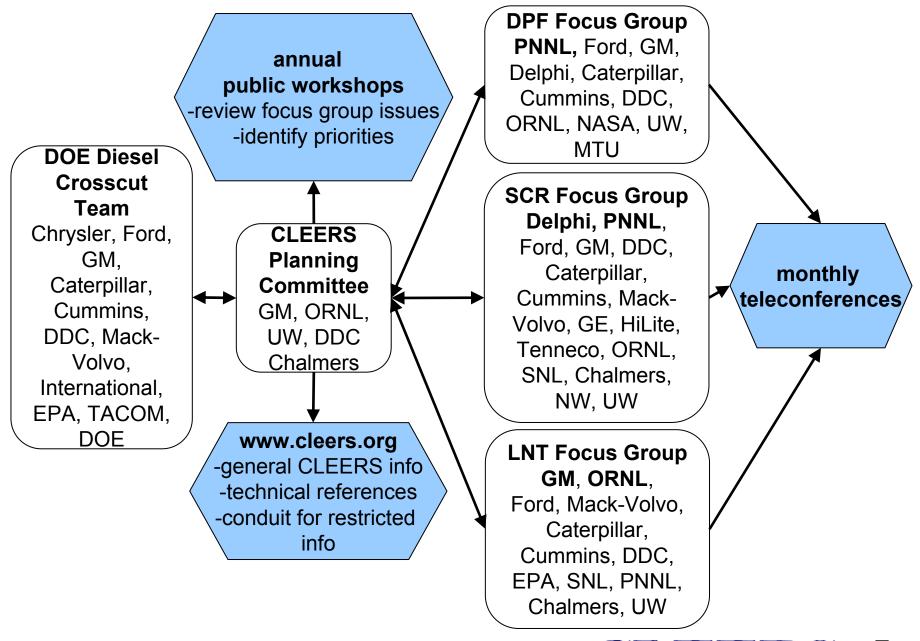
Aftertreatment Research Prioritization: A CLEERS Industrial Survey

Stuart Daw, Michael Laughlin and Richard Blint

CLEERS: Crosscut Lean Exhaust Emissions Reduction Simulation

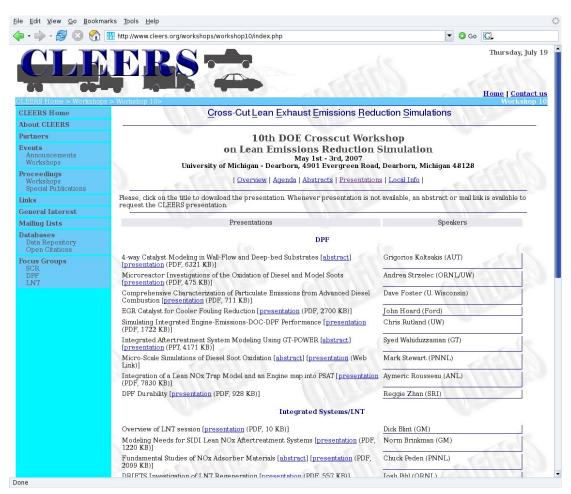

- Initial activities began mid-FY 2001
- Main benefit of CLEERS is to enhance emissions controls (EC) collaboration
 - Network among OEM's, EC suppliers, national labs, and universities (focus groups and workshops)
 - Collective forums for identifying critical technology bottlenecks and sharing with DOE and industry (i.e.; Cross Cut Team)
 - Mechanism for sharing non-proprietary data/understanding and simulations
 - Mechanism for industry feedback to DOE
- CLEERS not intended to fund software development

- Technical Challenges & Barriers from FCVT MYPP:
 - 3.3.1.8.C. Emission control. Meeting EPA requirements for oxides of nitrogen and particulate matter emissions standards with little or no fuel economy penalty will be a key factor for market entry of advanced combustion engines. NOx adsorbers appear to be the most viable NOx reduction devices for light-duty vehicles, but they are very sulfur-sensitive, resulting in an increasingly greater energy penalty over time to compensate for loss of activity.
 - 3.3.1.8.E. Durability. The emission control system has to perform effectively for 120,000 miles
- FreedomCAR ACEC Tech Team 2006 Roadmap:
 - Development and optimization of catalyst-based aftertreatment systems are inhibited by the lack of understanding of catalyst fundamentals (e.g., surface chemistry, deactivation mechanisms...) and catalysts modeling capabilities.

