lube) - 32%

—Adsorbed HCS Fuel SOF Ash S04 (sulfate + water) - 14%
7% 13% DieselNet

—Inorganic materials
* Lube oil ash, H,SO,, HNO;, H,O

e Nanostructure
- Amorphous, fullerenic, graphitic

e Morphology:
—Primary particles: ~20-40 nm
—Agglomerates: 0.1-1 micron

Dieselnet.com




Reactivity evolution over a life cycle of a soot particle

Printex

A: High reactivity due to
ambient aging

B: Steady-state oxidation
C: Steep increase

Diesel Soot

A: High reactivity due to:
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— Adsorbed HC; ambient aging

B: “Steady-state” oxidation

C: Increased reactivity at later stages of oxidation

r=A-exp(-E/RT) - [C]*-[0,] " - [H,O]°




Progressive oxidation
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Reactivity 1s increasing with degree of oxidation:

— No measurable changes of Ea, or reaction order in O,
* Reaction chemistry appears to be independent of the degree of

carbon oxidation.

* Number (density) of reactive sites (A) appears to be near constant!




Specific Surface Area*
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Applied catalysis B:
61 (2005), 134-143.
—BET surface area measured in-situ at different stages of oxidation

—samples pre-treated by thermal desorption
* Development of the reactivity does not appear to correlate directly with the
specific surface area

* Need a different parameter which would correlate with the number of active
sites *Courtesy: Dr. Do Heui Kim, (PNNL)



Puzzles (thus far):
* Comparative changes in reactivity

* Comparative evolution of surface areas

Advantages of electron microscopy (HRTEM)

* Direct observation without property assumptions

* Potential to reveal changes in nanostructure (during oxidation)
* Correlate oxidation characteristics (rate) with nanostructure

eewn.....What changes in nanostructure?
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Nanostructure and Implications: Reactivity

[ d [ [ J
Amorphous ] Fullerenic Graphitic

21 1
185_ Benzene Derived Soot_} ] 85_ Acetylene Derived Soot ; 185 Ethanol Derived Soot |
15— _ 15- _15_ 1
F 0O F o L ]
E o ] : o C ]
12 | 2 1 12¢f g2 ]
g -] i o ;
9L s 1 9L ©31 9t ]
: L ] : Xyt E
6 1 8¢ ]6¢f .
3 1 3t i3 HHH” .
0 093 19 28 37 47 56 65 0 093 19 28 37 47 56 65 0 09 19 28 37 47 56 65

Fringe Length (nm)

Fringe Length (nm) Fringe Length (nm)




Soot Burnout Rates
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ENG-A - Original from Trap




ENG-A - Post partial Oxidation (TGA, 50%)




o tilt ENG-A 75%
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rintex - Post Partial Oxidation
50% Burnout, via TGA
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Summary of Results

Sample Ash contents, SOF contents, Observations
designation | wt % wt %

ENG(A) 6.5+0.5% 9+ 1% No shells/capsules
Printex-U™ <0.5% 4 + 1% No shells

Does Internal burning correlate with either ash or soluble organic
fraction (SOF) content??
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Statistical Properties Extracted From
HRTEM Images (of soot nanostructure)

. Fringe Length (nm)
Position

Length

Fringe
Separation

% of fringes

Orientation

-Tortuosity

Fringe
Density

% of fringes

* Other inputs /\— /\
—Maximum join distance N ® /\,

—Minimum fringe length



Interpretation(s)
A. Densification - a pseudonym for graphitization

1. Thermally induced densification
Creation of radicals by thermal evolution of volatiles or loss of

H-atoms permits lamella growth

2. Oxidation
Creation of radical sites by oxidative removal of amorphous

carbon or loss of H-atoms

B. Internal Burning - disordered carbon and/or trapped volatiles
preferentially burnout

Trap conditions could promote both densification and/or volatile
evolution.
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XPS-Characterization of Carbon Nanostructure
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Conclusions
* Burning mode dependent upon nanostructure and oxidation conditions
(ash and SOF are not unique predictors)

* Diesel soot and Printex U exhibit nearly identical activation energies
and burning rates and even similar active site numbers BUT
vastly different surface area evolution!

* Measures other than surface area are needed for modeling
burning mode and rate.
(A key feature will link the distribution of active sites to the

nanostructure)
* Convolved with 1nitial nanostructure are the change(s) enabled by
oxidation.
Implications:

* Latter stage burnout will strongly depend upon burnout mode
* Soot burning mode(s) could affect regeneration efficiency and models.
* DPF regeneration costs fuel and each cycle limits lifetime.

Costs money!
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