
Cummins/ORNL-FEERC CRADA: NO_x Control & Measurement Technology for Heavy-Duty Diesel Engines

W.P. Partridge (PI), J.-S. Choi, J.E. Parks, R.M. Connatser Oak Ridge National Laboratory

N. Currier (PI), S. Geckler (PI), A. Yezerets, K. Kamasamudram Cummins Inc.

> Presenter: Bill Partridge partridgewp@ornl.gov

2011 Vehicle Technologies Program Annual Merit Review May 12, 2011, Arlington, Virginia

> U.S. DOE Program Management Team: Ken Howden, Gurpreet Singh, Steve Goguen

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

AK RIDGE NATIONAL LABORATORY

NTRO

Overview

<u>Timeline</u>

- Start: FY1998
- Major Revisions: 2001, 03, 06, 10
- Current term: 2010-'12 revision
- Current end date: Sept. 2012
- ~47% Complete

Budget

- 1:1 DOE:Cummins cost share
- DOE Funding:
 - FY2009: \$400k
 - FY2010: \$400k + \$250k (Aug. 2010)
 - FY2011: \$450k + \$400k
 - Catalyst + Combustion

<u>Barriers</u>

- Engine combustion
 - Combustion uniformity
- Emissions controls
 - Catalyst fundamentals, design, control & diagnostics, (& efficiency)
- Engine controls
 - Variability & diagnostics
 - Fast PM & species diagnostics
- Durability
 - Fuel dilution of oil, (& efficiency)

Partners

- ORNL & Cummins Inc.
- Chalmers Univ. of Technology
- Inst. Chemical Tech., Prague
- Informal coordination with CLEERS

Objectives

Self-Diagnosing SmartCatalyst (new focus in current term):

- Enable closed-loop, on-board control & OBD of catalyst systems
 - Understanding the intra-SCR static and dynamic performance distributions & relationships
 - Developing diagnostic tools that measure those performance parameters

Improve catalyst design, control & diagnosis (OBD) for enhanced *efficiency, durability & emissions control*

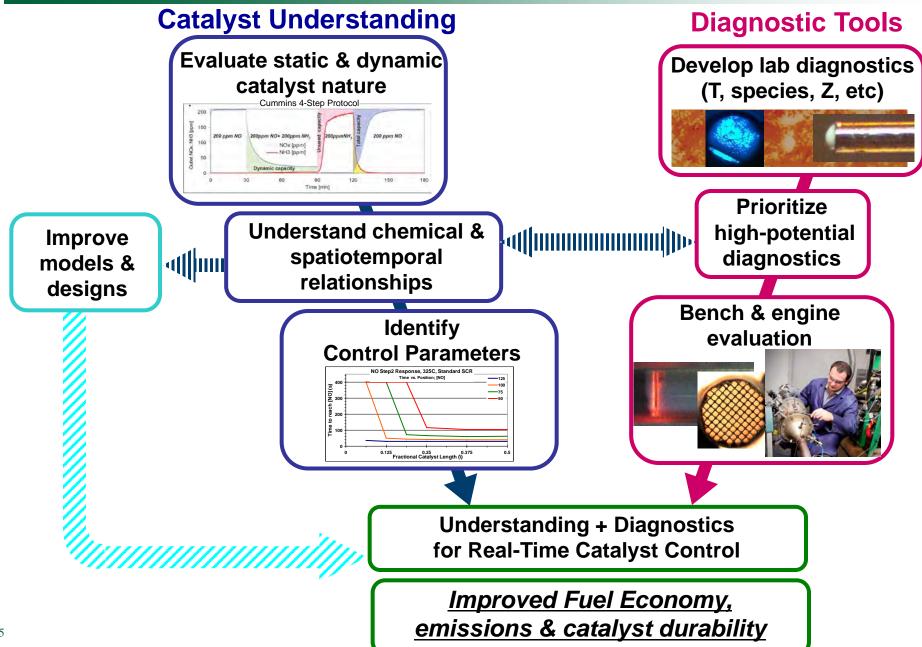
Combustion Uniformity:

- Reduce cylinder-to-cylinder & cycle-to-cycle combustion variations

 Understanding the origins of intake & combustion fluctuations

 Enable improved efficiency, control and emissions
- Apply Fuel-in-Oil diagnostic to advanced engine technologies
 Enable improved *durability, efficiency and emissions* Lower development *cost* & shorten development *time*

2010 Milestone:

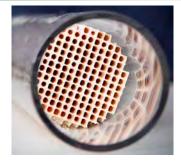

Characterize SCR-catalyst performance distribution under select operating conditions

Demonstrate high-speed (sufficient for cylinder-resolved) measurement of 0-10% CO₂