Focus Groups

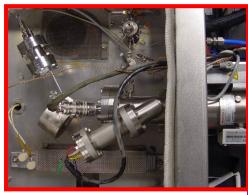
- Monthly telecoms/webcasts on key technical topics
 - participation is limited because sensitive material maybe included
- Input and reviews for proposed standard testing and measurement protocols used by industry, national labs
 - LNT sorbent/catalyst characterization protocol
 - SCR catalyst characterization protocol
 - Standardized reference materials
- Reviews of ongoing work at national labs
 - Rapid feedback to labs on data, model usefulness
 - Rapid data/results transfer from labs to industry
 - Recommendations from industry for redirecting DOE effort
 - Informal
 - Formal polling
- Workshop organization
 - Each session organized by specific Focus Group
 - Groups define invited speakers, major topics

Workshops are forum for discussing common emissions control simulation issues


- Mechanism for CLEERS to interface with wider community
 - Two-way feedback on terminology, bottlenecks, priorities
- Max 120 participants (promotes informal discussions)
 - 85% U.S./15% International
- Single session each day
 - Emphasis on NOx and PM control, system integration
 - Typically 6 invited speakers (2-3 international)
 - 28-30 contributed technical talks
- Open to anyone interested; participants typically include:
 - OEMs (30%)
 - Emissions controls suppliers (20%)
 - Emission controls R&D companies/consultants (10%)
 - Software suppliers (6%)
 - Universities (17%)
 - Government agencies (4%)
 - National labs (13%)

CLEERS Website (http://www.cleers.org:)

- Basic information (organization, workshop agendas, downloads etc.)
 - ~10,000 visits per month
- Experimental database
 - 9 data categories
 - 9 technology areas
 - ~5000 downloads
 - Links to other relevant data (e.g., data from non-CLEERS DOE activities)
- Articles database (with search capability)
 - Over 600 citations
- Focus Group area
- Event calendar
- Mailing lists



Emissions Control R&D Priorities survey

- Recommended in November 2006 by Cross Cut Team (Diesel emphasis) and DOE (Gurpreet Singh and Ken Howden)
- Designed by CLEERS planning committee (<u>including a high fidelity topic list</u>), conducted January 2007 by independent third party (Mike Laughlin, New West Technologies)
- Limited to only Crosscut members and emissions controls suppliers with complete anonymity & single response from each company
- Lean gasoline (outside the CrossCut scope) was also polled
- Polled:
 - Technical priorities
 - Four perspective areas:
 - Commercial relevance;
 - Importance to national energy strategy;
 - Scientific importance/challenge;
 - Utilization of special national lab capabilities.
 - Allocation of resources

ORNL utilizes diverse capabilities and collaborations with other DOE labs for fundamental understanding of aftertreatment devices

SpaciMS

- capillary inlet mass spec.
- concentration profiles inside monoliths
- magnetic sector detector: H₂

Other capabilities

- microscopy, XRD
- engine dynamometers

Microreactor

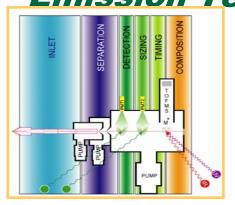
- powders
- surface areas
- TPR/TPO
- performance eval.

Collaborations with national labs:

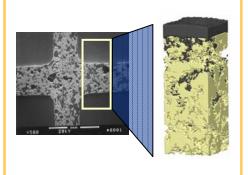
- SNL: mechanism development, modeling
- PNNL: unique experimental capabilities, complementary catalysis expertise

DRIFTS reactor

- powders, washcoated wafers
- quantify adsorbates
- identify intermed.

