An Extensible Sensing and Control Platform for Building Energy Management

DOE Award DE-EE0006353

Anthony Rowe Assistant Research Professor ECE Department Carnegie Mellon University Mario Bergés Assistant Professor CEE Department Carnegie Mellon University **Chris Martin** Senior Manager Bosch Research and Technology Center Pittsburgh

Civil & Environmental ENGINEERING

Partners

Civil & Environmental ENGINEERING

The Team

Anthony Rowe ECE - CMU

Chris Martin Bosch

Mario Bergés CEE - CMU

Patrick Lazik ECE

Max Buevich ECE

Emre Kara CEE

Jingkun Gao CEE

Sensor Andrew

- Infrastructure to help connect the *virtual* and *physical world*
- Access, store, control, describe and search sensor data while maintaining security and privacy
- Internet-scale performance and Extensibility

Some Differences

- Open source, community driven and hacker-oriented (SDK)
- Reuses existing solutions for:
 - Access control / Privacy
 - Internet-scalability
- Separates measurements from metadata.
- Minimalistic meta-data schemas

Sensor Andrew Highlights

- Networking
 - Publish-Subscribe Architecture
 - Device-Level Access Control
- Storage
 - Multi-Resolution Time Series Database
 - Cloud-to-Edge Hand-off
 - High-resolution data stored at routers
 - Aggregates intelligently pushed to server side

Device Interfaces

 FireFly Wireless Sensing Platform, BACnet, Android@Home, NEST thermostat, Web Services, ModBus, PUP, Zigbee, Zwave 6

Respawn Distributed Datastore

Respawn Approach

- Key techniques:
 - multi-resolution tiling / lossless compression
 - cloud-to-edge partitioning

9

Request Handling

- Dispatcher redirects client requests to edge/cloud.
- **REQUEST:** (device, channel, level, offset)
 - "HTTP/1.1 GET /tile/sensor.temperature/10.2609.json"
- **RESPONSE:** JSON object

Sensor Andrew Applied to Building Automation Systems (BAS)

Scaife Hall Deployment

40,000 sq ft, 5 story, 140 room, 8 hallway, academic building built in 1962 with classrooms, auditorium, offices and labs.

Instrumentation Roadmap

EnFuse Panel Meters

Electricity usage 11 x 48 = 528 feeds

OSRAM Lighting Controller

277 VAC lighting control $15 \times 2 = 30$ feeds

AutoMatrix PUP Controller

 30×6 (inter-building) $\times 24 = 4320$ feeds

FireFly Environmental

Light, temp, humidity, sound, motion, vibration, pressure 120 feeds

Thermostat

802.15.4 Pneumatic thermostat with branch pressure monitoring 70 feeds

Chilled Water and Steam

Temperature and flow-rate $2 \times 2 = 4$ feeds

Fan Control Units

802.15.4 units for heat exchangers in each room Control and power metering 170 feeds

Localization

ALPs + VLC Localization Feed per person

Conclusions

- Existing Buildings
 - Rapid / low-cost deployment
- Leverage Open Standards
 - XMPP, IFC, BIM Surfer
- Scalable Backend
 - Storage, Communication, Analytics