Stability Breakout Session

I Chemical Stability

- What are the Reactions?
- i. Products must be identified (loss of IEC is not enough)
- ii. Establish reaction mechanism(s)
- iii. Measure the kinetics

II Reaction of membrane with OH⁻/HCO₃⁻ /CO₃²⁻ at various hydration levels – nucleophilicity and basicity of anion species

- i. Cations
 - a) Small molecule analogues
 - b) Effects of hydration state and temperature
 - c) Cation design

 $R_4N^+ \longrightarrow ????$

Families of cations

- Ammoniums
- Guanadiniums
- Sulfoniums
- Phosphoniums [problematic]
- Phosphazeniums

II Reaction with OH⁻/HCO₃⁻/CO₃²⁻ and Hydration levels (cont'd)

- ii. Tethers
 - Link to cation
 - Link to backbone
 - Spacers (in between)
- iii. Backbone
 - a) Hydrocarbon
 - Structure
 - Functional makeup
 - b) Fluoropolymer

III Reactive O₂ Species

HOO⁻/H₂O₂, [HOOCO₂]⁻,[OOCO₂]²⁻,O₂⁻, OH⁻

- i. Cation, tether, backbone
- ii. Chemistry under basic conditions
- iii. Origin and concentration of reactive species under various conditions

Catalyst Testing

- Under Membrane Like Conditions
 Using alkyl ammonium hydroxide
- Interactions of catalyst with ionomer will be important

Mechanical Stability

Polymer properties WRT:

- IEC
- Cation identity
- RH cycling

Mechanical issues leading to performance loss: edge, pinhole, flex, stress

- Crystallinity
- Glassy polymer

What effect does hydroxide or carbonate have on these properties

Modeling

- Polarized continuum to model hydration
- Explicit water molecules work better, but computational cost is much larger
- Models agree with experiments if enough water molecules are use
- Carbonate and bicarbonate counterions are vastly more stable toward reaction with the cation than hydroxide (> 20kcal/mole)

Targets

- Current: 1000 hrs with 10% loss in performance
- New Tokuyama membrane: 2000 hrs with 1-3% loss in performance
- Goal: >5000 hrs with 1-3% loss of performance