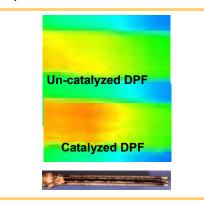


Bench reactor

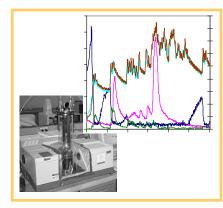

- monolith cores
- performance eval.
- SpaciMS

PNNL Utilizes Science of Particles and Catalyst Material Surfaces at All Scales to enable Emission Technologies

- Single Particle Laser Ablation Time-of-flight MS (SPLAT)
- Size, density and molecular composition of particles
- Proton Transfer
 Reaction MS gaseous
 HC's


- Micro-scale filtration and regeneration models
- Digital mapping of microstructure
- Models include species transport, soot oxidation and kinetics

Collaborations


SNL: SCR after-treatment

ORNL: engine dynamometer testing, catalyst aging

protocols

- Dual single channel DPF and SCR experiments
- Infrared thermography

- Transient thermal reactor – gaseous transients
- Multiple in-situ FTIR reactors catalyst surface transients

Other Capabilities for Catalysis R&D

Synchrotron XANES, EXAFS (collaboration with BNL)
Catalytic Reactors: laboratory, pilot, engine test benches
Catalyst Characterization: XPS, TPR, XRD, TEM, Raman

Example choices for Selective Catalytic Reduction (SCR)

- 1. Global reaction rate equations, including hybrid mechanisms (a-h); e.g.,
 - a. Urea thermolysis (gas and surface)
- 2. Dosing system (a-e); e.g.,
 - a. Spatial and temporal distribution of urea/NH3 or HCs at monolith inlet
- 3. Transport effects (a-b); e.g.,
 - a. Pore/washcoat diffusion
- 4. Deactivation mechanisms (a-c); e.g.,
 - a. Thermal degradation due to cycling

Example choices for Diesel Particulate Filters (DPF)

- 1. Models for local properties of the filter cake (e.g., permeability, density, morphology) (a-d); e.g.,
 - a. Variation with time, engine design, operating conditions and fuel formulation.
- 2. Kinetics oxidation mechanisms, detailed kinetics, global rates (a-b); e.g.,
 - a. Reaction rates for passive and active regeneration of the soot.
- 3. 1-D device models (using local properties and kinetics submodels) for systems simulation (a-c); e.g.,
 - a. Models for soot regeneration control studies.
- 4. Detailed 3-D device models for understanding capture and oxidation phenomenon. (a-d); e.g.,
 - a. Higher order models for design and optimization of DPF substrates and systems.
- 5. Improved sensor concepts and sensor utilization (a-c); e.g.,
 - a. Accurate estimation of soot loading and prediction of regeneration exotherm.

Example choices for Lean NOx Traps (LNT)

- 1. Determination of the elementary reaction steps (a-e); e.g.,
 - a. NO, NO₂, and O₂ storage and release
- 2. Determination/characterization of limiting chemical or physical mechanisms (a-e); e.g.,
 - a. H₂O and CO₂ inhibition
- 3. Chemistry and kinetics common to LNT's and 3-way catalysts (a-i); e.g.,
 - a. NO, NO₂, and O₂ storage during lean conditions

Example choices for Integrated Systems Simulation (ISS)

- 1. Oxidation catalysts (a-e); e.g.,
 - a. Shifts in hydrocarbon species distribution with oxycat transit
- 2. Reformer catalysts (a-b); e.g.,
 - a. Modeling for applications to LNT
- 3. Device-device interactions (both dynamic and steady-state) (a-f); e.g.,
 - a. DPF/SCR
- 4. Reference regeneration strategies for drive cycle simulations (a-c); e.g.,
 - a. DPF regeneration maps for reference engines

Prioritization Responses

- Requests sent to 22 organizations
- Total of fourteen (14) organizations responded (64% response rate
- Total of eighteen (18) individual responses
 - Twelve responses for diesel
 - Six responses for gasoline
- Responses received from
 - LD Vehicle OEMs
 - HD Vehicle OEMs
 - HD Engine OEMs
 - Tier 1 Suppliers
 - Energy Companies

Prioritization Methodology

- Resource Allocation
 - Respondents provide allocations by work area
 - Responses averaged to provide overall conclusion
- Overall Prioritization
 - Responses given as low, medium, high priority for each focus area
 - Numeric scores assigned to low (1), medium (2), high (3)
 and totaled for each focus area
 - Focus areas sorted by total numeric score
- Top Priority
 - Responses given as list of top three choices of focus area for four categories
 - Responses weighted by whether the choice was top, middle, or bottom
 - Weighted total for each chosen focus area developed, list sorted by weighted total