2011 Milestones (on target for Sept. 2011 completion):

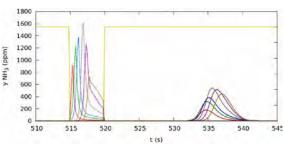
- Dynamic analysis of SCR-catalyst performance
 - E.g., NH₃ capacity distributions & transient response
 - Assess & refine analysis techniques
- Measurement of intake-EGR-charge distribution on engine
 - Build on knowledge from fast exhaust measurements
 - Proof-of-principle and refinement in early 2011
 - Follow-on applications for studying non-uniformity origins and mitigation strategies

Approach for addressing SCR Control Challenges

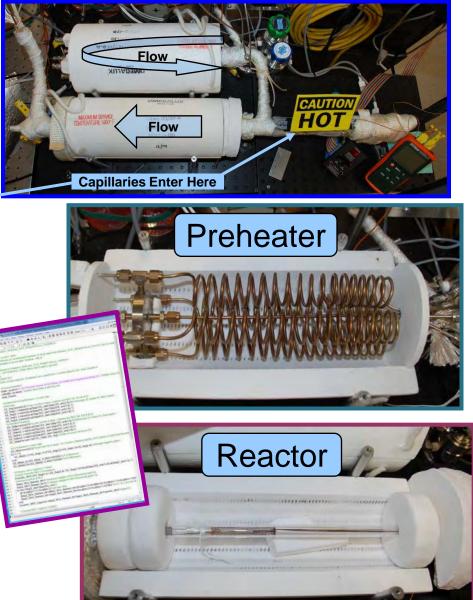

Technical Progress: Self-Diagnosing SmartCatalysts

• Distributed SCR Reactions & Ammonia Storage

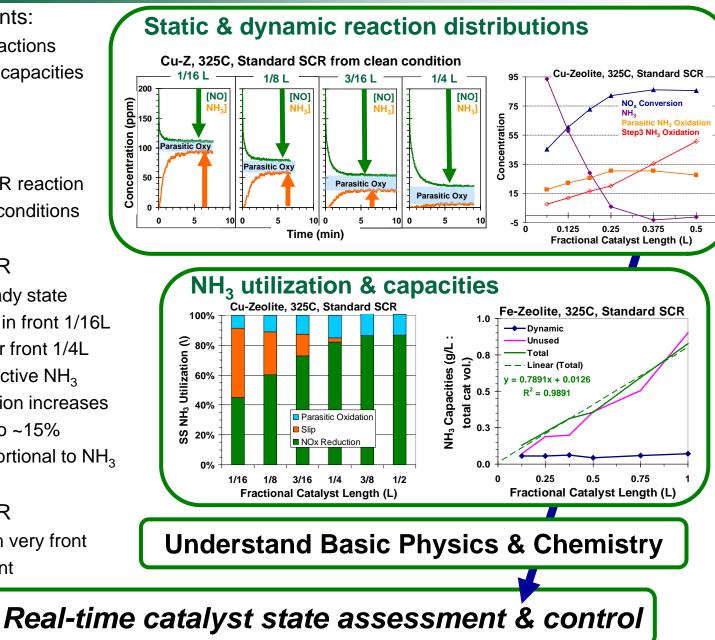
- Study static and dynamic reaction/storage distributions
- Evaluating commercial Fe- & model Cu-zeolite catalysts
 - Responsive to 2010 Merit Review feedback
- Collaborative with Prof. Louise Olsson, Chalmers
 - Provided model Cu-zeolite catalyst
 - PhD student Xavier Auvray, 6 months at ORNL & ongoing


LNT NH₃ & N₂O chemistry

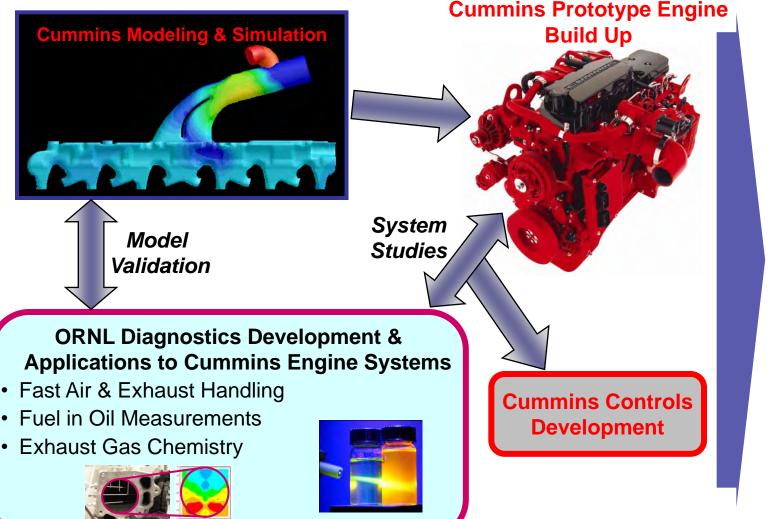
- Using CRADA data & continuing in CLEERS
- Collaborative w/ Prof. Olsson, Chalmers
 - MS student Soran Shwan, "Modeling of NOx storage and reduction for emission cleaning from vehicles," August '10 defense
 - Continuing with a new MS student
- Collaborative w/ Dr. Petr Koci, Prague Inst. Chem. Technology
 - August 2010 at ORNL
 - Ongoing N₂O modeling work
 - Partnering to model & understand SpaciMS sampling details



