

Breaking the Fuel Cell Cost Barrier

AMFC Workshop

May 8th, 2011, Arlington, VA

Shimshon Gottesfeld, CTO

The Fuel Cell Cost Challenge

CellEra's goal – achieve price parity with incumbents earlier on in market entry process !

Era

Mainstream Polymer Electrolyte Fuel Cell (PEM) Cost Barriers

Cost barriers deeply embedded in core tech materials

BOM-based cost barriers – 90% of stack cost Cost volatility - Platinum \$500/Oz - \$2,500/Oz

The possibility of an OH⁻ ion conducting membrane

A new type of membrane component with potential for strong fuel cell cost cuts was revealed in 2006, but

was accompanied by general industry skepticism

CellEra Took Advantage of this Opportunity

CellEra's Platinum-Free Membrane Fuel Cell (PFM-FC)

PFM vs. PEM stack- Cost Analysis per kW at 10^3 unit volumes

* The cost of the PFM-FC will come down to the target 40 \$/kW in large volume transport applications assuming AMFC operation at 80 degC

CellEra Tech. Development timeline – Q3 '09

- CCM fabrication scaled up to 100 cm2* moved from manual to semiautomated fabrication * present CCM has 265 cm2 active area
- Work initiated on scalable AMFC stack design & development
- Lab upgraded for stack level fabrication and testing

Cellera's AMFC : Hydrogen/Air, 2/2 bar, 80 deg C* (Dec. 2010)

* short term test

CellEra

Cellera's AMFC : Hydrogen/Oxygen, 2/2 bar, 80 deg C* (Dec. 2010)

* short term test

Operation on oxygen not presented here to suggest a technical option—only demonstrate that Tokuyama membrane and recast ionomer conductivities and water mobilities enable to reach these currents and Pmax at 80°

5 cm² H₂/air AMFC power variation with time at constant current of 0.4A/cm², cell T =60°C. (Jan. 2011)

While still lagging behind demonstrated stability in PEMFCs, this is 2 orders of magnitude improvement over the 2008 status

Processes in PEM and AEM Membrane Fuel Cells

* Water is generated at the anode
& <u>is consumed</u> at the cathode at half the generation rate

AMFC power loss under ideal and less ideal water management conditions

Complete CO₂ immunity Achieved in Cellera's Stack

- Switching from CO₂-free air (<1 ppm) to ambient air (~400 ppm CO₂) results in ~50% loss of performance (red curve) at 60 degC
- CellEra system tools eliminate this loss , to give performance equivalent to CO₂-free air (blue curve) with no scrubbing solutions

Higher cell T will further facilitate achieving CO₂ –free performance with direct feed of ordinary air

Anode carbonate decomposition process: (1a) $(-NR_4+)(HCO_3-) + \frac{1}{2}H_2 = H_20 + CO_2 + e + (-NR_4+)$ (1b) $(-NR_4+) + OH- (from cath.) = (-NR_4+)(OH-)$

Steady state anode carbonate concentration, is given by : $[(NR_4+)(HCO_3-)]_{an} (V,T) = [dNco_{2,cath}/dt]/k_{(1a)} (V,T)$ *High $k_{(1a)} (V,T)$ at $T_{cell} = 80^{\circ}C$ ensures effective "electrochemical purge" of CO_2

Cellera Tech. Development timeline – Q4 '09

- Short stack fabrication and testing begun
- design based on cabinet dimensions defined by Commscope
- Aluminum hardware, transverse air cooling

CellEra Tech. Development timeline – Q3 '10

- **First kW level AMFC stack***
- Stack built of surface coated aluminum and runs on:
- Ambient air
- No added electrolyte
- No added water
- No CO₂ "scrubbing"
- Four 9's H_2
- Cooling by fan

* demonstrated at Andrew/Commscope, Richardson, TX

The Near Term Market

near-term opportunities in lead acid battery and diesel gen set replacement

Critical power (annual \$3 billion lead acid battery market)

- Backup power for telecommunications
- □ Affordable, clean and compact, time- extended backup solution
- □ 10X energy density versus lead acid, highly scalable solution

First Cellera/Commscope product pursued:

2kW net AMFC stack to fit in Commscope's transciever cabinet

□price parity with 8 hr lead-acid battery solution (\$0.3/Wh) targeted

□Joint development and go-to-market agreement

□ Project selected for BIRDF funding, <u>www.birdf.com</u>

The Market Opportunity – Automotive

Transportation

- **Longer term**, but largest opportunity
- At high volume, large fraction of cost is Pt related
- **1**st application EV Range extension

Source: NREL, 2009

Achieved in under 3 years, \$4 million

Global Cleantech¹⁰

**** cleantech. theguardian

✓ World's first kW-scale PFM-FC working prototype (first achieved Q2-2010)

✓ Joint development and go-to-market agreement with global communicationsinfrastructure solutions provider as launch partner

Co-operations and Formal Collaborations

Automotive OEM funding contract being finalized

Electrocatalysis R&D Center funding contract being finalized

Cellera intends to develop and fabricate PFMFC stacks, leveraging the capacity and knowhow of supplier and user partners

Technology and Business Development

 Cellera is targeting a first, H2/Air, 2 kW AMFC stack product for back-up power application

Cellera's AMFC technology focuses on operation with no Pt catalyst and no liquid electrolyte

- Cellera's first stacks are designed to be used in a power system co-developed with Commscope (Richardson, TX), a company supplying a range of telecom products including back-up power systems for cell phone towers
- Cellera is pursuing further widening of the field of AMFC product applications, including applications for transport, based on cooperation with an OEM in the relevant sector

Summary: (1) Technical Insights

• On some common concerns regarding AMFCs:

- **Concern 1:** Chemical stability of the ionomer is poor and is severely limiting cell life
- **Observation:** Cell life demonstrated under load for >10³ hours, with the keys for longer life being good quality MEA and cell T < 65 degC
- **AEM and ionomer technology developed to-date by Tokuyama could serve well for a 1st generation AMFC stack
- **Concern 2:** The conductivity of OH- ions in a membrane is well below that of protons, hence performance hit expected
- **Observation:** Cell HFR with Tokuyama materials = 0.2 ohmcm² at 60 degC (at full hydration)
- *Concern 3:* Replacement of Pt will incur significant performance loss
- **Observation:** Initial cell performance is comparable with non-Pt catalysts and stability mostly depends on CCM structure and effective water management

Summary: (2) requirements of further development

Closing the performance gap vs. PEMFCs will mainly require:

 Higher-temperature (80 degC) membrane and ionomers of high water mobility, including under partial hydration conditions

*Operation at such higher temperature will facilitate achieving full CO_2 tolerance w/o any need of upstream sequestration

Low cost , non-Pt anode catalysts operating at overpotential < 50mV at the design current density and exhibiting good long term stability

Acknowledgements

<u>The \$\$</u>

<u>VCs:</u> Israel Cleantech Ventures, B-T-V(Switzerland) Mizrahi Ventures (US)

Government Funds:

Office of Chief Scientist (Israel) BIRDF (US/Israel)

Breaking the Fuel Cell Cost Barrier

Thank You!

Shimshon Gottesfeld, CTO (US) 1 518 786 88898 (Israel) +972 542 526 373 <u>shimshon@cellera.biz</u>