Diesel Topic Prioritization

Score	Id Code	Comment
37, 36, 34	SCR-4b, SCR-4c, SCR- 4a	Deactivation mechanisms
35, 34, 32	DPF-5a, DPF-5b, DPF-5c	Soot loading (estimating and sensor)
32, 31	DPF-2a, DPF-3a	Reaction rates for passive and active regeneration of the soot.
32	SCR-1c	NH ₃ reaction with NO, NO ₂
31	ISS-1c, ISS-3a	Oxidation catalysts & DPF/SCR

Diesel Topic Prioritization Comments

DPF

 Oxidation characteristics of soot cakes ranked high also DPF-1a and DPF-2b (30, 29)

SCR

 Dosing system effects had priority numbers of 30, 29, 27 and lower

LNTs

- First occurrence of an LNT priority (28), LNT-2b (Precious metal aging)
- Aging and NOx regeneration kinetics were the most highly rated categories

ISS

- Ranked 31 and below
- DOC components pushed up the ranking
- First device interactions occurred at 27

Gasoline Topic Prioritization

Score	Id Code	Comment
17-14	LNT-3d, 1a, 1b, 3b, 3c, 1d, 3e, 1c, 2a, 2e, 3a,	Kinetic issues
17, 14-12	LNT-2b, 1e, 2c, 3h, 3i, 2d	Precious metal aging and sulfur poisoning
13	SCR-4a	Thermal degradation through cycling
12	ISS-1e	4-way catalytic systems

Gasoline Topic Prioritization Comments

- DPF
 - Came in low at 8
 - Mostly questions about morphology of gasoline particles
- SCR
 - Almost all came in below the LNT issues
- LNT
 - Kinetics...kinetics....kinetics
- ISS
 - Typically low

Commercial Relevance-Diesel

DPF-5a: Diesel Particulate Filters (DPF), Improved sensor concepts and sensor utilization, Accurate estimation of soot loading and prediction of regeneration exotherm.	9
ISS-1e: Integrated Systems Simulation (ISS), Oxidation catalysts, Multi-function (4-way) catalytic systems addressing soot, NOx, CO, and hydrocarbons in a single unit	8
DPF-5b: Diesel Particulate Filters (DPF), Improved sensor concepts and sensor utilization, multiple, combined sensor utilization (both existing and new sensors) for loading assessment beyond simple back pressure.	7
ISS-3a: Integrated Systems Simulation (ISS), Device-device interactions (both dynamic and steady-state), DPF/SCR	6
SCR-2a: Selective Catalytic Reduction (SCR), Dosing system, Spatial and temporal distribution of urea/NH ₃ or HCs at monolith inlet	6

Importance to National Energy Strategy-Diesel

ISS-1e: Integrated Systems Simulation (ISS), Oxidation catalysts, Multi-function (4-way) catalytic systems addressing soot, NOx, CO, and hydrocarbons in a single unit	15
SCR-1c: Selective Catalytic Reduction (SCR), Global reaction rate equations, including hybrid mechanisms, NH ₃ reaction with NO, NO ₂	6
DPF-1d, DPF-5a DPF-5b: Diesel Particulate Filters (DPF), Models for local properties of the filter cake (e.g., permeability, density, morphology), Capture, generation, and release of nano-particles. Improved sensor concepts and sensor utilization,	4
SCR-1b: Selective Catalytic Reduction (SCR), Global reaction rate equations, including mechanisms, NH3 surface adsorption/desorption	4

Scientific Importance/Challenge-Diesel

DPF-2b: Diesel Particulate Filters (DPF), Kinetics - oxidation mechanisms, detailed kinetics, global rates, Relationship between soot oxidation kinetics and chemical/morphological properties of soot particles (including particles from advanced combustion)	10
DPF-2a: Diesel Particulate Filters (DPF), Kinetics - oxidation mechanisms, detailed kinetics, global rates, Reaction rates for passive and active regeneration of the soot.	9
LNT-3i: Lean NOx Traps (LNT), Chemistry and kinetics common to LNT's and 3-way catalysts, Release of SO ₂ , SO ₃ , and H ₂ S during desulfation	5
LNT-2e: Lean NOx Traps (LNT), Determination/characterization of limiting chemical or physical mechanisms for degree of contacting between precious metals and NOx storage sites	4
SCR-1b: Selective Catalytic Reduction (SCR), Global reaction rate equations, including hybrid mechanisms, NH ₃ surface adsorption/desorption	4