Technical Progress: Intra-SCR Measurements & Analysis


MicroReactor redesigned mid 2010

- Improved SpaciMS capillary access
- Improved temperature control
 - Separate gas preheat before mixing
 - Catalyst T uniformity > 99%
 - Capillaries > 195°C
- 2x independent gas switching feeds
- LabView microreactor control & monitoring
- MatLab analysis:
- Steady state, transient & integrated analysis

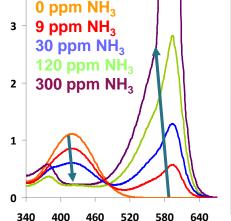

Technical Progress: Intra-SCR Distributed NH₃ Functions

- Protocol measurements:
 - Static & Dynamic reactions
 - NH₃ utilizations and capacities
- Focus on Cu-zeolite:
 - 200, 325 & 400°C
 - Standard & Fast SCR reaction
 - Degreened & Aged conditions
- 325°C, Standard SCR
 - ~3 min to reach steady state
 - Active NH₃ capacity in front 1/16L
 - SCR distributed over front 1/4L
 - Max in front w/ active NH_3
 - Parasitic NH_3 oxidation increases through SCR zone to ~15%
 - Apparently proportional to NH_3
- 400°C, Standard SCR
 - Parasitic oxidation in very front
 - Greater SCR gradient

Approach for Advancing Engine-System Efficiency

Develop & apply advanced diagnostics for engine system characterization to enable & support model validation and engines controls for fuel efficient engines

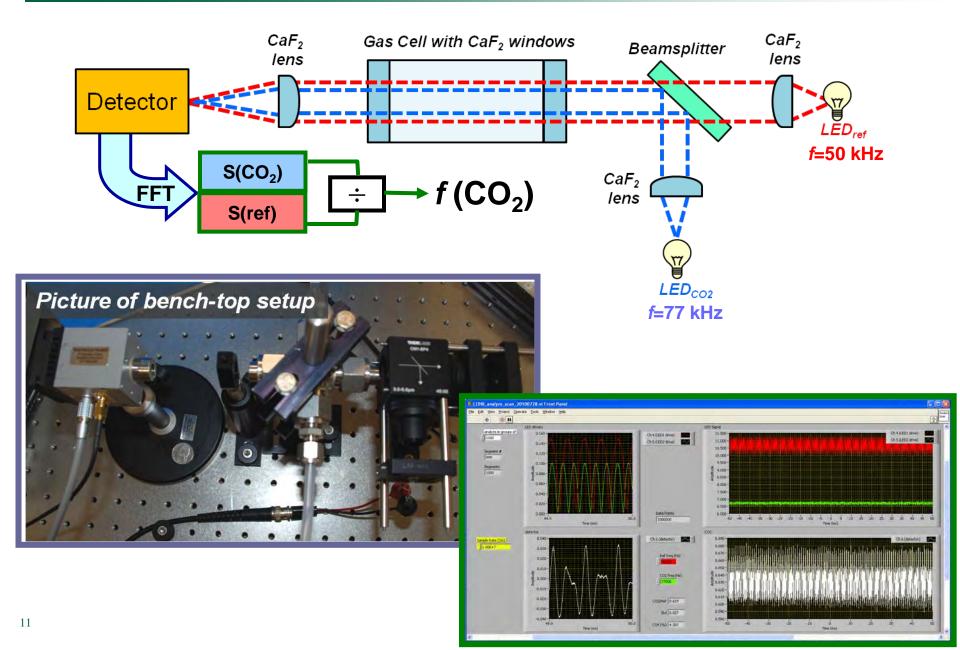
Clean Fuel-Efficient Engines in the Marketplace


