

Electrocatalysis in Alkaline Electrolytes - Research Overview

Sanjeev Mukerjee

Nagappan Ramaswamy, Qinggang He, Daniel Abbott, and Michael Bates

Department of Chemistry and Chemical Biology Northeastern University, Boston, MA 02115

AMFC Workshop Seminar – May 8, 2011

> General Overview – Advantages of High pH

> ORR Mechanistic Understanding

- > Question of Kinetic Facility in Alkaline Medium?
- > Inner- vs. Outer-sphere Electron Transfer

> Non-noble Metal Macrocycle Electrocatalyst

- > Origin of ORR Activity
- > Redox Potential Tuning
- Influence of Graphitic Defects

Smart Catalysts for Anodic Oxidation

 Homogeneous Mediation using Metal-organic Complexes

> Alkaline Membrane Fuel Cell Studies

> Interfacial Challenges and Future Prospects

1) Nernstian Potential Shift

Northeastern

2) Affects Adsorption Strengths of spectators, and intermediate species

IVERSIT

How Facile is ORR in Alkaline Medium?

Northeastern

Inner-sphere and Outer-sphere Electron Transfer Mechanisms

Desired 4e⁻ transfer on oxide free Pt site Outer-Sphere Electron^oTransfer $[O_2.(H_2^{\mathbf{Pt}}O_n^{\mathbf{Q}}]_{aq}^{+e} \rightarrow [O_{2\mathbf{H}}^{\mathbf{Pt}}.(H_2O)_n]_{aq}$ $[O_2 \bullet O(H_2O)_n]_{aq} \to (O_2 \bullet O)_{ads} + nH_2O$ $Pt + H_2O \longrightarrow Pt + OH^ (O_2^{\bullet})_{ads} + H_2O \rightarrow (HO_2)_{ads} + OH^{\bullet}$ $(HO_2^{\bullet})_{ads} + e^{-} \rightarrow (HO_2^{-})_{ads}$ Pt + e^{-} $\rightarrow Pt$ $(HO_2^{-})_{ads} \rightarrow (HO_2^{-})_{aq}$ H,O Specific adsorption of hydroxide anions promote outer-sphere electron transfer if alkaline medium 0 + e⁻ ---> Pt $Pt + OH^{-}$

Inner-sphere and outer-sphere electron transfer compete in alkaline medium

Literature Survey on non-PGM Cathode Catalysts

The starting complex is immaterial. Its important to know how the self-assembly and distribution of the active site takes place!!!

Bottom-up approach needed in catalyst synthesis rather than a random mixing of precursor materials and heat treatment.

ORR Activity of FeTPP/BPC Pyrolyzed at 800°C

Pyrolyzed FeTPP exhibits remarkably low H_2O_2 yield due to its exotic structure as explained in the next slides

Square Wave Voltammetry - Evolution of Fe²⁺/Fe³⁺ Redox Potential

Pyrolysis Temperature [°C]

Synchrotron Principles

IVERSIT

XANES (< 50 eV)

- •Absorber site symmetry
- (e.g. T_d , O_h , etc)
- Electronic configuration
- Geometric Binding Site EXAFS (> 50 eV)
- Geometric information
- Bond length
- Coordination number
- •*BULK* short range order

Insitu Extended X-ray Absorption – Fe-N_x Short Range Structure

Delta Mu – Identification of Active Site and Oxygen Adsorption Mode

Defective sites are regions of higher chemical potential and hence anodic shift in redox potential

> Increasing defect sites is key to increasing active site density

Northeastern

ORR on FeTPP/C: Acid vs. Alkaline

IVERSIT

Alkaline hydrogen oxidation – AEMFC Anodes

Gasteiger et al. JECS 2010

🕻 Northeastern

Northeastern

Literature Survey on Methanol/Ethanol Oxidation Anode Catalysts

Markovic. N.M., Electrochim. Acta 2002, 47, 3707

Methanol Oxidation: Effect of pH, and Carbonates

K. Scott et al, 2004, Electrochem. Acta, 49, 2443

- Increasing pH or NaOH concentration increases MOR activity
 - Effect of carbonate is two-fold
 - Decreasing conductivity and increasing viscosity
 - Decreasing MOR activity by competitively adsorbing with hydroxide anions

	H+	OH-	CO ₃ ²⁻
Mobility (cm ² V ⁻¹ s ⁻¹)	36.25	20.5	3.5
Infinite Diffusion Coefficient (10 ⁻⁵ cm ² /s)	9.3	5.3	0.9