Utilization of National Lab Capabilities-Diesel

ISS-3a: Integrated Systems Simulation (ISS), Device-device interactions (both dynamic and steady-state), DPF/SCR	6
SCR-4b: Selective Catalytic Reduction (SCR), Deactivation mechanisms, Poisoning by S, P, HC's	6
DPF-1d: Diesel Particulate Filters (DPF), Models for local properties of the filter cake (e.g., permeability, density, morphology), Capture, generation, and release of nano-particles.	5
DPF-4a: Diesel Particulate Filters (DPF), Detailed 3-D device models for understanding capture and oxidation phenomenon, Higher order models for design and optimization of DPF substrates and systems.	5

Commercial Relevance-Gasoline

ISS-1e: Integrated Systems Simulation (ISS), Oxidation catalysts, Multi-function (4-way) catalytic systems addressing soot, NOx, CO, and hydrocarbons in a single unit	6
LNT-2b: Lean NOx Traps (LNT), Determination/characterization of limiting chemical or physical mechanisms for precious metal aging	6
SCR-4a: Selective Catalytic Reduction (SCR), Deactivation mechanisms, Thermal degradation due to cycling	4
LNT-1a: Lean NOx Traps (LNT), Determination of the elementary reaction steps for NO, NO2, and O2 storage and release	3
LNT-1c: Lean NOx Traps (LNT), Determination of the elementary reaction steps for NO and NO2 reduction by CO, H2, and HC (separately)	3

Importance to National Energy Strategy-Gasoline

ISS-1e: Integrated Systems Simulation (ISS), Oxidation catalysts, Multi-function (4-way) catalytic systems addressing soot, NOx, CO, and hydrocarbons in a single unit	6
LNT-1a: Lean NOx Traps (LNT), Determination of the elementary reaction steps for NO, NO2, and O2 storage and release	6
LNT-2b: Lean NOx Traps (LNT), Determination/characterization of limiting chemical or physical mechanisms for precious metal aging	4
SCR-4a: Selective Catalytic Reduction (SCR), Deactivation mechanisms, Thermal degradation due to cycling	4
LNT-3c: Lean NOx Traps (LNT), Chemistry and kinetics common to LNT's and 3-way catalysts, Reduction of NO and NO2 by CO, H2, and HC during rich conditions	3

Scientific Importance/Challenge-Gasoline

LNT-1d: Lean NOx Traps (LNT), Determination of the elementary reaction steps for formation of NH3, N2O, HCN, and isocyanates	5
LNT-2b: Lean NOx Traps (LNT), Determination/characterization of limiting chemical or physical mechanisms for precious metal aging	4
ISS-3f: Integrated Systems Simulation (ISS), Device-device interactions (both dynamic and steady-state), Shifts in DPF particulate properties with unconventional engine operation (e.g., HECC)	3
LNT-1b, LNT-1c, LNT-3d: Lean NOx Traps (LNT), Determination of the elementary reaction steps for, NO, NO2 and O transport between PGM adsorption and storage sites; reaction steps for NO and NO2 reduction by CO, H2, and HC; Consumption of H2, CO, and HC during rich conditions and lean-rich transients	3
SCR-4a: Selective Catalytic Reduction (SCR), Deactivation mechanisms, Thermal degradation due to cycling	3

Utilization of National Lab Capabilities-Gasoline

LNT-1d: Lean NOx Traps (LNT), Determination of the elementary reaction steps for formation of NH3, N2O, HCN, and isocyanates	4
ISS-1e: Integrated Systems Simulation (ISS), Oxidation catalysts, Multi-function (4-way) catalytic systems addressing soot, NOx, CO, and hydrocarbons in a single unit	3
LNT-1a, LNT-1c, LNT-2b: Lean NOx Traps (LNT), Determination of the elementary reaction steps for NO, NO2, and O2 storage and release; for NO and NO2 reduction by CO, H2, and H; Determination/characterization of limiting chemical or physical mechanisms for precious metal aging	3
SCR-4a: Selective Catalytic Reduction (SCR), Deactivation mechanisms, Thermal degradation due to cycling	3

