

Education & Collection Facility GSHP Demonstration Project

May 19, 2010

Dave Noel
Denver Museum
of Nature & Science

GSHP Deomstration Projects

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Mandatory Overview Slide - #1

Project Timeline

Project start: 3/2010

Engineering Feasibility: 4/2010 – 5/2010 [complete]

Schematic Engineering: 5/2010 – 8/2010

Decision Point – Eng. Review: 8/2010

Final Engineering & CD: 8/2010 –11/2010

Purchase & Installation: 6/2012 – 9/2013

Commissioning: 6/2012 – 9/2013

Data Collection & Marketing: 2013 – 2015

Percent Complete: < 5%

Mandatory Overview Slide - #2

Project Budget

Total Project Cost: \$5,223,677

DOE Share: \$2,611,832 (50%)

Awardee Share: \$2,611,845 (50%)

DOE Funding for 2010 (yr.1): \$155,665 (projected)

	Years	DOE Funding		Awardee Share		TOTAL	
Budget Period 1	2010-2011	\$	185,138	\$	254,138	\$	439,276
Budget Period 2	2011-2013	\$	2,275,031	\$	2,313,214	\$	4,588,245
Budget Period 3	2013-2015	\$	151,663	\$	44,493	\$	196,156
TOTAL		\$	2,611,832	\$	2,611,845	\$	5,223,677

Mandatory Overview Slide - #3

- Project Barriers (risks)
 - Municipal recycle water system's failure to deliver
 - Timeline may be impacted by ECF building construction schedule
- Collaboration Partners:
 - Denver Water (operator of recycle water system)
 - City and County of Denver
- Primary Contractors
 - Archectural Energy Corp (AEC)
 - GeoEnergy Services
 - Klipp Architects
 - Arup Engineering
 - BCER Engineering

Relevance/Impact of Project

Project Objective

Develop a commercial scale (100 Ton+) GSHP system that will meet the following goals

- Reduce building energy consumption
- Require significantly less area than traditional ground-loop GSHP
- Reduce capital required for installation
- Replicatable in other urban areas of the US

Proposed Solution

Utilize water circulating within an underground municipal recycle water (non-potable) water system as the heat sink/source.

Relevance/Impact of Research

Proposed Solution

Results in a high-performance, commercial-scale HVAC installation that consumes less power than a traditional HVAC, with a comparable capital investment.

- Large footprint required for GSHP borehole field is eliminated
- Capital costs required for GSHP borehole field is eliminated
- Complex environmental & regulatory permitting is minimized
- Relative efficiency of the GSHP system may be increased
- Project can be replicated in other urban areas
 - Denver recycle water system: over 36 miles long (& expanding)
 - Currently 171 water districts in 11 states with recycled water systems

Engineering /Technical Approach

- Major Go-No-Go Milestones
 - Recycle System Feasibility: completed approved
 - Review during Schematic Design August, 2010
- Engineering Design
 - Recycle system delivery modeling
 - Recycle system data collection (annual temp profile)
 - Thermal load model to determine building requirements
 - System redundancy & control
 - Maximize GSHP demo capabilities
 - Real-time energy monitoring within the building

Accomplishments (to date)

Initial Feasibility – focused on recycle water system

Conclusions:

- System can support project (year-around)
- Required water volume is adequate
- System cannot provide 100% availability
- Annual temperature profile is within range for HP
- Operational requirements are reasonable & implementable

Accomplishments & Expected Outcomes

Initial Feasibility – temp profile of recycled water

Findings: system temp profile at delivery point is adequate, but not as stable as initially expected.

Project Management Plan

- 2010: Major Tasks to Complete
 - Further modeling of recycle water system
 - ECF Schematic Engineering Design: integrate GSHP project
 - Complete final review
 - Begin Final Engineering Design
- 2011: Major Tasks to Complete
 - Complete Final Engineering Design
 - Complete permitting
- Data Collection for NGDS (2013)
 - Identify data items to collect & monitor
 - Identify data collection & management system
 - Prepare to deliver to NGDS

Future Directions

- 2010: Recycle Water System
 - Model system/pipeline flow
 - Attempt to improve delivery water temp profile
 - Possibly introduce turbulent flow of some sort...
- 2010: ECF Schematic Engineering Design
 - Integrate GSHP into the ECF building design
 - Design GSHP system redundancy & maximize efficiency
 - Use of potable water when recycle water not available
 - Use of available evaporative water cooling to lower input temp
 - Continue to model use of thermal reservoir
- 2011: Complete Final Engineering Design

Project Summary

Implementation of a commercial-scale GSHP system, integrated with an available recycle water system can:

- a) Reduce building energy consumption by as much as 50%.
- b) Significantly reduce the capital required for installation of a GSHP system, making the cost comparable to a traditional HVAC system
- c) Eliminate the need for large surface area required to install a traditional ground-loop field.
- d) Be economically replicated through-out the US where recycle water systems are available.