

BNL National Synchrotron Light Source II

Geopolymer Sealing Materials

May 18, 2010

PI : Dr. Tomas Butcher Presenter: Dr. Toshi Sugama Brookhaven National Laboratory

Relevance/Impact of Research

Objectives: Develop and characterize field-applicable geopolymer temporary sealing materials in the laboratory and to transfer this developed material technology to geothermal drilling service companies as collaborators for field validation tests.

Impact: Since geopolymer made with industrial by-products is characterized as cost-effective, acid-resistant, set-controlling, and refractory cementitious materials, if success, the impact will include;

- Reduction of total costs of sealing and drilling operation including the drilling rig and crew cost of "waiting on sealing's set" and raw material cost.
- New science and technology regarding self-degradable cementitious materials.
- High potential as thermal shock-resistant EGS well casing cement without self degradation.
- Mitigation of environmental impact by eliminating Ordinary Portland Cement (OPC), which emits 1 ton CO₂ gas during its 1 ton production.

- In 2003-2006, BNL developed a new-type of cost-effective acid-resistant casing cements through <u>alkali</u> <u>activation reaction</u> of sodium silicate. The developed cements were applicable to highly concentrated H₂S environments (pH <2.0) encountered in the upper regions between 0.1 to 5 Km of wells at temperatures of up to 200°C.
- Cements for reducing raw material cost were formulated using recycled industrial wastes such as granulated blast <u>slag</u> from steel manufactures and <u>fly ash</u> from coal combustion plants.
- Cements were associated with Na₂O-CaO-Al₂O₃-SiO₂-MgO system, NaAlSi₂O₆.H₂O (Zeolitic Analcium) and xNa₂O-yAl₂O₃-zSiO₂system (Geopolymer).

Advantages of Sodium Silicate-activated Cements Compared with Conventional OPC-based Well Cements:

- 1. Acid and CO₂resistance
- 2. Simple setting control without retarders
- 3. Heat and thermal shock resistance attributed to refractory cementitious properties
- 4. Cost effectiveness
- Green material
- 6. Environmental mitigation

Milestones

	FY2009	FY2010				FY2011						
	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q			
Phase I. Material development and characterization												
Task 1. Establish the basic				90	90%*							
formulation of temporary sealing												
materials												
Task 2. Characterization					20	%*						
Task 3. Develop expandable and swelling sealers							59	5%*				
Task 4.Develop self-degradable								10	%*			
sealers												
Task 5. Report												
Phase II. Technology transfer to												
geothermal industries												

^{*} Percent completion

Budget: FY09 \$347,000. FY10 \$232,000.

Partners: Halliburton (cost-share partner), AltraRock Energy Corporation (cost-share partner), Sandia National Laboratory (collaborator)

Material Criteria

- One dry component product
- Plastic viscosity, 20 to 70 cp at 300 r.p.m
- Maintenance of pumpability for at least 1 hour at 85° C
- Compressive strength >200 psi
- Be self-degradable by injection with water at a certain pressure
- Expandable and swelling properties; >10% of total volume of sealer
- Be compatible to drilling fluid and mud
- Excellent permeability through porous structures, corresponding to its applicability to soil stabilizing grout
- Bond strength to rock surfaces > 50 psi
- Anti-filtration properties
- Low material cost which is equal or less to that of conventional OPC-based well cements
- Potential for use as well casing cement without self-degradation

- Formulation:
 - -Slag(S)/Class C fly ash (C) blending system;
 - -Slag(S)/Class F fly ash (F) blending system;
 - -Class C fly ash (C)/Class F fly ash (F) blending system.
- Initial setting time measurement:
 - -ASTM C 191-92; by Vicat needle at 85° C.
- Sample preparation for compressive strength test:
 - -200° C autoclave for 5 hours;
 - -200° C autoclave for 5 hours + 250° C heat for 24 hours;
 - -200° C autoclave for 5 hours + 300° C heat for 24 hours.

Geopolymer Synthesis at temperature, ranging from 60°C to 250°C

Step 1. Dissolution of Al₂O₃-/SiO₂-enriched reactants in alkali medium

-(NaO.SiO₂-)_n-
sodium silicate
$$3Al_2O_3.2SiO_2 + zOH^- \longrightarrow xAl(OH)_4^- + yH_3SiO_4^-$$
mullite in fly ash

Step 2. Reaction between these dissociated ionic species

$$Na^{+} + H_{3}SiO_{4}^{-} + 2Al(OH)_{4}^{-} \longrightarrow Na-O-Al-O-Si-O-Al-OH + 3H_{2}O$$

$$OH OH OH$$

$$Na^{+} + H_{3}SiO_{4}^{-} + 2Al(OH)_{4}^{-} \longrightarrow Na-O-Al-O-Si-O-Al-OH + 3H_{2}O$$

$$OH OH OH$$

$$OH OH$$

$$OH OH OH$$

$$OH OH OH$$

$$OH OH OH$$

$$OH OH$$

$$O$$

Step 3. Self-polycondensation between pre-polymers

Changes in Initial Setting Time as a Function of S/C, S/F, and C/F Ratio at 85° C

Compressive Strength for Specimens Made with Various Slag/Class C Fly Ash Ratios Under Three Different Thermal Conditions

Slag/Class F Fly Ash System

Accomplishments, Expected Outcomes and Progress

Selected Formulations for Next Tasks

System	Initial setting time, min. at 85° C	Phase composition		Compressive strength, psi			
		Major	Minor	200° C autoclave	200° C autoclave + 250° C heat	200° C autoclave + 300° C heat	
20%Slag/80% Class C	80	Hydrogarnet + boehmite	C-S-H + Ettringite + Brucite	360	390	410	
40%Slag/60% Class F	90	Geopolymer + Analcime (Na-zeolite)	C-S-H + Ettringite + Brucite	304	311	328	

20%slag/80%ClassC

100% slag

Brittle fashion

40%slag/60%ClassF

Ductile fashion

Accomplishments, Expected Outcomes and Progress

Current Ongoing Work:

- Development of expandable and swellable additives contributing to 10% increase in total volume of sealers
 - -Use of alkali-swellable bentonite and smectite clay as well as foaming reagents
- Development of self-degradable sealers
 - -Use of low heat temperature (>150° C) degradable biopolymer additives and fibers such as tertiary ester-linked biopolymers

After water-impregnation 48.9% Porosity

Project Management/Coordination

Students