Summary & Future

- Question: Allocate resources across four areas of work
 - For diesel, recommend small LNT activity (15% of resources) with remainder about equally distributed among ISS, SCR, and DPF (slightly more to SCR)
 - For gasoline, majority (about 60%) of resources should be on LNT, very limited SCR, balance about equally divided between ISS and DPF
- Commercial relevance & National Energy Strategy: DPF & SCR for diesels and LNT & 4-way for lean gasoline
- Scientific Importance/Challenge: Kinetics for both diesel and gasoline
- Utilization of National Labs: Kinetics & materials analysis
- Consider the possibility of an annual survey

Acknowledgments

- PNNL team (Darrell Herling, George Muntean, Mark Stewart, Jonathan Male)
- ORNL team (Ron Graves)
- Crosscut team
- DOE (Gurpreet Singh, Ken Howden)

Backup Slides

CLEERS Planning Committee

- Oversees detailed CLEERS operation
 - Implementation of rules, procedures
 - Update reports, recommendations to Crosscut Team
 - Coordination of Focus Groups
- Current members:
 - Dick Blint (GM)
 - Stuart Daw (ORNL)
 - Houshun Zhang (DDC)
 - Chris Rutland (UW)
 - Louise Olsson (Chalmers)

CLEERS Focus Groups are organized into three main categories

- Diesel Particulate Filters (DPF)
 - Leaders: Mark Stewart, George Muntean (PNNL)
 - PM characterization, oxidation kinetics
 - Filter media and cake modeling
 - Integral reaction and heat transfer
- Lean NOx Traps (LNT)
 - Leaders: Dick Blint (GM), Stuart Daw (ORNL)
 - NOx capture, release, reduction kinetics
 - S poisoning and desulfation
 - Integral reaction and heat transfer
- Selective Catalytic NOx Reduction (SCR)
 - Leaders: Jonathon Male (PNNL), Joe Bonadies (Delphi)
 - Zeolite catalyst characterization
 - NH3 and HC species storage, NOx reduction
 - Urea thermolysis, spray modeling
- Issues related to oxidation catalysts, systems integration, standardized testing shared by all three groups

10 CLEERS public workshops held to date

- #1- May 7-8, 2001, National Transportation Research Center, Knoxville
- #2,3- October 16-18, 2001, Ford Scientific Research Lab, Dearborn
- #4,5- April 30-May 2, 2002, University of Michigan, Ann Arbor
- #6- September 23-24, 2003, General Motors R&D Center, Warren
- #7- June 16-17, 2004, Detroit Diesel R&D Center, Detroit
- #8- May 17-19, 2005, University of Michigan, Dearborn
- #9- May 2-4, 2006, University of Michigan, Dearborn
- #10- May 1-3, 2007, University of Michigan, Dearborn
- 3 day meetings now held annually in Detroit area

General Comments

- Overall agreement from the participants that the limited size of the workshop is a plus
- Oversea attendees came from
 - Sweden
 - Canada (BC, Ontario)
 - India
 - Greece
 - Korea
 - Italy
 - Austria
- 75 industrial, 18 academic, 17 National Laboratory & ? EPA

Selective Catalytic Reduction (SCR)

1. Global reaction rate equations, including hybrid mechanisms

- a. Urea thermolysis (gas and surface)
- b. NH3 surface adsorption/desorption
- c. NH3 reaction with NO, NO₂
- d. Role of different HC components (e.g., alkanes, alkenes, aromatics)
- e. HC reaction with O₂
- f. HC reaction with NO, NO2
- g. HNCO formation/decomposition
- h. N₂O formation/reduction

2. Dosing system

- a. Spatial and temporal distribution of urea/NH3 or HCs at monolith inlet
- b. Effect of mixers
- c. Aerosol quality
- d. Atomizer placement
- e. Exhaust gas temperature effects