Technical Progress: <u>Combustion Uniformity</u>

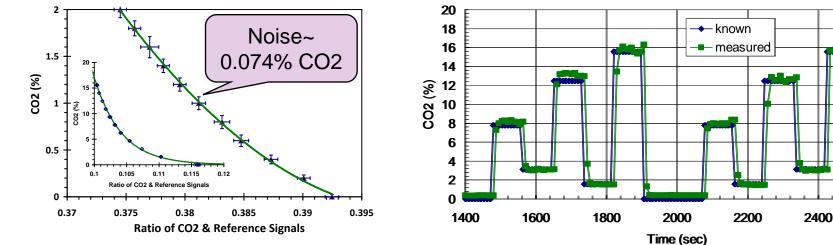
- Developing tools to validate intake EGR-mixing
 - Fast intake CO₂ fluctuations measurements
 - Critical to fuel efficiency & emissions
 - Very relevant to high-EGR systems

- Sensing exhaust species for improved control
 - Combustion uniformity, catalyst control

Enables improved *efficiency & durability*


- Applying Fuel-In-Oil diagnostic to advanced engine applications
 - 2011 National FLC Excellence in Technology Transfer Award
 - Da Vinci Emissions Services commercializing DAFIO

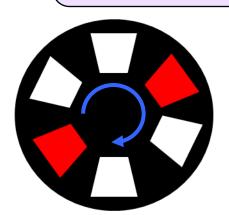
Enables improved engine calibration, durability, efficiency & emission; and lowers development costs



Tech. Progress: Fast Intake CO2 Measurements

Tech. Progress: Fast Intake CO, Calibration & Speed

Calibration



O

D

Speed Demonstration

- 400Hz chopper in IR path
- Plastic over every 3rd window
- Plastic simulates greater [CO₂] •

Chop On/Off S CO2/Ref CO2/Ref(chop) chop Chop Frequency=400 Hz 25 5 10 15 20 30 0 90CAD Time (ms) @ 1500RPM **On-Engine Application at Cummins**

2600

Tech Center April 11-15, 2011

Collaborations & Coordination

- Cummins
 - CRADA Partner
- Cummins SuperTruck Program
 - CRADA-developed tools support SuperTruck project
- Prof. Louise Olsson, Chalmers
 - SCR measurements & modeling, (PhD student, Xavier Auvray)
 - LNT modeling NH₃ & N₂O chemistry (MS student)
- Dr. Petr Koci, Prague Institue of Chemical Technology
 - LNT modeling N₂O chemistry
 - SpaciMS capillary sampling modeling
- CLEERS
 - LNT NH₃ measurements & modeling, SCR measurements
- Dr. Alex Goguet, Queen's University Belfast
 - SpaciMS invasive nature under varying conditions (MS student)
 - Developing Time-of-Flight SpaciMS
- Dr. Kent Froelund, Da Vinci Emissions Services
 - DAFIO licensed for commercial sales

ueen's University

Future Work

2011 Work:

- Other conditions (e.g., SV, NH₃:NO_x, NO:NO₂) to study performance impact
- Mine spatial & temporal species distributions for control relationships
- Fiber-based NH₃ and other diagnostics
- Fuel-in-oil applications to advanced engine technologies
- Mid-IR laser for improved intake-CO₂ SNR
- SCR, LNT & SpaciMS modeling (joint w/ CLEERS, Chalmers & ICT Prague)

2012 Work:

14

- Inhibitor & Inhibition impact on SCR catalyst reaction and storage distributions
- Correlate control relationships w/ performance parameters
 - Identify strategies for SCR-catalyst control & diagnostics
- Apply diagnostics to understand combustion variations
 - Correlating intake and combustion variations

Summary

- On path to Self-Diagnosing SCR Catalyst
 - Focusing on Cu-zeolite catalyst (cf. 2010 Review feedback)
 - Intra-SCR static & dynamic performance distributions (2010 milestone)
 - Enhance design, modeling, specification, control & OBD for *improved efficiency, durability & emissions*
- Studying intake variations impact on combustion uniformity
 - Build on cylinder-resolved exhaust CO₂ measurements (2009 milestone)
 - Synergistic with Cummins' SuperTruck program
 - Evaluates engine variations and mitigation strategies for *improved efficiency, control and emissions*
- CRADA-developed Fuel-In-Oil Diagnostic nationally recognized
 - 2011 National FLC Excellence in Technology Transfer Award
 - Applying to advanced engine technologies
 - Commercially available as DAFIO from Da Vinci Emissions Services
 - Applied at Cummins for improved durability, efficiency and emissions

- CRADA approach consistently yields practical techniques and solutions
 - E.g., EGR mixing, Fuel dilution, Catalyst & Engine control, Models, SpaciMS, OBD
- Future work focuses on:
 - Understanding distributed intra-SCR chemistry & performance for OBD applications
 - Studying engine variations and mitigation strategies
 - ¹⁵– Advanced variation diagnostics for catalyst, combustion & engine characterization