Enhanced Electrocatalytic Processes: Polyvalent smart catalyst (TM) effect on C-C cleavage

Atomic Level Picture of Electrocatalytic Pathways via Determination of Specific Adsorption Sites

Proof of Pi-bonded ethylene pathway using synchrotron based in situ XANES on Pt for EtOH oxidation in KOH solution with and without co-catalyst in solution

oxidation of ethanol with and without co-catalyst for identifying species on the surface as a function of potential

Acetyl species is mechanistically favored toward acetic acid route

Presence of co-catalyst favors formation of pi-bonded Ethylene type intermediate and hence enhances C-C Bond Cleavage

Northeastern

Literature Survey on Alkaline Membrane Fuel Cell Performance

geo

Use of alcohol feed in the absence of KOH on the anode leads to power densities of only ~10 mW/cm².

Challenge lies at anode interface (vide infra) Specific Adsorption of Quaternary Ammonium Cations is the killer

Thicker Electrodes with Non-PGM Cathodes

Better Ionomer Solutions Needed

Anode: PtRu on Toray Paper $(4mg_{PtRu}/cm^2 + 1mg_{AS4}/cm^2)$ Cathode: BASF 30% Pt/C on GDL $(1mg_{Pt}/cm^2, 28.5\% AS4 + 1mg_{AS4}/cm^2)$ Membrane: Tokuyama A201

Steep cell voltage loss right in the activation overpotential region

Cell Temp: 50°C, H₂ Feed on Cathode used as reference electrode, Anode Feed: 8ml/min

% Loss in Current Density

0.985 V

Percent loss in MeOH oxidation current in 0.1M KOH electrolyte in the presence of various ammonium group based contaminants 6e-3 0.750 V 0.633_V → (CH₃)₄N⁺OH⁻ 30% Pt/C approx. -235 mV shift in 0.1 M KOH + 0.5 M MeOH → (CH₃CH₂)₄N⁺OH⁻ presence of ionomer 0.6 V vs. RHE 4e-3 -20 → (CH₃CH₂CH₂)₄N⁺OH⁻ (C₆H₅CH₂)(CH₃)₃N⁺OH⁻ 2e-3 -40 Current [A] 0 -60 -2e-3 -80 (w/ ionomer at anode) - No KOH -4e-3 (w/ ionomer at anode) - w/ 0.1M KOH (No ionomer at anode) - No KOH -100 (No ionomer at anode) - w/ 0.1M KOH

Experiments with charged redox couples

Indicates strong specific adsorption of NR_4^+ and its effect on interfacial electron transfer

120

-6e-3

0.0

0.2

0.4

0.6

E [V vs. RHE]

0.8

1.0

1.2

1.4

1. Loss of surface area (blocking effect)

100

80

60

Concentration of Contaminant, mM

2. Electrostatic effects (may hinder OH⁻ transport across IHP)

20

40

Distance away from the surface

Current Hypothesis

> Potential drop across the electrochemical double layer

Unfavorable Electrostatics in the Inner-Helhmholtz Plane

Future work needed in this>direction

CONCLUSIONS

ORR - General Mechanistic Considerations

> Inner- and Outer-sphere electron transfer steps compete in alkaline medium

> Higher stability of peroxide intermediate is the primary kinetic advantage in alkaline media

ORR - Pyrolyzed Non-noble Catalysts

- Redox potential shift of Fe²⁺/Fe³⁺ metal center upon pyrolysis
- Defect sites on graphitic plane hosts active sites

Ethanol Oxidation - Smart catalyst (TM) redox couple

- > Exhibits the highest reported enhancement of ethanol oxidation.
- Selectivity to produce CO₂
- Delta-Mu indicates pi-bonded ethylene intermediate

Future Prospects - Interfacial Challenges

- **Results with H₂/O₂ are promising**
- > Understanding specific adsorption of quaternary ammonium ions at the anode interface is key

Important Considerations for Future Electrocatalysis Research

- Need to unravel Anode Electrode Issues: Electrostatics, Reaction Centers for Hydride formation and Oxidation
- Need for Increase in site density for Non PGM reaction centers
- Role of liquid electrolytes from an interfacial perspective
- Interaction of ionomer with active site: Specific adsorption etc.
- Durability issues need to be determined in conjunction with the operating conditions and the choice of ionomer.

Acknowledgements

Funding Agencies