3. Transport effects

- a. Pore/washcoat diffusion
- b. Droplet vaporization

4. Deactivation mechanisms

- a. Thermal degradation due to cycling
- b. Poisoning by S, P, HC's
- c. Effects of soot, ash, coking

Diesel Particulate Filters (DPF)

- 1. Models for local properties of the filter cake (e.g., permeability, density, morphology).
 - a. Variation with time, engine design, operating conditions and fuel formulation.
 - b. Local effects of ash loading on filter cake.
 - c. Longer term effects of ash accumulation on DPF durability.
 - d. Capture, generation, and release of nano-particles.
- 2. Kinetics oxidation mechanisms, detailed kinetics, global rates.
 - a. Reaction rates for passive and active regeneration of the soot.
 - Relationship between soot oxidation kinetics and chemical/morphological properties of soot particles (including particles from advanced combustion)
- 3. 1-D device models (using local properties and kinetics sub-models) for systems simulation.
 - a. Models for soot regeneration control studies.
 - b. Models for component interaction studies.
 - c. Models for trade-off assessments between higher precious metal loading vs. engine torque/speed modifications.
- 4. Detailed 3-D device models for understanding capture and oxidation phenomenon.
 - a. Higher order models for design and optimization of DPF substrates and systems.
 - b. Practical simulations capturing structural and flow effects.
 - c. Evolution of temperature distributions and gradients combined with filter stability/survivability
 - d. Micro-mechanical models to predict strength degradation and part failure due to thermal cycling
- 5. Improved sensor concepts and sensor utilization
 - a. Accurate estimation of soot loading and prediction of regeneration exotherm.
 - b. Multiple, combined sensor utilization (both existing and new sensors) for loading assessment beyond simple back pressure.
 - c. More reliable, less operation-specific DPF state as

Lean NOx Traps (LNT)

- 1. Determination of the elementary reaction steps for:
 - a. NO, NO, and O, storage and release
 - b. NO, NO₂ and O transport between PGM adsorption and storage sites
 - c. NO and NO₂ reduction by CO, H₂, and HC (separately)
 - d. formation of NH₃, N₂O, HCN, and isocyanates
 - e. formation and decomposition of sulfates
- 2. Determination/characterization of limiting chemical or physical mechanisms for:
 - a. H₂O and CO₂ inhibition
 - b. precious metal aging
 - c. formation of non-regenerable sulfur
 - d. microstructural changes in the support materials with aging
 - e. degree of contacting between precious metals and NOx storage sites
- 3. Chemistry and kinetics common to LNT's and 3-way catalysts
 - a. NO, NO₂, and O₂ storage during lean conditions
 - b. Release of stored NO, NO₂, and O₂ during rich conditions
 - c. Reduction of NO and NO₂ by CO, H₂, and HC during rich conditions
 - d. Consumption of H₂, CO, and HC during rich conditions and lean-rich transients
 - e. Production of NH₃ and N₂O during rich conditions and lean-rich transitions
 - f. NOx storage by ceria
 - g. NOx/CO₂ diffusion in/out of sorbent as a function of sorbent state/composition
 - h. Capture of SO₂ and SO₃ during lean conditions
 - i. Release of SO₂, SO₃, and H₂S during desulfation

Integrated Systems Simulation (ISS)

1. Oxidation catalysts

- a. Shifts in hydrocarbon species distribution with oxycat transit
- b. Hydrocarbon storage effects
- c. NO to NO2 inter-conversion
- d. Shifts in particulate characteristics with oxycat transit
- e. Multi-function (4-way) catalytic systems addressing soot, NOx, CO, and hydrocarbons in a single unit

2. Reformer catalysts

- a. Modeling for applications to LNT
- b. Modeling for applications to SCR
- 3. Device-device interactions (both dynamic and steady-state)
 - a. DPF/SCR
 - b. DPF/LNT
 - c. LNT/SCR
 - d. DPF/Oxycat
 - e. LNT/Oxycat
 - f. Shifts in DPF particulate properties with unconventional engine operation (e.g., HECC)
- 4. Reference regeneration strategies for drive cycle simulations
 - a. DPF regeneration maps for reference engines (e.g., 1.9L GM engine)
 - b. LNT regeneration and desulfation maps for reference engines
 - c. Standard methods for triggering regenerations during simulations

