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Funding and Duration
• Timeline

– Project start date: 7/20/05
– Project end date:  7/19/09
– Percent complete: 0.1%

• Budget: Total project funding:  300k/yr
• DOE share: 75%
• Contractor share: 25%

• Barriers
– Hydrogen embrittlement of pipelines and remediation (mixing with water vapor?)

– Assessment of hydrogen compatibility of the existing natural gas pipeline 
system for transporting hydrogen

– Suitable steels, and/or coatings, or other materials to provide safe and reliable 
hydrogen transport and reduced capital cost
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Team and Collaborators
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• Industrial Partners: SECAT 
– Novel coating materials, adhesion issues

• Applied Thin Films
• Chemical Composite Coatings
• Schott North America

– Current and future pipeline materials
• Oregon Steel Mills

– End users/field solutions
• Columbia Gas Kentucky
• Napa Pipe Corporation
• Advanced Technology Corporation

– Codes and Standards
• ASME

• Collaboration with National Laboratories
– Oak Ridge National Laboratory

• Alloy design and development
• High pressure mechanical property testing

– Savannah River National Laboratory
• Weldments
• High pressure testing

– Sandia National Laboratories, Livermore
• Constitutive modeling and testing



Objectives

• To come up with a mechanistic understanding of hydrogen 
embrittlement in pipeline steels in order to devise a fracture criterion for 
safe and reliable pipeline operation under hydrogen pressures of at least 
7MPa and loading conditions both static and cyclic (due to in-line 
compressors)

• To mitigate hydrogen-induced failures by studying the effect on the 
fracture processes of internal coatings and water vapor/oxygen

• Development of such a fracture criterion and mitigation requires
– Identification of deformation mechanisms and potential fracture 

initiation sites in the presence of hydrogen solutes
– Measurement of hydrogen adsorption, bulk diffusion, and trapping

characteristics of  the material microstructure in both coatings and 
pipeline steels

– Finite element simulation of hydrogen diffusion and interaction with 
material elastoplasticity under high-pressure hydrogen gas 
environment 
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Approach: Identify the Fracture Environemnt

• Circumferential or axial cracks at the inner surface of 
the pipe or welds

– Crack faces are exposed to a hydrogen gas pressure and hydrogen 
diffuses into the material while the crack surfaces are maintained at a 
hydrogen concentration in equilibrium with the gas pressure

7 MPa Hydrogen
gas

Hydrogen transport
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Approach: Ductile Transgranular Fracture
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Approach: Analyze Hydrogen Transport
Hydrogen transport equation accounts for hydrostatic stress drift and 

trapping at material defects
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Results

Finite element simulation of hydrogen transport at a 
double-notch 4-point bend specimen
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Trap Density Iron as Function of Plastic Strain
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Nominal and Hydrostatic Stresses vs Displacement of Loading 
Point
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Lattice and Trapping Site Concentrations
ahead of the Notch

0 2 4 6 8 10
0

5

10

15

20

25

30

0/ 0.2nomσ σ =

0/ 2.0nomσ σ =

0/ 1.0nomσ σ =

0/R r

0

TC
C

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0/ 0.2nomσ σ =

0/ 2.0nomσ σ =

0/ 1.0nomσ σ =

0/R r

0

LC
C

110 001mm/su .=&



Total Concentration
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Plastic Strain as Loading (nominal stress) Increases
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Hydrostatic Stress as Loading Increases
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Total Concentration as Loading Increases
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Total concentration as loading increases
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Total Concentration
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Ongoing Research-Future Plans
• Collaboration with SECAT, ORNL, and Oregon Steel Mills (D. Stalheim) to 

identify steel compositions (e.g. MO1677, D2 Low C API X80) with promising 
hydrogen compatibility

– Carry out mechanical property testing to determine elastic and flow characteristics
• Sandia National Laboratories

– Identify the fracture mechanisms in the presence of hydrogen (accelerated void 
nucleation and coalescence)

– Nature of important traps (Thermal Desorption Spectroscopy)
• Inclusions/precipitates, grain boundaries, dislocations

– Measure the trap binding energy
• 60kj/mole?

– Measure the trap density
• If density evolves with dislocation structure, what is the corresponding relationship? 

• Experimental measurement of hydrogen diffusion constant
– One atmosphere measurements at the University of Illinois

• Apparatus under construction
– High pressure measurements at Oak Ridge National Laboratory and Savannah 

River National Laboratory

• Begin work in collaboration with SECAT (Applied Thin Films, Chemical 
Composite Coatings, Schott North America) on how a thin coating film over 
the steel surface affects hydrogen adsoprtion and subsequent diffusion 
through the film toward the interior of the steel wall

– Experiments and fist principle calculations on adsorption
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Ongoing Research-Future Plans

19

• Assessment of interfacial strength of second-phase particles in pipeline steels in 
hydrogen and water environments

– Ferrite-based alloys have Cr23C6 and MnS precipitates at grain boudnary interfaces.  
Substitutional solutes (e.g. Cr, Mn, Si) or interstitials (e.g. H, N, C) modify structure and 
stability

• H (N of C) interstitials alter bonding and cohesion
• Cr is depleted near Cr23C6 interface while Fe preferentially occupies Cr sites not bonded to C

– Obtain cohesive energies via first-principles, Density Functional Theory (DFT) 
calculations with distribution of atoms near interfaces based on periodic cell 
approximations

• Determine feasibility of using equilibrium criteria to address decohesion at internal 
interfaces.  If not feasible, transient models will be explored via continuum 
mechanics models (fast-separation limit for interfacial thermodynamics)

Cr23C6

H-interstitial

FePrecip.

Interface and unit cell under shear
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